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We study the formation of vortices in a dilute Bose-Einstein condensate confined in a rotating anisotropic
trap. We find that the number of vortices and angular momentum attained by the condensate depend upon the
rotation history of the trap and on the number of vortices present in the condensate initially. A simplified model
based on hydrodynamic equations is developed, and used to explain this effect in terms of a shift in the
resonance frequency of the quadrupole mode of the condensate in the presence of a vortex lattice. Differences
between the spin-up and spin-down response of the condensate are found, demonstrating hysteresis phenomena
in this system.
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I. INTRODUCTION

The realization of Bose-Einstein condensation in ultracold
gases has provided a powerful new system in the study of
superfluids, combining better experimental control and theo-
retical tractability than liquid helium. A particularly striking
example concerns the response of the fluid to rotation. Due
to the irrotationality property of superfluids, application of a
rotating perturbation results in the creation of a lattice of
quantized vortex lines, a process that was originally observed
in He II �1�. Analogous experiments in ultracold gases have
found the formation of similar structures in Bose conden-
sates �2–8�, and recently in a fermionic gas that is superfluid
due to Cooper pairing between atoms �9�.

An interesting question raised by these experiments con-
cerns the angular velocity of the rotating potential required to
nucleate vortices. Since the energy per particle of a conden-
sate containing a vortex, Ev, exceeds that of the ground state,
E0, by transforming to a frame rotating with angular velocity
� it is straightforward to show that vortices are energetically
favored if �� �Ev−E0� /� �10�. However, higher rotation
rates are generally required to nucleate vortices in experi-
ments �2,5,6,8�, which reflects the existence of an energy
barrier to vortex formation �11�. This can be overcome by
excitation of collective modes localized at the surface of the
condensate �12,13�.

The presence of two different critical angular velocities
implies the existence of metastable states, where vortices are
energetically favorable but dynamically are unable to form,
and in turn the possibility of hysteresis phenomena �12,14�.
Hysteresis has long been observed in rotating superfluid he-
lium. For example, experiments have found a significant dif-
ference between the number of vortices obtained when the
fluid is spun up to when it is spun down �15�. Reproducible
hysteresis loops were measured by minimizing the mechani-
cal and thermal noise of the apparatus �16�. Jones et al. �17�
attempted to explain this effect by using a principle of local
momentum conservation. Fortunately atomic Bose-Einstein
condensates are less noisily coupled to their environment
than rotating liquid helium, and, unlike liquid helium, can be
studied using a model that has great predictive power,
namely the Gross-Pitaevskii �GP� equation.

In this paper we discuss a particular example of hyster-
esis, where the amount of circulation already present in a
Bose condensate influences the final angular momentum and
number of vortices that can be attained. This effect has been
exploited in the experiment of Ref. �18� to rotate the conden-
sate to high angular velocities. The aim of this paper is to
explore this issue theoretically in more detail. Following pre-
vious studies �19–24� we solve the GP equation for the con-
densate wave function ��r , t� to study the vortex formation
process in a rotating anisotropic trap. However, we go further
by considering cases where the trap rotation frequency is
changed during the simulation, as well as when vortices are
already present in the condensate. Moreover, new insight is
gained by comparing our findings to the results of a hydro-
dynamic model �25� of the condensate, which yields a reso-
nance in the angular momentum transfer associated with ex-
citation of the quadrupole collective mode. The presence of a
vortex lattice then has the effect of shifting this mode fre-
quency and therefore the resonance to higher values. As a
further example of hysteresis we consider the case where the
trap rotation frequency is slowly ramped up and then down,
demonstrating a difference in the trajectories of the angular
momentum between the two cases.

We note that the discussion in this paper is restricted to
very low temperatures, where the thermal cloud is insignifi-
cant and the condensate dynamics can be accurately modeled
with the GP equation. An interesting issue concerns the ef-
fect of finite temperatures on the phenomena described here.
However, to address this question requires one to treat the
dynamics of both the condensate and thermal cloud consis-
tently, since the thermal cloud also responds to a rotating
potential by spinning up during a time scale related to the
frequency of collisions between the atoms �26�. Treatment of
the coupled dynamics is conceptually rich and numerically
intensive, and is outside the scope of this work.

