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The form and stability properties of axisymmetric and spherically symmetric stationary states in two and
three dimensions, respectively, are elucidated for Bose-Einstein condensates. These states include the ground
state, central vortices, and radial excitations of both. The latter are called ring solitons in two dimensions and
spherical shells in three. The nonlinear Schrödinger equation is taken as the fundamental model; both extended
and harmonically trapped condensates are considered. It is found that the instability times of ring solitons can
be long compared to experimental time scales, making them effectively stable over the lifetime of an
experiment.
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I. INTRODUCTION

One of the primary motivations in the original derivation
of the Gross-Pitaevskii equation was to describe vortices in
superfluids �1–3�. The quantization of vorticity is a central
difference between classical fluids and superfluids �4�. The
Gross-Pitaevskii equation has proven to be an excellent
model for weakly interacting, dilute atomic �5–10� and mo-
lecular �11–13� Bose-Einstein condensates �BEC’s�, which
are generally superfluid. In the context of optics the Gross-
Pitaevskii equation is known as the nonlinear Schrödinger
equation �NLSE� �14�. Vortices �15,16�, as well as their one-
dimensional analog, solitons �17,18� have been observed in
BEC’s in numerous experiments. The NLSE describes these
observations well �19–22�.

However, there are in fact much richer vortex and soliton
structures yet to be observed. One such structure is the ring
soliton �23–29�, a soliton extended into two dimensions
which loops back on itself to form a ring, i.e., a radial node.
This appears as an axisymmetric radial node of the conden-
sate; set at the right distance from the origin, it becomes a
stationary state. In the optics context, the ring soliton is well
known to be unstable to the snake instability, whereby it
decays into vortex-antivortex pairs. In this article, we not
only describe vortices and radially excited states of BEC’s
with high precision, but we also show that in a harmonic trap
the decay time can be long compared to the classical oscil-
lation period of the trap and even the lifetime of the conden-
sate itself �30�.

We consider three cases for the external, or trapping, po-
tential V�r��. First, V�r��=0 corresponds to an infinitely ex-
tended condensate and leads to solutions of beautiful math-
ematical form. Second, V�r��=V�r�=0 for r�R and V�r�=�
for r�R correspond to a disk in two dimensions and a
sphere in three, i.e., an infinite well. This introduces confine-
ment into the problem, connects heuristically with the first
case and general knowledge of solutions to Schrödinger
equations, and serves as a bridge to the experimental case of
a harmonic trap. Third, V�r��= 1

2 M��2�x2+y2�+�z
2z2�, with

���z, where M is the atomic mass and � and �z are the
classical oscillation frequencies, corresponds to a highly ob-

late harmonic trap, which is most relevant to present experi-
ments.

This work follows in the spirit of a previous set of inves-
tigations of the one-dimensional NLSE, for both repulsive
and attractive nonlinearities �31,32�. In that work it was pos-
sible to obtain all stationary solutions in closed analytic
form. In the present cases of two and three dimensions, we
are unaware of an exhaustive class of closed-form solutions
but instead use a combination of analytical and numerical
techniques to elicit the stationary and stability properties of
similar solutions. Here, we treat the case of repulsive atomic
interactions; as in our previous work on one dimension, the
attractive case has been treated separately �33�, due to the
very different character of the solutions.

Equations similar to the NLSE are often used as models
for classical and quantum systems. Thus a tremendous
amount of theoretical work has been done on vortices, for
which the reader is referred to Fetter and Svidzinsky on
BEC’s �20�, Donnelly on helium II �4�, and Saffman on clas-
sical vortices �34� as good starting points for investigations
of the literature. As NLSE-type equations apply in many
physical contexts, our results are widely applicable beyond
the BEC.

The article is outlined as follows. The derivation of the
fundamental differential equations is presented in Sec. II. In
Sec. III the ground state and vortices in two dimensions are
presented. In Sec. IV the stationary radial excitations of these
solutions are illustrated. In Sec. V the ground state and its
radial excitations in three dimensions are treated. In Sec. VI
the stability properties of solution types containing ring soli-
tons are discussed. Finally, in Sec. VII, we discuss the results
and conclude.

II. FUNDAMENTAL EQUATION

The fundamental differential equation is derived as fol-
lows. The NLSE, which models the mean field of a BEC
�1,2,9�, is written as
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�−
�2

2M
�2 + g���2 + V�r���� = i �

�

�t
� , �1�

where V�r�� is an external potential, g�4��2as /M, as is the
s-wave scattering length for binary interaction between at-
oms with as�0, since this is the repulsive case, and M is the
atomic mass. The condensate order parameter �=��r� , t�
�	n�r� , t�exp�iS�r� , t��, where n�r� , t� is the local atomic num-

ber density and v��r� , t�= �� /M��� S�r� , t� is the local superfluid
velocity. Note that, in two dimensions, the coupling constant
g is renormalized by a transverse length �35–38�.

We assume cylindrical or spherical symmetry of both the
external potential and the order parameter in two or three
dimensions, respectively. This has the effect of reducing Eq.
�1� to one nontrivial spatial variable. Specifically, wave func-
tions of the form

��r�� = fm�r�exp�im��exp�− i	t/ � �exp�i
0� �2�

are treated, where m is the winding number, 	 is the eigen-
value, also called the chemical potential, � is the azimuthal
coordinate, r is the radial coordinate in two or three dimen-
sions, and 
0 is a constant phase which may be taken to be
zero without loss of generality.

Assuming an axisymmetric stationary state in two dimen-
sions of the form given in Eq. �2�, Eq. �1� becomes

−
�2

2M

 �2

�r2 +
1

r

�

�r
−

m2

r2 � fm + gfm
3 + V�r�fm − 	fm = 0.

�3�

Assuming spherical symmetry in three dimensions, one finds
a similar equation

−
�2

2M

 �2

�r2 +
2

r

�

�r
� f0 + gf0

3 + V�r�f0 − 	f0 = 0. �4�

In Eq. �4� it is assumed that m=0, in keeping with the spheri-
cal symmetry. This is an important special case, as it includes
the ground state. In the remainder of this work, m will be
taken as non-negative since f−�m�= f �m�.

