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We analyze photoionization and ion detection as a means of accurately counting ultracold atoms. We show
that it is possible to count clouds containing many thousands of atoms with accuracies better than N−1/2 with
current technology. This allows the direct probing of sub-Poissonian number statistics of atomic samples. The
scheme can also be used for efficient single-atom detection with high spatiotemporal resolution. All aspects of
a realistic detection scheme are considered, and we discuss experimental situations in which such a scheme
could be implemented.
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I. INTRODUCTION

The term “atom optics” arises from the analogy between
experiments exhibiting the wavelike properties of light with
those demonstrating the wavelike properties of matter �1�.
Due to the vanishingly small de Broglie wavelength of room-
temperature atoms it is necessary to cool gases to mi-
crokelvin temperatures before these properties are observ-
able. Before 1995, experiments in atom optics used clouds of
laser-cooled thermal atoms that can be considered similar to
thermal light sources in optics, with coherence lengths of
less than 1 �m.

The realization of Bose-Einstein condensation �BEC� in
1995 �2–4� provided the first intense sources of coherent
matter waves, analogous to the invention of the optical laser.
Many of the early experiments with BECs concentrated on
their wavelike properties, which in general can be well de-
scribed by the Gross-Pitaevskii equation for the classical

field ��x����̂�x��. Some notable experiments include the
interference of independently prepared condensates �5� and
the demonstration of atom lasers �6–9�. These experiments
rely on the first-order coherence of the condensate, and in
some sense can be considered to be coherent “classical atom
optics.”

Recently there have been an increasing number of experi-
ments focusing on the generation and measurement of non-
trivial higher-order coherences in matter waves that are be-
yond the scope of Gross-Pitaevskii mean-field theory. These
experiments could be said to be in the area of “quantum atom
optics” �10�. The development of this new area bears a close
resemblance to the development of quantum optics following
the invention of the optical laser. Just as quantum optics
relies on single-photon detectors, quantum atom optics will
utilize detectors with single-atom resolution, such as the
technique we describe in this paper.

One of the earliest experiments probing higher-order co-
herence in BECs was in the measurement of three-body loss
from a BEC, from which the correlation function g�3��x�

could be inferred �11�. There have been several measure-
ments made of the local second-order correlation function
g�2��x� for a number of systems, including a one-dimensional
�1D� strongly interacting Bose gas �12,13�, a quasiconden-
sate �14�, and a thermal Bose gas �15�. The value of g�2��x�
for an atom laser has been measured in Ref. �16�.

There has also been strong interest in relative number
squeezing. This is where a state is generated in which the
number difference between two or more atomic samples is
sub-Poissonian. Javanainen and Ivanov �17� showed that
splitting condensates by adiabatically turning up a tunnel
barrier can produce number-squeezed atomic states. Experi-
mentally, Orzel et al. �18� loaded a BEC into a one-
dimensional optical lattice and observed the degradation of
interference fringes. This was interpreted to be caused by
increased phase fluctuations due to reduced number fluctua-
tions at the lattice sites. A similar observation was made in
the first demonstration of a 3D Mott insulator state �19� and
further elucidated by other related experiments �20�.

Correlations and relative number squeezing have been
predicted in collisions and four-wave mixing in condensates
�21–24�, as well as in down-conversion of a molecular BEC
in both the spontaneous �25� and stimulated �26� regimes.
While experiments have observed four-wave mixing pro-
cesses �27,28� and matter-wave amplification �29�, there has
been no direct measurement of these correlations.

Experimentally, other high-order correlations have been
directly detected by suitable analysis of absorption images
from an ensemble of experiments �30,31�. Other schemes
such as the “quantum tweezer” �32� can deterministically
extract sub-Poissonian atomic samples from a BEC. Optical
dipole traps along with fluorescence imaging have been used
to demonstrate sub-Poissonian statistics in small samples of
atoms �33�.