II. VORTEX FORMATION

The GP equation is solved numerically for a harmonically
trapped condensate in two dimensions �2D�, which corre-
sponds to the case where the axial trap frequency is much
larger than the mean-field interaction energy, such that mo-

PHYSICAL REVIEW A 74, 043618 �2006�

1050-2947/2006/74�4�/043618�7� ©2006 The American Physical Society043618-1

http://dx.doi.org/10.1103/PhysRevA.74.043618


tion along the axial direction is frozen. Similar 2D studies
�20,24� have previously found good qualitative, and in some
cases quantitative, agreement with experimental data even
when this condition is not satisfied �2,6�, confirming that
much of the crucial physics of the vortex formation process
is captured in 2D.

Angular momentum is imparted to the condensate by ro-
tating an elliptically deformed harmonic trap, which is rep-
resented by the potential

V�r� =
1

2
m��

2 ��1 + ��x�2 + �1 − ��y�2� , �1�

where a rotational transformation of the �x ,y ,z� Cartesian
coordinate system is used, such that x�=x cos��t�
+y sin��t� and y�=−x sin��t�+y cos��t� correspond to ro-
tation of the trap at frequency �. Dimensionless units are
also used, with the units of length, time, and energy given by
�� / �m����1/2, ��

−1, and ��� respectively. The GP equation
then becomes

i
�

�t
� = �1

2
�− �2 + �1 + ��x�2 + �1 − ��y�2� + g���2�� .

�2�

Mean-field interactions are represented by g=4�N�a, where
N� is the number of atoms per unit length in the axial z
direction, while a denotes the s-wave scattering length.
Throughout this paper we will use g=450, although the re-
sults are expected to be generally applicable to other inter-
action strengths.

To provide the initial condition for the simulation, Eq. �2�
is numerically propagated in imaginary time with �=0 and
�=0, such that the wave function converges to the conden-
sate ground state without vortices. In order to model vortex
formation the simulation is then run in real time with a ro-
tating elliptical trap ��=0.1,��0�, where the deformation �
is switched on abruptly at t=0, rather than being turned on
gradually.

Figure 1 illustrates the subsequent time-dependent re-
sponse of the condensate by plotting the mean angular mo-

mentum �Lz	=
dr �*L̂z�, with L̂z= i�y�x−x�y�. If �=0.78
�curve a� one sees that the angular momentum increases ini-
tially, undergoing large oscillations before settling to an al-
most constant value for t�250, similar to behavior found in
previous studies �20,23,24� as well as experiments �8�. The
initial oscillations correspond to variations in the quadrupo-
lar deformation of the condensate which subsequently dimin-
ish as vortices enter the condensate. The vortices then con-
tinue to undergo complicated dynamics, albeit in such a way
that the angular momentum remains in quasiequilibrium.
However, the vortices do not crystallize to form a stable,
ordered lattice, which would require the inclusion of dissipa-
tion �21,22,27,28� or integration of the GP equation over
much longer time scales �23,24�.

If the trap rotation rate is significantly smaller or larger
than �=0.78 then the condensate angular momentum dis-
plays a periodic time dependence �see Fig. 1 curve b, for
�=0.9�. This behavior corresponds to an oscillation of the

quadrupolar deformation of the condensate, �= �y�2

−x�2	 / �y�2+x�2	. The angular momentum is found to be
close to the value �Lz	=�	 if the momentum of inertia is
given by the expression for an irrotational superfluid, 	
=�2�x�2+y�2	 �29,30�. Hence the condensate remains irrota-
tional and no vortices are nucleated, in contrast to the case
where �=0.78. Note that the oscillations in the quadrupolar
deformation arise due to the sudden imposition of the rotat-
ing trap’s deformation, and their amplitude is lower if � is
turned on gradually.

In the two examples given, the trap rotation rate was
maintained at a constant value throughout the simulation. If,
instead, the rotation rate is changed to another value midway
through the run, then very different results are found. Curves
c and d of Fig. 1 represent simulations where for 0
 t

400 the trap rotates at �=0.7, resulting in vortex nucle-
ation. At t=400 the rotation rate is abruptly changed to either
�=0.78 �curve c� or �=0.9 �curve d�. In the former case the
angular momentum increases only slightly, and remains
much smaller ��Lz	�10� than in the case where �=0.78
from the beginning ��Lz	�18�. For �=0.9 �curve d�, how-
ever, the angular momentum jumps to a much larger value
�corresponding to a major increase in the number of vorti-
ces�, which is in stark contrast with the lack of vortices when
the condensate is rotated at this frequency initially �curve b�.
These examples demonstrate that the vortex formation pro-
cess strongly depends upon the “rotation history” of the con-
densate.