The physically relevant solutions of Eqs. �3� and �4� in-
clude the ground state, vortices, ring solitons, and spherical
shells, as we will show in the following three sections. A
variety of solution methods are used to treat the wave func-
tion in different regions of r, as discussed in the Appendix.
Different rescalings of Eqs. �3� and �4� are appropriate for
the three potentials we consider: constant, infinite well, and
oblate harmonic. These are treated briefly in the following
subsections.

A. Constant potential

A constant potential has no direct experimental realiza-
tion. However, it does have mathematical properties which
are helpful in understanding the confined case, not to men-
tion beautiful in themselves. For instance, the vortex solution
manifests as a boundary between divergent and nondivergent
solutions, as shall be explained.

The potential V�r�=V0 can be taken to be zero without
loss of generality. Then the variables can be rescaled as

�m �	 g

	
fm, �5�

� �
	2M	 r

�
. �6�

Note that the radial coordinate is scaled to the length associ-
ated with the chemical potential. Then Eq. �3� becomes

�m� +
1

�
�m� −

m2

�2 �m − �m
3 + �m = 0 �7�

and Eq. �4� becomes

�0� +
2

�
�0� − �0

3 + �0 = 0, �8�

where 	 has been assumed to be positive, since this is the
physically meaningful case for repulsive atomic interactions.
Note that, in these units, the length scale of a vortex core is
of the order of unity.

B. Infinite potential well in two and three dimensions

Let us first consider the two-dimensional �2D� infinite
well. A confined condensate may be obtained by placing an
infinite potential wall at fixed r=	x2+y2, at any node of the
wave function ��r ,��. This treats either a condensate tightly
confined in z or a cylinder of infinite z extent. In either case,
one derives a 2D NLSE from the 3D one by projecting the z
degree of freedom onto the ground state and integrating over
it. This leads to a straightforward renormalization of the co-
efficient of the nonlinear, cubic term. Extremely high poten-
tial wells in the x-y plane have been created in BEC experi-
ments via higher-order Gauss-Laguerre modes of optical
traps �39�.

For the purposes of our numerical algorithm outlined in
the Appendix, it is convenient to keep the same scalings as
Eqs. �5� and �6�. Then the normalization has to be treated
with some care. The normalization of � in two dimensions
for a BEC of N atoms in an infinite cylindrical well of radius
R is given by

�
0

2�

d��
0

R

drr���r,�;t��2 = N . �9�

After the change of units given by Eqs. �5� and �6� the nor-
malization becomes

�
0

�R

d����m����2 = 2N , �10�

where

N �
M

2��2gN �11�

and

�R �	2M	

�2 R �12�

are the effective nonlinearity and cylinder radius.
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The three-dimensional infinite well is treated similarly,
with the normalization being N, rather than 2N, due to the
extra angular integration.

The details of the algorithm for calculation of quantized
modes in two and three dimensions are discussed in the
fourth section of the Appendix.

C. Oblate harmonic trap

For the harmonic potential we shall focus on the case of a
highly oblate trap, which is the experimentally relevant one
to obtain axial symmetry in two effective dimensions �40�.
Then, again projecting onto the ground state in z, the res-
caled nonlinearity N has a simple interpretation

N = 2asN	M�z/2�� , �13�

where �z is the angular frequency of the trap in the z direc-
tion. The trap is isotropic in the remaining two directions,
���x=�y. All energies can then be scaled to ��, lengths to
��	� /M�, etc., as follows:

−
1

2

 f̃m� +

1

r̃
f̃m� −

m2

r̃2 f̃m� + f̃m
3 +

1

2
r̃2 f̃m − 	̃ f̃m = 0, �14�

where the tildes refer to harmonic oscillator scalings. Explic-
itly, r̃�r /�, f̃m� � fm, 	̃�	 / ��, and the normalization is

� dr̃ r̃� f̃m�2 = N . �15�

The main difference between Eqs. �14� and �7� is that an
extra parameter must be set in the numerical algorithm of the
Appendix, i.e., the rescaled chemical potential. Then the nor-
malization is determined from Eq. �15�.

III. GROUND STATE AND VORTICES

In order to solve Eqs. �3� and �4�, we use a numerical
shooting method, as discussed in the third section of the
Appendix. Two initial conditions are required, as the NLSE
is second order. These are provided by a Taylor expansion
around �=0, as described in the first section of the Appen-
dix. By this method a single parameter is sufficient to deter-
mine the solution. This parameter a0 is the lowest nonzero
coefficient in the Taylor series. High precision is required, as
discussed in the Appendix, with the number of digits of pre-
cision determining where the numerical method either con-
verges or diverges.

For the first potential we consider, V���=0, the ground
state, which is obtained for m=0, lies precisely on the border
between convergence and divergence of the algorithm. The
value of a0 which is exactly on this border we term a0

�0�. The
wave function �0��� is constant and, according to our scal-
ings, is simply ±		 /g= ±1. Then a0

�0�= ±1 and the precision
is infinite. Values of �a0� larger than 1 lead to a divergent
solution, while values of �a0� less than 1 lead to a convergent
one. In the latter case the wave function oscillates an infinite
number of times and approaches zero, as will be discussed in
Sec. IV. Thus, in general, ��0� can approach only three
asymptotic values: 0, 1, and �.

For the case of nonzero winding number, one finds a cen-
tral vortex. As in the case of the ground state, lim�→� ��m�2
� n̄=	 /g is the asymptotic density of the vortex state. In this
region the spatial derivatives yield zero and �m���→ ±1 as
�→�. The vortex again lies on the border between diver-
gence and convergence of our algorithm, given by a single
parameter a0

�m� which determines the whole Taylor series. In
the Appendix the precision issues are discussed in detail. In
Fig. 1 is illustrated the algorithmic approach to the vortex
solution for zero external potential. The effect of the number
of digits of precision is shown in detail, and further ex-
plained in the Appendix, where the best values of a0

�m� for
winding numbers m=1 to 5 are given.