In order to directly probe atom number statistics of cold
quantum gases, one would ideally like an atom counter with
accuracy at the single-atom level. Existing single-atom de-
tection schemes can be divided into two categories: optical
and contact. One of the simplest optical schemes is based on
resonance fluorescence detection �33–35�. Assuming negli-
gible background, the shot-noise-limited atom number uncer-*Electronic address: t.campey@uq.edu.au
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tainty in a fluorescence measurement scales as �N /���,
where N is the number of atoms, � is the collection effi-
ciency of the detector, � is the mean scattering rate, and � is
the integration time �36�. With a long enough integration
time it is possible to measure atom numbers with sub-
Poissonian precision. However, limitations such as atom
heating restrict the capability of sub-Poissonian fluorescence
detection to atom numbers of order �100 �33�. Absorption
measurements offers more favorable scaling to higher atom
numbers �36� but achieving good absolute accuracy remains
technically difficult. High-finesse optical cavities offer excel-
lent sensitivity for single-atom detection �37–39� and can be
used for slow counting of a large number of atoms. Cavities
offer an improvement in signal to noise of �F, where F is
the cavity finesse, compared to single-pass measurements for
a fixed amount of heating �40,41�. Moderate cavities have
also been shown to aid fluorescence and absorption measure-
ments �36�. It is difficult, however, to apply cavity tech-
niques to counting large atom numbers and long integration
times are required.

The second category of single-atom detectors is based on
contact methods. These generally involve a charged-particle
or metastable atom with high internal energy impacting on a
charged-particle detector. This initiates a cascade of electron
emissions, which are amplified to produce a macroscopic
current pulse. This method is particularly useful for detecting
metastable He atoms �42� where the arrival statistics of at-
oms released from a BEC allowed for matter-wave Hanbury-
Brown Twiss correlations to be observed �15�. While this
detection method is simple, metastable atoms remain diffi-
cult to condense and most cold atom experiments use alkali-
metal atoms.

In this paper we describe an atom detection scheme based
on photoionization and ion detection. This scheme over-
comes some of the difficulties associated with optical detec-
tion, can be applied to ground-state alkali-metal atoms, and
is capable of extending sub-Poissonian counting to much
larger numbers of atoms. Photoionization �43� and ionization
�44� have previously been considered as a means of efficient
atom detection. However, these proposals have not included
many factors present in realistic detectors. First we note that
the best absolute detection efficiencies of room-temperature
charged-particle detectors are of order 0.8–0.9 �45,46�. �Su-
perconducting tunnel junctions can in principle provide unity
detection efficiency �47� but are impractical for many experi-
mental setups.� This has serious consequences for any ex-
periment that endeavors to count a large number of atoms,
but as we show in this paper, provided the detection effi-
ciency is greater than 0.5, it is still possible to count atoms
with accuracies better than 1/�N. The achievable accuracy
depends on several factors including the detector calibration,
background count rates, detector pulse resolution times, ion-
ization rates, and the uncertainties in these parameters, all of
which are included in our analysis.

This paper is organized as follows. In Sec. II we describe
the experimental arrangement necessary for atom counting
and how it can be applied to a cloud of trapped 87Rb atoms.
Section III addresses the statistics associated with the detec-
tion scheme along with the requirements on the detector ef-
ficiency. In Sec. IV we discuss detector calibration and de-

scribe numerical simulations of the calibration including the
effects mentioned above. Section V looks at the application
of the scheme in the presence of losses and we follow with a
discussion of potential applications. Appendixes A and B
contain derivations of certain expressions used in the paper.

II. SCHEME

The method we propose consists of slowly photoionizing
a sample of atoms and accelerating the ions to a charged-
particle detector. Figure 1�a� shows the elements of the
scheme. A cloud of cold atoms is held in an optical dipole
trap where it is illuminated by the ionization lasers. Our dis-
cussion focusses specifically on the case of 87Rb atoms but
the scheme could be modified to detect other alkali-metal
atoms by the correct choice of lasers. Figure 1�b� shows the
relevant energy levels and transitions for 87Rb.