To explore this question further, we have also conducted
simulations where the trap rotation frequency remains con-
stant throughout each run, but the initial state already con-
tains vortices. These states can be obtained by solving the
GP equation for a noninertial frame of reference which ro-
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FIG. 1. Angular velocity �Lz	 �in units of �� as a function of
time, t �units of ��

−1� for �=0.1 and no vortices present in the
condensate initially. The solid lines plot the results when the initial
trap rotation frequency � �in units of ��� is maintained up to t
=800, with �=0.78 �curve a, black� and �=0.9 �curve b, gray�.
The broken lines �curves c and d� represent cases where �=0.7 up
to t=400 �marked by a vertical line�, after which the rotation fre-
quency is changed to �=0.78 �c, dashed� or �=0.9 �d, dotted�.
Note that all of the figures in this paper are plotted in dimensionless
units.
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tates at constant angular velocity �0, where t is now imagi-
nary

i
�

�t
� = �1

2
�− �2 + x2 + y2� + g���2 − �0L̂z�� . �3�

Hereafter we will use �0 to distinguish the rotation of the
reference frame �in which we solve the GP equation in
imaginary time� from the �real time� trap rotation rate �. For
sufficiently large �0, imaginary time propagation leads to the
appearance of vortices, which eventually settle into an or-
dered lattice to yield the stationary solution for this rotating
frame.

The wave function thus found can be used as the initial
condition for Eq. �2�, which is integrated in real time as in
the previous section. Figure 2 shows the resulting time evo-
lution of the angular momentum with �=0.78 for different
initial states. The black solid line �curve e� corresponds to
the same run represented by curve a in Fig. 1, where the
condensate contains no vortices initially ��0=0�. The gray
line �curve f�, by way of contrast, is for �0=0.5, where the
initial state contains six vortices and possesses an angular
momentum of �Lz	=3.64. The subsequent rotation of the trap
at �=0.78 leads to a final angular momentum of �Lz	�11,
which is only around 60% of the value attained when no
vortices are present initially. If higher values of �0 �corre-
sponding to more initial vortices� are used, this deficit in the
angular momentum becomes even larger. Indeed, if �0
=0.78, the angular momentum remains almost constant
throughout the evolution in real time.

These differences in angular momentum reflect similar
variations in the number of vortices present in the conden-
sate. This is illustrated in Fig. 3, where Figs. 3�a�–3�c� show
snapshots of the condensate density, ���r , t��2, at various
times for �0=0 and �=0.78. The corresponding case for
�0=0.6 is shown in Figs. 3�d�–3�f�; vortices are already

present initially, but the final number of vortices at t=400 is
less than for �0=0 �comparing Figs. 3�c� and 3�f��.

To help explain these differences, in Fig. 4 we plot the
angular momentum as a function of the trap rotation fre-
quency for �0=0 and 0.5. If there are no vortices and �Lz	
has a periodic time dependence then the plotted value is the
peak value between 0 and t=400. If vortices are present the
value of �Lz	 is taken at t=400, at which point the angular
momentum has generally plateaued at an approximately con-
stant value. The filled circles represent the results for the
initial condition �0=0, and it is apparent that appreciable
vortex formation �and hence angular momentum transfer� oc-
curs in the approximate range 0.68
�
0.88. Furthermore,
within this range the angular momentum rises with increas-
ing �, in agreement with previous experimental �6� and the-
oretical �24� studies, where a similar dependence was found
when plotting the final number of vortices against �.

The angular momenta attained at t=400 when the initial
condition is �0=0.5 are plotted in Fig. 4 with open circles
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FIG. 2. Angular momentum as a function of time for a conden-
sate in a rotating trap with �=0.1 and �=0.78. The various simu-
lations use different initial conditions, which correspond to station-
ary states for an isotropic condensate in a frame rotating with
angular velocity �0. Plotted are �0=0 �curve e, solid black line�,
�0=0.5 �curve f , gray�, �0=0.6 �curve g, dashed�, and �0=0.78
�curve h, dotted�.