For the second potential, an infinite well in two dimen-
sions, the properly normalized ground state and vortex states
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FIG. 1. �Color online� Approaching the vortex solution. Shown
is the dependence of the wave function on the precision in the
critical determining coefficient a0

�m=1� for a quantum vortex station-
ary state of the nonlinear Schrödinger equation in two dimensions.
�a� The vortex solution forms a boundary between convergent �a0

=a0
�1��1−10−16�, solid black curve� and divergent �a0=a0

�1��1
+10−16�, dot-dashed blue curve� solutions. As the precision is re-
duced, the first node moves towards the origin and the solution
approaches the Bessel function: �b� eight digits of precision and �c�
two digits of precision. In �b� and �c� the regular Bessel function
solution to the linear Schrödinger equation is shown for comparison
�41� �dashed red curve�. Note that all axes are dimensionless.
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are produced by the simple prescription give in the fourth
section of the Appendix. An example is shown for m=1 in
Fig. 2�a�. The ground state for three dimensions can be found
by a similar method and is shown for m=0 in Fig. 6�a�.

For the third potential, a strongly oblate harmonic trap,
the form and stability of both the ground state and vortex
solutions in a harmonic trap have already been thoroughly
studied elsewhere �19,42,43�. Our algorithm reproduces all
the relevant results of these authors from the noninteracting
to the Thomas-Fermi regime, as we explicitly verified in de-
tail in the case of Ref. �43�.

IV. RING SOLITONS

Ring solitons can be placed concentrically to form a sta-
tionary state. In an extended system a denumerably infinite
number are required, as already indicated in Fig. 1 and dis-
cussed in further detail in Sec. IV C below. For an infinite
well in two dimensions, radially quantized modes are distin-
guished by the number of concentric ring solitons, as dis-
cussed in Sec. IV A and illustrated in Fig. 2. Note that, for
attractive nonlinearity, the number of rings can vary from 1
to infinity, even for an infinitely extended condensate, as dis-
cussed in our previous work �33�.

A. Quantized modes in the cylindrical infinite well

In Fig. 2 are shown the wave functions for the ground
state and first three excited states for a fixed strong nonlin-
earity N in the presence of a singly quantized central vortex,
i.e., winding number m=1. The weaker the nonlinearity and
the larger the number of nodes in the solution, the closer it
resembles the regular Bessel function Jm���. In an appropri-
ately scaled finite system, the relative weight of the kinetic
term to the mean-field term in the NLSE increases strongly
with the number of nodes. We note the contrast with the
distribution of nodes for the corresponding 1D NLSE
�31,32�, where the nodes are evenly spaced even in the ex-
tremely nonlinear limit. The value of the nonlinearity was
chosen to be 2N=402. For transverse harmonic confinement
of angular frequency �z=2�100 Hz and 87Rb, which has a
scattering length of as=5.77 nm, this corresponds to N
10,000 atoms. Note that, since � is scaled to g /	 and 	
depends on the number of nodes, the vertical scaling is dif-
ferent in each panel of Fig. 2.

The eigenvalue spectra for the ground state and the first
two excited states are shown in Fig. 3, with 	 scaled to the
radius of the infinite well,

	R �
2MR2

�2 	 . �16�

The winding numbers m=0, m=1, and m=2 are illustrated
on a log-log scale. Clearly there are two regimes. For small
N, 	R is independent of the norm. This must be the case near
the linear-Schrödinger-equation regime, since 	R must ap-
proach the eigenvalues of the regular Bessel function Jm���
which solves Eq. �7� with no cubic term. One finds �	R� j

→ �� j
linear�2, where � j

linear is the known value of the jth node
of the Bessel function �41� and j also refers to the jth quan-
tized mode.

For large N, the figure shows that 	R�N. This depen-
dence can be understood analytically in the case of the
Thomas-Fermi-like profile �9� for the lowest-energy state
with winding number m=1. Consider the scaling

� � r/R , �17�

���� �
1

	N
fm�r/R� . �18�

Then Eq. �3� becomes

�2�

��2 +
1

�

��

��
−

m2

�2 � − 4�R2N�3 + 	R� = 0. �19�

The Thomas-Fermi profile is obtained by dropping the de-
rivatives:

�TF��� =	 	R

4�R2N
1 −
�m

2

�2 � , �20�
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FIG. 2. Ring solitons in an infinite well. Shown is the form of
the wave function �1 for �a� the ground state, �b�–�e� the first four
axisymmetric excited states, and �f� a highly excited state, all as a
function of the radial coordinate r scaled to the cylinder size R.
Cylindrical box boundary conditions in cylindrical polar coordi-
nates are assumed. The central vortex has winding number m=1.
The quantized modes �b�–�f� correspond to increasing numbers of
concentric ring solitons. Here, the case of strong nonlinearity is
illustrated, with 2N=402. Note that all axes are dimensionless.
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where

�m �
m

		R

�21�

is the core size and �TF is zero for ���m. The normalization
condition is

2�R2�
�m

1

d����TF����2 = 1. �22�

Then the chemical potential in units of the energy associated
with the cylinder radius is

	R =
4N

1 − �m
2 + �m

2 ln��m
2 �

. �23�

The limit �m�1 is consistent with the Thomas-Fermi-like
profile, which neglects the radial kinetic energy. In this limit,
one finds

	R  4N�1 + �m
2 − �m

2 ln��m
2 �� . �24�

For �m
2 �0.03, as is the case on the right-hand side of Fig.

3�a�–3�c� where 	r103, the dependence on �m
2 is a less than

1% perturbation.

B. Quantized modes in the strongly oblate harmonic trap

In Fig. 4 is shown the wave function for fixed strong
nonlinearity for the ground state and first three excited states.
As in Sec. IV A, adding nodes to the wave function drives
the system towards the linear regime, where the solution is
Bessel-function-like. In Fig. 5 are shown the spectra for the
ground state and first three excited states, for a winding num-
ber of m=0,1 ,2. Note that the chemical potential is rescaled
to the harmonic oscillator energy. As in Sec. IV A, there are
two regimes. For large nonlinearity a Thomas-Fermi ap-
proximation can be applied to obtain the asymptotic depen-
dence of the chemical potential on the nonlinearity, similar to
the procedure of Sec. IV A.
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FIG. 3. �Color online� Ring solitons in an infinite well. Shown
are the eigenvalue spectra 	R as a function of the normalization 2N.
The winding numbers �a� m=0, �b� m=1, and �c� m=2 are illus-
trated for the ground state �solid black curve� and the first three
excited states �blue dashed, green dot-dashed, and red double-dot-
dashed curves�. The circles show the actual data points. Note that
all axes are dimensionless, as indicated in the text, and on the same
log-log scale.
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FIG. 4. Ring solitons in a harmonic trap. Shown is the form of
the wave function f̃1 for �a� the ground state and �b�–�d� the first
three axisymmetric excited states, all as a function of the radial
coordinate r̃. The harmonic trap is strongly oblate, so that it is
effectively two dimensional. The central vortex has winding num-
ber m=1. The quantized modes �b�–�d� correspond to increasing
numbers of concentric ring solitons. Here, the case of strong non-
linearity is illustrated for �a�, with N=100; for three rings, i.e., �d�,
the solution already appears nearly linear. Note that the tildes sig-
nify that all axes are in harmonic oscillator units.

VORTICES AND RING SOLITONS IN BOSE-EINSTEIN… PHYSICAL REVIEW A 74, 043613 �2006�

043613-5



C. Asymptotic behavior for zero external potential

For �→� and �a0 � � �a0
�m�� the wave function approaches

zero in an infinitely extended system. Thus one expects that

the nonlinear term �3 in Eq. �7� is negligible in comparison
to the other terms and the differential equation returns to the
usual defining equation for the Bessel functions. The
asymptotic form of the regular Bessel function Jm��� is �41�

Jm��� =	 2

��
cos�� −

m�

2
−

�

4
� �25�

to leading order in the amplitude and phase. However, one
cannot neglect the effect of the cubic term on the phase shift,
as may be seen by the following considerations.

The asymptotic form of the Bessel function can be de-
rived via the semiclassical WKB approximation �44�. The
phase shift of � /4 can be derived by analytical continuation
or other means �45�. The semiclassical requirement that the
de Broglie wavelength be small compared to the length scale
of the change in potential is not quite satisfied near the ori-
gin. The rescaling y=y0 ln��� suffices to map the problem
onto the usual semiclassical one. One can avoid the rescaling
by the substitution m2→m2− 1

4 . Then the term m� /2 in the
phase shift follows directly �46,47�. We use this simpler
method in order to derive the phase shift in the nonlinear
problem.

The semiclassical momentum is

p��� � 	1 − Veff��� , �26�

where the effective potential is

Veff��� =
m2

�2 + ��m����2. �27�

Taking the nonlinear term as perturbative, to lowest order
Eq. �27� becomes

Veff��� 
m2

�2 +
B2

�
cos2�
m� , �28�


m � � −
m�

2
−

�

4
, �29�

where B is a constant coefficient of the amplitude of the
wave function. In the linear case, it is conventionally taken
as B=	2/�. Expanding Eq. �26� for large �, one finds

p���  1 −
B2 cos2 
m

2�
−

m2 +
1

8
B4 cos4 
m

2�2 . �30�

The semiclassical form of the wave function is �44,45�

�m 
B
	�

cos
S −
�

4
� �31�

to leading order, where

S � �
0

�

d��p���� �32�

is the semiclassical action. Upon substitution of Eq. �30� one
finds the form of the wave function to leading order in the
amplitude and phase,
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FIG. 5. �Color online� Ring solitons in a harmonic trap. Shown
are the eigenvalue spectra 	 as a function of the normalization N,
all in harmonic oscillator units. The ground state �solid black curve�
and the first three isotropic excited states �blue dashed, green dot-
dashed, and red double-dot-dashed curves� are illustrated for a
winding number of �a� m=0, �b� m=1, and �c� m=2. The circles
show the actual data points. Note that all axes are dimensionless
and on a log-log scale.
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�m 
B
	�

cos�� −
B2

4
ln��� −

m�

2
−

�

4
+ ��a0,m�� ,

�33�

where � is a phase shift which depends on the determining
coefficient a0 and the winding number m. This coefficient
cannot be analytically determined by Eq. �32� since the large
� form of the wave function was used, while the phase shift
is due to its behavior in the small-� region. The amplitude
coefficient B is a free parameter, the square of which is re-
lated to the mean number density.

The form of Eq. �33� resembles that of the Coulomb func-
tion �41�, in that it has a ln��� dependence in the phase. This
is due to the 1/� term in the effective potential in Eq. �28�. It
is in this sense that the nonlinear term in Eq. �7� cannot be
neglected, even as �→0.

V. SPHERICAL SHELLS

Spherical shells are the three-dimensional analog of ring
solitons. Quantized modes in the confined case involve suc-
cessive numbers of nested nodal spherical shells. In this sec-
tion, we will treat the two cases of zero potential and an
infinite spherical well. A power series solution of Eq. �8�
may be developed by substitution of Eq. �A1�. This leads to
a solution similar to that of the first section of the Appendix.
All coefficients in the power series are given as polynomials
in the determining coefficient a0, which is the value of the
wave function at the origin. The special solution �0���=a0

= ±1 is the ground state in an extended system. Thus a0
�0�

= ±1. Positive values of a0 which are larger than unity lead
to a divergent solution. Those less than unity lead to a con-
vergent solution which approaches zero as �→�.

A. Quantized modes in the spherical infinite well

Solutions can be quantized in the three-dimensional
spherical well in the same way as the two-dimensional case.
The solution methods are identical to those of Sec. IV A. In
Fig. 6 are shown the ground state, the first and second ex-
cited states, and a highly excited state. A fixed nonlinearity
of N=251 was chosen. In Fig. 7 is shown the eigenvalue
spectra on a log-log scale. As in the two-dimensional case of
Fig. 3, there are two regimes. For small N, the eigenvalues
are independent of the nonlinearity, �	R� j→ �� j

linear�2. The
constant � j

linear is the distance to the jth nodes of the spherical
Bessel function j0��� which solves Eq. �8� with no cubic
term �41�. For large N, one again finds a linear dependence.
A simple estimate based on the Thomas-Fermi profile for
m=0, which is just f0�r�=	 /g for r�R and zero otherwise,
gives the chemical potential of the ground state as 	R
=N /3.