FIG. 3. Condensate density ���r , t��2 with a trap rotating at an-
gular velocity �=0.78 for t= �a� 100, �b� 200, and �c� 400, with
�0=0. �d�–�f� show a similar simulation but with �0=0.6, for t
= �d� 50, �e� 200, and �f� 400. The holes in the density profiles
correspond to vortices.
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FIG. 4. Maximum angular momentum attained by a condensate
in an elliptical trap rotating with frequency � ��=0.1�. The solid
and open circles show the results for �0=0 and 0.5, respectively.
The lines plot the maximum angular momentum found by solving
the hydrodynamic model �8�–�15� for �0=0 �solid� and 0.5
�dashed�.
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�31�. We see that, compared to the �0=0 case, appreciable
increases in �Lz	 tend to take place at higher �. Hence,
nucleation of additional vortices occurs at higher rotation
frequencies when vortices are already present in the conden-
sate. This effect accounts for the differences in angular mo-
mentum apparent in Figs. 1 and 2.

III. HYDRODYNAMIC MODEL

The numerical solutions of the Gross-Pitaevskii equation
discussed in the previous section accurately treat the dynam-
ics of the condensate at very low temperatures. However, it
is also instructive to consider a simplified, approximate
model that is much less numerically intensive to solve than
the GP equation. This allows us to more easily explore pa-
rameter space, as well as providing new insight into the phe-
nomena observed so far. Our simplified model is based upon
the equations of rotational hydrodynamics, which provide a
description of the condensate in the Thomas-Fermi �large-g�
regime

�n

�t
+ � · �nv� = 0, �4�

�v
�t

+ �v · ��v + ��V + gn� = 0. �5�

Following �25� we solve Eqs. �4� and �5� to describe the
dynamics by employing the following ansatz for the density
and velocity �32�:

n�r� = a0 + axx
2 + ayy

2 + axyxy , �6�

v�r� = �0 � r + ��bxx
2 + byy

2 + bxyxy� , �7�

where ai, bi, and �0 are time-dependent parameters. Note
that the velocity �7� includes both rotational and irrotational
components, where the former assumes that the combined
velocity field of the vortices in the lattice approximates a
solid body rotation. Substituting �6� and �7� into �4� and �5�
yields a set of differential equations for each parameter,
which are integrated in time using a fourth-order Runge-
Kutta scheme �33�

ȧ0 + 2a0�bx + by� = 0, �8�

ȧx + �0axy + 6axbx + 2axbx + axybxy = 0, �9�

ȧy − �0axy + 2aybx + 6ayby + axybxy = 0, �10�

ȧxy − 2�0ax + 2�0ay + 4axy�bx + by� + 2�ax + ay�bxy = 0,

�11�

ḃx +
1

2
�4bx

2 − �0
2 + bxy

2 + 1 + �x + 2gax� = 0, �12�

ḃy +
1

2
�4by

2 − �0
2 + bxy

2 + 1 − �x + 2gay� = 0, �13�

ḃxy + 2�bx + by�bxy + �y + gaxy = 0, �14�

�̇0 + 2�bx + by��0 = 0, �15�

where �x=� cos�2�t� and �y =� sin�2�t�, with � the trap
rotation frequency. Once the time evolution of these proper-
ties are known quantities such as the angular momentum can
be calculated by integration of �6� and �7�.

The solution of Eqs. �8�–�15� for a rotating elliptical trap
yields an angular momentum that oscillates in time, similar
to the behavior shown in curve b of Fig. 1. The peak angular
momenta as a function of � are plotted in Fig. 5 for various
values of � and �0=0. For �=0.001 the response is sym-
metrical about a peak near �=1/�2. This sharp resonance
arises since a perturbation rotating with frequency � is reso-
nant with a surface mode with azimuthal quantum number m
when �−m��0, so that for a quadrupolar trap deformation
the m= +2 mode should be resonantly excited when �res
��+2 /2 �12�. With increasing � the resonance becomes
higher and wider as well as more asymmetric, until at �
=0.1 there is a steep downward gradient immediately follow-
ing the peak. Note that the resonance peaks are symmetric
when Eqs. �8�–�15� are linearized for small departures from
equilibrium, demonstrating that their asymmetry is a conse-
quence of the nonlinearity of the equations.