B. Asymptotic behavior

As r→� the spherical-shell wave function approaches
zero in an infinitely extended system. Just as in Sec. IV C,
one can use the WKB semiclassical approximation method to
determine the asymptotic form of the wave function. The
solution to Eq. �8� without the cubic term is the spherical
Bessel function �41�

j0��� =
sin �

�
, �34�

where we have assumed the wave function to be finite at the
origin. One can take the nonlinear term as perturbative since,
for sufficiently large �, the linear form of the wave function
must dominate. Then the effective potential in the WKB for-
malism is
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FIG. 6. Spherical shell solutions. Shown is the form of the wave
function for �a� the ground state, �b�, �c� the first two excited iso-
tropic states, and �d� a highly excited isotropic state. The boundary
conditions are an infinite spherical well in three dimensions. The
winding number is zero. The case of strong nonlinearity is illus-
trated, with N=251. Note that all axes are dimensionless.
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FIG. 7. �Color online� Spherical shell solutions. Shown are the
eigenvalue spectra 	R��2MR2 /�2�	 as a function of the normal-
ization N. The ground state �solid black curve� and the first three
isotropic excited states �blue dashed, green dot-dashed, and red
double-dot-dashed curves� are illustrated for a winding number of
m=0. The circles show the actual data points. Note that all axes are
dimensionless and on a log-log scale.
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Veff���  B2sin2 �

�2 , �35�

where B is the amplitude of the wave function. From Eqs.
�26� and �32�, the WKB action is

S  � −
B2

4

1

�
+ ���a0,m� �36�

for large �, where the phase shift ���a0 ,m� cannot be deter-
mined from the large-� behavior of the wave function. Then
the asymptotic form of the wave function is

�0��� →
B

�
sin�� −

B2

4�
+ ���a0,m�� . �37�

VI. STABILITY PROPERTIES
The stability properties of ring solitons in a strongly ob-

late harmonic trap are of particular importance, as such so-
lutions may be realized in present experiments �23�. We per-
form linear stability analysis via the well-known
Boguliubov–de Gennes equations �20,48�

Luj − g�2v j = � � juj , �38�

Lv j − g��*�2uj = − � � jv j , �39�

where

L � −
�2

2M
�2 + V�r�� + 2g���2 − 	 �40�

and � j is the eigenvalue. In Eqs. �38� and �39� uj and v j are
a complete set of coupled quasiparticle amplitudes that obey
the normalization condition

� dDr��uj�2 − �v j�2� = 1, �41�

with D the number of effective dimensions. These ampli-
tudes represent excitations orthogonal to the condensate �.
They have a straightforward quantum-mechanical interpreta-
tion in terms of a canonical transformation of the second-
quantized Hamiltonian for binary interactions via a contact
potential of strength g �20�. Quasiparticles are superpositions
of particles �creation operators� and holes �annihilation op-
erators�. Classically, they can be interpreted simply as linear
perturbations to the condensate.

If the eigenvalue � j is real, the solution � is stable. If � j
has an imaginary part, then � is unstable. There are signifi-
cant subtleties in Boguliubov analysis; see the Appendix of
Ref. �49� for an excellent discussion. In the present effec-
tively 2D potential with a condensate solution of the form
given in Eq. �2�, it is useful to redefine the Boguliubov am-
plitudes as suggested by Svidzinsky and Fetter �48�:


u�r��
v�r��

� =
eiq�

�

 eim�ũq�r̃�

e−im�ṽq�r̃�
� , �42�

where r̃=	x2+y2 /�, � is the harmonic oscillator length dis-
cussed in Sec. II C, and we will neglect perturbations in the

z direction, due to the strongly oblate trap. Equation �42�
represents a partial wave of angular momentum q relative to
the condensate. Then, in harmonic oscillator units �see Sec.
II C�, Eqs. �38� and �39� become

L+ũq − � f̃m�2ṽq =
�

�
ũq, �43�

L−ṽq − � f̃m�2ũq = −
�

�
ṽq, �44�

where

L± � −
1

2

 �2

� r̃2 +
1

r̃

�

� r̃
−

�q ± m�2

r̃2 − r̃2� + 2� f̃m�2 − 	̃ .

�45�

The different centrifugal barriers inherent in L± show that
the two amplitudes behave differently near the origin, with
ũq� r̃�q+m� and ṽq� r̃�q−m� as r̃→0. Note that the nonlinear
coefficient is absorbed into the normalization of f̃m see Eq.
�15�.

The condensate wave function can be obtained via the
shooting and Taylor expansion methods described in the Ap-
pendix and Sec. II C. Then Eqs. �43� and �44� can be solved
straightforwardly with standard numerical methods. We use a
Laguerre discrete-variable representation �50,51�, which is
particularly efficient for this geometry, allowing us to go to
hundreds of basis functions. The winding number q of the
Boguliubov modes was checked for q=0 to q=6 over the
entire domain of our study.

The results are shown in Fig. 8. In panel �a�, it is apparent
that a single ring soliton placed on top of the ground state,
i.e., with no central vortex, is always formally unstable to the
quadrupole, or q=2, mode. The instability time is given by
T=−� / Im��� in harmonic oscillator units. Typical trap fre-
quencies range from �=2�10 Hz to 2�100 Hz. There-
fore, when �Im��� /� � �1, T can be much longer than the
experimental time scales of from 100 ms to 1 s. In this case,
we say that the solution is experimentally stable. The insta-
bility time T can even be longer than the lifetime of the
condensate, the latter of which can range from 1 to 100 s.
According to Fig. 8�a�, this occurs for small nonlinearities.
For larger nonlinearities, other modes, such as the octopole
�q=3�, also become unstable. In Fig. 8�b� is shown the case
of single ring soliton in the presence of a singly quantized
central vortex, i.e., m=1. The solution is again formally un-
stable, though first to octopole rather than quadropole pertur-
bations. For small nonlinearities it is experimentally stable.

We did not quantitatively study solution stability for an
infinite well. However, we expect that the boundary provides
additional stability of ring solitons. To decay, ring solitons
must break up into pairs of vortices via a transverse oscilla-
tion. To oscillate, the ring soliton has to move away from the
barrier and inwards towards the origin. This requires shrink-
ing the circumference of the ring, which costs energy, as a
single ring feels an effective potential which pushes it out-
wards, such as, for example, in an unbounded system. We
expect that very long decay times follow. We make the con-
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jecture that, in the infinitely extended system, the presence of
an infinite number of rings, tightly pressed up against each
other, has the same effect with regards to the inner ring as the
boundary in the confined system.

VII. DISCUSSION AND CONCLUSIONS

Soliton trains in one-dimensional BEC’s, which are simi-
lar to the nested ring solitons which form radial nodes, have
been found to be archetypes of planar soliton motions en-
countered in three-dimensional BEC’s. These solutions to the
one-dimensional NLSE are stationary states with islands of
constant phase between equally spaced nodes. When appro-
priately perturbed, they give rise to soliton motion �31,52�.
In fact, the stationary solutions can be considered to be dark
solitons in the limiting case of zero soliton velocity and the
perturbation that produces propagating “gray” solitons is the
imposition of a slight phase shift in the wave function across

a node. These one-dimensional examples were found to have
experimentally accessible analogs in three-dimensional
BEC’s in which optically induced phase shifts across a plane
of symmetry resulted in soliton motion �17,18,53�. Corre-
spondingly, the two-dimensional ring solutions presented
herein suggest the possibility of creating ring soliton motion
by imposing a phase shift across the boundary of a disk. We
will address this in subsequent work.

The existence of ring dark solitons has been predicted
theoretically �24–27� and demonstrated experimentally
�28,29� in the context of nonlinear optics. It has been sug-
gested that a single ring dark soliton could be created in a
confined BEC �23�. A ring dark soliton corresponds to a
single node in our ring solutions. It is known that a single
ring dark soliton in an infinitely extended system expands
indefinitely �24�. This therefore clarifies why the ring solu-
tions require an infinite number of nodes in order to obtain a
stationary state. It also explains why, for cylindrical box
boundary conditions, the creation of nodes tends to be to-
wards the edge of the condensate. In Ref. �23� it was found
that a single ring dark soliton was unstable to vortex pair
creation via the transverse, or snake, instability in the near-
field �r�RTF� Thomas-Fermi approximation in a harmonic
trap. In agreement with this work, we have shown, without
approximations, that linear instability times can be made so
long that a ring soliton is in fact stable over the lifetime of
the experiment. This result holds independent of the trap
frequency in the 2D plane.

The ring solutions that we have discussed in Sec. IV
might be realized in an experiment that approximates a deep
cylindrical potential well, e.g., an optical trap using a blue-
detuned doughnut mode of a laser field �54�. In such a sys-
tem, the ground-state vortex solution will resemble that of
Fig. 2�a�, where the abscissa is the radial coordinate in units
of the well radius. The first radially excited vortex solution
will then resemble that of Fig. 2�b�. By use of an optical
phase-shifting technique such as that employed in Refs.
�17,18�, one might be able to generate this state and observe
its subsequent motion. We showed that the same qualitative
pattern of radial nodes that occurs for the infinite well is also
found in strongly oblate harmonic traps.

Concerning the central vortex core of the ring solutions,
we note that single vortices are quite long lived compared to
experimental time scales �15,16,55,56�. It is possible that
forced excitation of the condensate may couple resonantly,
either directly or parametrically, to ring formation. The same
possibility exists for spherical-shell solutions in the observa-
tion of nodal spherical shells. In two dimensions, unlike in
three, multiply charged vortices do not dynamically decay
into singly charged vortices with the addition of white noise
to the system �57�, despite their being thermodynamically
unstable. In fact, Pu et al. showed that stability regions recur
for large nonlinearity in two dimensions for m=2 �43�. Re-
cent experiments have been able to create and manipulate
vortices of winding number greater than unity in a variety of
ways �55,58,59�. Therefore our study of vortices in two di-
mensions of winding number higher than unity is experimen-
tally relevant, despite their being thermodynamically un-
stable �60�.

In summary, we have elicited the form and properties of
stationary quantum vortices in Bose-Einstein condensates. It
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FIG. 8. �Color online� Stability properties of ring solitons.
Shown is the Boguliubov linear excitation frequency as a function
of the nonlinearity N, all in harmonic oscillator units. The index q
signifies the winding number of the Boguliubov mode. �a� A ring
soliton with no central vortex; for N�25 the primary instability
mode is q=2. �b� A ring soliton in the presence of a central vortex
of winding number m=1; for N�100 the dominant instability is
q=3. The solutions are always formally unstable, though instability
times can be much longer than experimental time scales for small
nonlinearities. The circles show the actual data points.
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was shown that their axisymmetric stationary excitations
take the form of nodal rings, called ring solitons. Quantiza-
tion of these states can be attained in confined geometries in
two dimensions; we considered both the infinite well and a
harmonic trap. Similar methods were used to study the
ground state and isotropic stationary excitations in a spheri-
cal infinite well. Two important aspects of these solutions is
that �a� the rings or spherical shells pile up near the edge of
the condensate, rather than being evenly spaced in r, in con-
trast to the one-dimensional case, and �b� the chemical po-
tential depends linearly on the atomic interaction strength
when the mean-field energy dominates over the kinetic en-
ergy, i.e., in the Thomas-Fermi limit. We showed that the
ring solitons are experimentally stable for weak nonlinearity.

This work was done in the same spirit as our previous
articles on the one-dimensional nonlinear Schrödinger equa-
tion �31,32�. A companion work �33� treats the attractive
case, which has features radically different from the present
study. For instance, vortex solutions are not monotonic in r.
Moreover, there are a denumerably infinite number of critical
values of the determining coefficient a0 for fixed winding
number which correspond to the successive formation of
nodes at r=�, even without an external trapping potential.

Finally, we note that phenomena similar to the spherical
shell solutions have been experimentally observed in BEC’s
�61�, while 2D BEC’s appropriate to the investigation of ring
solitons are presently under intensive investigation in experi-
ments �62,63�.
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APPENDIX: NUMERICAL METHODS AND PRECISION
ISSUES

1. Analytic structure of the solutions

The following numerical method are discussed explicitly
for the infinitely extended condensate, i.e., for a constant
external potential. A slight modification for the infinite well
is discussed in the fourth section of the Appendix and briefly
for the strongly oblate harmonic potential in Sec. II C.