The results of the hydrodynamic model are compared to
those of the GP equation in Fig. 4. The solid line plots the
maximum angular momentum as a function of � for �0=0,
where one sees a close agreement with the GP results. Such
correspondence is pleasing, but perhaps to be anticipated
when vortices are not nucleated, since Eqs. �6� and �7� are
expected to be good approximations and the time depen-
dence of �Lz	 is oscillatory in both cases. The agreement is
more surprising in the region 0.68
�
0.88, when vortices
are nucleated and the time dependence departs from oscilla-
tory behavior. It appears that the final, steady angular mo-
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FIG. 5. Maximum angular momentum �Lz	 as a function of trap
rotation frequency �, solving Eqs. �8� and �10�–�15� for �0=0. The
different curves show results for �=0.001 �solid�, 0.01 �dashed�,
0.05 �dotted�, and 0.1 �dot-dashed�. The vertical line marks �
=1/�2.
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mentum attained is still close to the peak amplitude of the
oscillations in the absence of vortices.

The maximum �Lz	 for �0=0.5 is plotted with the dashed
line in Fig. 4. The agreement with the GP results is again
relatively good, even though the approximation of solid-
body rotation in �7� is not expected to be particularly accu-
rate for the small number of vortices present in this case. One
sees a shifting of the resonance to higher trap rotation fre-
quencies for the larger �0, which is related to changes in the
frequencies of the quadrupole collective modes. By lineariz-
ing �8�–�15� for small-amplitude oscillations around �=0 one
finds these frequencies to be �25�

�±2 = �2 − �0
2 ± �0. �16�

This expression provides a simple and useful way to under-
stand the behavior of quadrupole mode frequencies with
changing rotation. In particular, one sees that the counter-
propagating m= +2 and m=−2 quadrupole modes are degen-
erate at �=�2 for �0=0, while in the presence of a vortex
lattice this degeneracy is broken such that �+2→2 and �−2
→0 for �0→1. This general behavior of the m= +2 fre-
quency increasing with �0 is reflected in Fig. 4, albeit modi-
fied to account for the nonlinearity introduced with ��0.

A further consequence of this argument is that to remove
angular momentum, and therefore vortices, from the conden-
sate requires the trap to be rotating in the opposite direction
with an angular velocity approximately half that of the m=
−2 mode frequency. We have confirmed this by performing
simulations with �0=0.5 and ��0, and the results are pre-
sented in Fig. 6. For �=−0.3 the angular momentum under-
goes small oscillations and remains close to the original
value �Lz	�3.64, since this trap rotation rate is sufficiently
far from the resonance. This is also found to be true when
�=−0.8, albeit with smaller amplitude oscillations due to
being further from resonance. However, when �=−0.5 the
angular momentum rapidly decreases and becomes negative
as the vortices that are originally present leave the conden-
sate and vortices of opposite sign enter, eventually settling

into a quasiequilibrium state. The inset of Fig. 6 compares
the minimum of �Lz	 in the three simulations to the result of
solving the hydrodynamic model �8�–�15�� under the same
conditions, once again demonstrating reasonable agreement
between the two approaches. As expected, the peak of the
resonance is close to −�−2 /2, where �−2�0.82 from �16�,
although as before it is skewed toward higher ��� due to the
large value of �.

IV. HYSTERESIS DURING LINEAR RAMPING

Finally, we again use numerical simulations of the GP
equation �2� to study the difference in the response of the
condensate between when it is spun up from when it is spun
down. We begin with an initial condition containing vortices,
such that the wave function is a stationary solution of Eq. �3�
with �0=0.5. An elliptically deformed trap potential ��
=0.1� is then rotated with a time-dependent angular velocity
of the following form:

��t� = 0.5 + 3.75 � 10−4t if 0 � t � 400,

0.8 − 3.75 � 10−4t if 400 
 t � 800.
� �17�

Hence during the first half of the simulation � is linearly
ramped up from 0.5 to 0.65, while in the second half it is
ramped down from 0.65 to 0.5. These correspond to “spin-
up” and “spin-down” experiments, respectively.