Since Eqs. �7� and �8� do not contain any nonpolynomial
terms, one may begin with a power series solution by a Tay-
lor expansion around �=0 of the form

�m��� = �
j=0

�

aj�
2j+m, �A1�

where the aj are coefficients. For solutions which have the
limiting behavior �m→0 at the origin, which is necessarily

true for all nondivergent solutions with m�0, the nonlinear
term �m

3 becomes negligible as �→0. Then the Bessel func-
tion solutions to the linear Schrödinger equation are recov-
ered. This will equally be true where � has a node, in the
neighborhood of the node. Thus near the origin the wave
function must behave as �m�����m. This motivates the
choice of the exponent of � in Eq. �A1�. By examination of
Eqs. �7� and �8�, it is clear that only even or odd powers of �
can have nonzero coefficients. The Taylor series has been
written in such a way as to eliminate all terms which are
obviously zero. Substituting Eq. �A1� into Eqs. �7� and �8�,
the coefficients can then be obtained recursively by equation
of coefficients of equal powers. One finds that all coefficients
aj for j�0 can be expressed as a polynomial in odd powers
of a0 of order 2�� j / �m+1���+1, where �x� denotes the great-
est integer less than or equal to x. For example, the first few
terms for m=1 are

a1 = −
1

8
a0,

a2 =
1

192
�a0 + 8a0

3� ,

a3 = −
1

9216
�a0 + 80a0

3� ,

a4 =
1

737280
�a0 + 656a0

3 + 1152a0
5� . �A2�

Thus the coefficient a0 is the only free parameter of the prob-
lem. We consider only a0�0, since for each solution
�m�� ;a0�, there is a degenerate solution �m�� ;−a0�.

The power series provides a useful, practical method for
propagating the solution of the NLSE away from the singular
point at r=0 �64�. However, it is not a practical method for
extension to large r, and we therefore use other methods in
intermediate- and large-r regions. An asymptotic expansion
which is not formally convergent but nevertheless useful is
obtained by the transformation

� � 1/� . �A3�

Then Eq. �7� becomes

��4 �2

��2 + �3 �

��
− m2�2 − �m

2 + 1��m��� = 0. �A4�

A Taylor expansion around �=0 yields the asymptotic power
series solution

�1 = 1 −
1

2�2 −
9

8�4 −
161

16�6 −
24661

128�8 − ¯ , �A5�

�2 = 1 −
2

�2 −
6

�4 −
68

�6 −
1514

�8 − ¯ , �A6�
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�3 = 1 −
9

2�2 −
153

8�4 −
4473

16�6 −
962037

128�8 − ¯ , �A7�

etc., as �→�. Since this series has no free parameters, it is
clear that only one value of the determining coefficient a0 in
Eq. �A1� can lead to the vortex solution. We define this criti-
cal value as a0

�m�. All values of a0�a0
�m� lead to divergent

solutions, while values of a0�a0
�m� lead to solutions which

asymptotically approach zero, as discussed in Sec. IV. It is in
this sense that the vortex solution manifests as a boundary
between divergent and nondivergent solutions.

Lastly, it is worthwhile to mention a limiting case which
is useful in Sec. IV. For m=0 all coefficients aj are zero
except for a0. Examination of Eqs. �7� and �A4� shows that
the solution must be

�0��� = 1. �A8�

This is the ground state in an extended system in two dimen-
sions.

2. Solution by the Padé approximant

It is desirable to determine the behavior of the vortex in
intermediate regions between zero and infinity. The two-
point Padé approximant is defined by the rational function

Np,q���
Dp,q���

=
c0 + c1� + ¯ + cq−1�q−1

d0 + d1� + ¯ + dq�q , �A9�

where

Np,q��� − f���Dp,q��� = O��p� �A10�

as �→0 and

Np,q��� − g���Dp,q��� = O��p−2q−1� �A11�

as �→� for all p such that 0� p�2q, with p and q integers.
The functions f���, g��� are power series expansions of the
same function as �→0, �. The solution of Eqs. �A10� and
�A11� for the power series expansions of the first section of
the Appendix leads to a determination of the critical value of
the determining coefficient a0

�m� and therefore a solution of
the NLSE valid over all space.

For instance, taking q=3, one finds

�1 
	2� + 2�2

1 + 	2 + 2�2
. �A12�

The approximation can be successively improved. Taking q
=4 one finds

�1 
16	62� + 248�2 + 30	62�3

124 + 31	62� + 248�2 + 30	62�3
, �A13�

and so on. By solving Eqs. �A10� and �A11� at successively
higher order, one obtains a convergent value of a0

�m�.
However, in practice this procedure is limited in precision

due to the appearance of spurious roots as well as by com-
putation time. Due to the nonlinear nature of Eqs. �A10� and
�A11�, there are multiple values of a0 which satisfy them.

These roots become sufficiently close to each other so as to
mislead root-finding algorithms. Roots close to a0

�m� tend to
produce solutions which are asymptotically correct but have
spurious nonmonotonic behavior, i.e., wiggles in intermedi-
ate regions. There are two options for root finding of large
systems of coupled polynomial equations. One may find all
roots and test them one by one. However, the computation
time becomes prohibitive for higher-order polynomials and
large numbers of simultaneous equations. Or one may use
Newton’s method or some other local root-finding algorithm
to find the root closest to the correct one for the previous
lowest order. The appearance of spurious roots then becomes
a limiting factor.

In Table I is shown the best convergent values of a0
�m� for

winding number 0 to 5. Higher m leads to the appearance of
more spurious roots and therefore a lower maximum preci-
sion. This may be understood as follows. The coefficients in
the power series defined by Eq. �A1� were polynomials in a0
of order 2�� j�m+1���+1. High winding number therefore re-
quires a greatly increased number of terms in order to obtain
improved values of a0

�m�. The higher the number of terms, the
greater the possibility that spurious roots will appear. In
practice, q30 is the highest-order two-point Padé approx-
imant that is computable for vortex solutions to the NLSE.

In the next section, we will demonstrate an alternative
method that does not suffer from the limitations of the two-
point Padé approximant. However, the Padé approximant is
worth retaining because it provides interpolating functions in
the form of rational polynomials which can reproduce the
small- and large-� behavior of the wave function to very
high order. We note that a thorough treatment of the use of
Padé approximants in the study of vortex and other solutions
to the NLSE has been made by Berloff �65�.