The result is shown in Fig. 7, where the angular momen-
tum is plotted against both � �lower abscissa� and time �up-
per abscissa�. In turn, on the upper abscissa times are shown
for both the spin-up �black text� and spin-down �gray text�
processes, where the corresponding plotted curves are repre-
sented by the same colors. During the spin-up process �Lz	
does not increase initially, but undergoes oscillatory behav-
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FIG. 6. Angular momentum as a function of time for �0=0.5,
and �=−0.3 �curve i, solid black line�, �=−0.5 �j, dashed�, and
�=−0.8 �k, gray�. Inset: Minimum angular momentum for different
� from GP simulations �points�, compared to �solid line� the results
of solving Eqs. �8�–�15� for �0=0.5.
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FIG. 7. Hysteresis in the angular momentum �Lz	 of the conden-
sate wave function, initially a stationary solution of the GP equation
�3� with �0=0.5. The angular velocity of a rotating elliptical trap
��=0.1� follows Eq. �17�. It is linearly ramped from �=0.5 at t
=0 to �=0.65 at t=400 �black line�, and subsequently for t�400,
is linearly ramped down such that �=0.5 at t=800 �gray line�. Note
that the abscissa is labeled with � �bottom� and t �top�, where the
latter has two different tick labels for spin up �black� and spin down
�gray�.

HYSTERESIS EFFECTS IN ROTATING BOSE-… PHYSICAL REVIEW A 74, 043618 �2006�

043618-5



ior. This corresponds to the left side of Fig. 4, where the
rotation frequency is far from the m= +2 quadrupolar reso-
nance. Then, as � approaches resonance angular momentum
is transferred to the condensate, until �Lz	�6 at t=400. Dur-
ing the subsequent spin-down process, however, the angular
momentum does not follow the path of the spin-up, but re-
mains almost constant with only a slight decrease at the end.
This reflects the fact that the rotation rate is far from being
resonant with the m=−2 mode, the excitation of which is
required to remove angular momentum from the system.
Once again this clearly illustrates the importance of the ro-
tation history on the attained angular momentum, and hence
demonstrates the possibility of observing hysteresis phenom-
ena in rotating condensates.

Finally, we should note that hysteresis behavior was also
found by García-Ripoll and Pérez-García in Ref. �14�. A ma-
jor difference with respect to the present work is that in �14�
the time-independent GP equation was solved to find the
stationary solutions for different rotation rates, while here the
dynamics are considered explicitly by solving the time-
dependent GP equation. Moreover, the results of Ref. �14�
are based on the assumption that all collective modes are
excited, and vortex formation occurs when the rotation fre-
quency � first becomes resonant with one of the modes. In
experiments this would correspond to relatively high tem-
peratures where the collective excitations are thermally
populated to an appreciable extent and the thermal cloud is
in rotation �similarly to the experiment of Haljan et al. �7��.
In contrast, we have been interested in the case where vortex
nucleation is induced by a rotating elliptical trap, so that the
quadrupole mode is predominantly excited and becomes un-
stable prior to vortex nucleation.

V. CONCLUSIONS

In summary, we have studied the process of vortex forma-
tion in a rotating dilute Bose-Einstein condensate using nu-
merical simulations of the Gross-Pitaevskii equation. We
have paid particular attention to the amount of angular mo-

mentum transferred to the condensate for different rotation
angular velocities of an elliptically deformed trapping poten-
tial. The angular momentum of the condensate �and hence
the number of vortices� not only depends upon the final ro-
tation rate of the trap, but also upon the history of the rota-
tion. Specifically, by initially rotating at one angular velocity,
�, until vortices are nucleated, then changing to a second
value of �, one can attain a very different angular momen-
tum compared to that achieved when the second � is re-
tained throughout. Furthermore, we have shown that simula-
tions with different initial conditions, corresponding to when
vortices are already present in the condensate, also lead to
different final angular momenta, similar to behavior found in
the experiment of Ref. �18�. Using a hydrodynamic model
we have demonstrated that this effect is due to a shift of the
resonant frequency for the excitation of quadrupole collec-
tive modes when the condensate is already in rotation. We
also show that the angular momentum response to a linear
ramp of the trap rotation frequency is radically different de-
pending on whether the ramp is increasing or decreasing,
revealing the existence of hysteresis phenomena in rotating
condensates.

We conclude by noting that these processes should be
readily observable in present experiments where vortices
have been nucleated by stirring the condensate �e.g. Refs.
�2,4,6��, although the dissipation arising from the presence of
a noncondensed cloud may influence the angular momentum
eventually achieved over longer time scales. Assessing the
importance of this contribution requires a more sophisticated
model that includes finite-temperature effects �34,35�, and
will be left to future work.
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