3. Solution by numerical shooting

The 2D NLSE in the form given by Eq. �7� can be solved
by shooting. In this standard method �66�, one chooses the
values of ���0� and ����0� for �0�1. In this way, one can
obtain an accurate relation between ���0� and ����0� via the
power series of Eq. �A1�. One then integrates the NLSE by
initial-value methods towards arbitrarily large values of �.

TABLE I. Results of two-point Padé approximant for the deter-
mining coefficient a0

�m� of quantum vortex stationary states. a0
�m� is

the first nonzero coefficient in the power series solution of the 2D
NLSE under the assumption of a single central vortex of winding
number m, and determines all subsequent coefficients.

Winding number m a0
�m� Precision

0 1 �

1 0.583189 6

2 0.15309 5

3 0.02618 4

4 0.00333 3

5 0.0002 1
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The correct initial value of � and �� leads to the vortex
solution. Because the vortex solution lies on the boundary
between divergent and nondivergent behavior, it is quite easy
to tell when one has made a wrong choice: either � diverges
to infinity or it oscillates and approaches zero. One chooses
an initial value of a0, then iterates. Note that the boundary
cannot be chosen at �0=0, since �=0 is a valid solution to
the 2D NLSE. Rather, a value of �0 which is exponentially
small is used, so as to ensure the accuracy of the power
series solution.

In practice, the order of the power series is never a limit-
ing factor. For example, we worked with 40 terms. Up to ten
additional terms were tried without finding any difference in
the results. Instead, the two adjustable parameters in the cal-
culation were �0 and the number of digits of internal preci-
sion used in our numerical routine. Of these, it was the latter
that most strongly affected the critical value of a0. In order to
determine a0

�m� to the highest possible precision, it was nec-
essary to use numbers of higher than double precision. It was
found that 35 digits was a practical maximum for our com-
puting capabilities. In each case, the number of digits of
precision was determined by comparing the results using 32,
33, 34, and 35 digits of internal computational precision. In
Table II are shown the results. Note that they are consistent
with and greatly improve upon those of the two-point Padé
approximant shown in Table I. As in the second section of
the Appendix, the calculations proved more computationally
difficult at higher winding number. The reader may ask why
obtaining such high precision in the value of a0

�m� is desir-
able. The reason is that each digit of precision brings the
solution a few units of � closer to the exact vortex solution.
In order to obtain a solution which is exactly on the bound-
ary between divergence and nondivergence an infinite num-
ber of digits are required. We illustrated this extremely sen-
sitive dependence of the determining coefficient on the
number of digits of precision in Fig. 1. The figure depicts
three values of a0 which approximate a0

�m� to k digits of pre-
cision, where k is defined by

a0 = a0
�m��1 − 10−k� . �A14�

In Eq. �A14�, a small subtraction is made in the kth digit, so
that a convergent rather than divergent solution is obtained.

In Fig. 1�a�, the divergent solution is also depicted for the
same value of k, with a0=a0

�m��1+10−k�: i.e., a small addition
is made in the kth digit. It is in this sense that the vortex
solution is a boundary between convergent and divergent so-
lutions.

Figure 1 shows the solution obtained via numerical shoot-
ing for k=16, 8, and 2 in panels �a�, �b�, and �c�, respectively.
A winding number of m=1 is assumed. In �b� and �c�, the
usual Bessel function solution to the two-dimensional linear
Schrödinger equation is shown for comparison. One sees that
the higher the precision, the further the first node is pushed
out towards large values of �. To move the node to infinity,
an infinite number of digits of precision is required. All of
the solutions except the divergent one depicted in Fig. 1�a�
are examples of ring soliton solutions, as discussed in Sec.
IV

One finds an intriguing relationship between the position
of the first node and the number of digits of precision k in the
critical determining coefficient a0

�m�, where k is defined by
Eq. �A14�. In Fig. 9 is shown the position of the first node
�1�k�. One observes that the relationship is linear. For all
values of the winding number but m=0, the curves lie nearly
on top of each other and all are parallel. Clearly, from Eq.
�7�, for large � the term which depends on m becomes neg-
ligible. Note that the use of the special case m=0 ensures
that, in at least one case, the exact value of a0

�m� is known.
The best values of a0

�m� for m�0 are given in Table II.

4. Modified numerical method for the infinite well

In order to quantize the solutions in an infinite well in two
dimensions, one holds the normalization and the cylinder
radius to be constant. The form of the wave function and the
chemical potential can be obtained as follows. One calculates
the dependence of the normalization on a0 as

TABLE II. The best possible converged values via numerical
shooting methods of the determining coefficient for quantum vortex
stationary states.

Winding number m a0
�m� Precision

0 1 �

1 0.5831 8949 5860 3292 7968 20

2 0.1530 9910 2859 54 14

3 0.0261 8342 07 9

4 0.0033 2717 34 8

5 0.0003 3659 39 7

0 5 10 15
k
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15

20

25

30

χ 1

m=0
m=1
m=2
m=3

FIG. 9. �Color online� Approaching the vortex solution. The
position of the first node �1 is shown as a function of the number of
digits of precision k in the determining coefficient a0

�m� for quantum
vortex solutions to the 2D nonlinear Schrödinger equation, as de-
fined in Eq. �A14�. Observe that all curves are close to parallel and
linear in k, and as the winding number m increases, the curves
converge. Note that all axes are dimensionless.
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�
0

�j�a0�

d����m����2 = N j , �A15�

where � j�a0� is the distance to the jth node in ����. As
evident in Figs. 1 and 9, a more useful variable to determine
the dependence of N j on a0 is the number of digits of preci-
sion k, as defined by Eq. �A14�. Note that k is not restricted
to an integer value. The value of k also determines � j. From
Eq. �12�, the chemical potential scaled to the energy associ-
ated with the cylinder radius is

	Rj �
2MR2

�2 	 j = � j
2, �A16�

where 	 j is the chemical potential for the �j−1�th excited
state, with j=1 giving the ground state. The function 	Rj�N j�
can be calculated from Eqs. �A15� and �A16�. This gives the
chemical potential as a function of the atomic interaction
strength.

Quantized modes for the infinite spherical well in three
dimensions are calculated by similar methods �36–38�.
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