The ionization scheme consists of two stages. The first is
two-photon excitation with a low-intensity 778 nm laser
from the 5S1/2 state to the 5D5/2 state. The second is ioniza-
tion from this state with a high-intensity infrared laser such
as a neodymium-doped yttrium aluminum garnet �Nd:YAG�
laser. The 5D5/2 state has a photoionization cross section ap-
proximately three orders of magnitude higher than the
ground state �48� so ionization can readily be achieved with
a cw laser of wavelength shorter than 	1200 nm rather than
with pulsed lasers �49�. Ion detection is achieved after appro-
priate ion collection optics using a standard ion detector such
as a channel electron multiplier �CEM� or discrete dynode
detector.

The atom-counting scheme works best if the pulses pro-
duced by ions striking the ion detector are well resolved in

time. This means the ionization rate ṄI should be much
lower than the inverse of the pulse resolution time of the
detection system 1/�r. In Sec. V we will see that this means
that for typical detector efficiencies and trap lifetimes, and
atom numbers of the order of 103 or 104, the ionization
should take place on a time scale of order several millisec-
onds. In order to confine the atoms during this time, the
Nd:YAG laser is focused to create a dipole trap. This local-
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FIG. 1. �a� In the proposed atom-counting scheme atoms are
ionized from an optical dipole trap via a three-photon process. The
resulting ions are accelerated into an ion detector. �b� The ionization
scheme showing the relevant energy levels of 87Rb �not to scale�.
The scheme consists of 2	778 nm photon excitation to the 5D5/2

state, followed by ionization with a Nd:YAG laser, which also
forms the dipole trap.
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izes the atoms in the highest-intensity region of the beam.
The intensity must be high enough to produce a trap suffi-
ciently deep that no atoms are lost due to heating as the
ionization takes place. The major source of heating is the
spontaneous decay of atoms excited to the 5D5/2 state. A high
Nd:YAG laser intensity thus helps eliminate trap loss not
only by creating a deep trap, but also by ensuring that an
atom excited to the 5D5/2 state has a substantially higher
probability of being ionized than of decaying back to the
ground state. Atoms that decay from the 5D5/2 state can end
up in several ground-state sublevels. A benefit of the dipole
trap is that it traps all of these sublevels, in contrast to mag-
netic fields, which can only trap a restricted class of sublev-
els.

The rate of ionization can be controlled with the 778 nm
laser intensity. In Sec. V we show that for a given atom
number and trap loss rate there is an optimal ionization rate
that minimizes the uncertainty in the inferred atom number.
In order to hold the ionization rate approximately constant at
the ideal value, the 778 nm laser intensity can be exponen-
tially ramped to compensate for the reduction in trapped
atom number as ions are produced. However, we also show
that the scheme works well with constant laser intensities.

This state-selective scheme also represents an efficient
single-atom detector �53�. The ionization lasers can be
tightly focussed to detect atoms at a well-defined spatial lo-
cation. The two-photon excitation rate is proportional to the
squared intensity of the 778 nm laser so that scattered light is
less likely to heat atoms not in the detection region. Addi-
tionally, for single-atom detection the spatial intensity pro-
files of the two lasers can be chosen so that the repulsive
optical dipole potential of the blue-detuned 778 nm laser can
be compensated for by the attractive potential of the high-
power red-detuned ionizing laser. This leads to minimal per-
turbation of undetected atoms, which may for instance be
magnetically detuned or trapped in a different internal state.
These factors, and the relatively quick ionization times,
make this a flexible scheme well suited to single-atom detec-
tion with excellent spatiotemporal resolution.

III. COUNTING WITH IMPERFECT DETECTORS

We now consider how accurately an atom number can be
determined using a scheme in which ions are counted with a
nonunity-efficiency detector. The overall ion detection effi-
ciency is


i = 
detpr, �1�

where 
det is the efficiency of the ion detection system and is
the product of the ion detector efficiency 
det� and the collec-
tion efficiency 
coll. The quantity pr is the probability that an
ion is temporally resolvable from the other ions detected, and
is ionization rate dependent.

If NI ions are produced, the number of ions counted, Ni, is
described by a binomial distribution. Provided 
i�1−
i�NI is
greater than 	5, this is well approximated by a normal dis-
tribution with mean 
iNI and standard deviation
�
i�1−
i�NI �50�. In a given experiment, the number of at-
oms ionized can be inferred to be

NI,inf =
Ni


i
, �2�

with an uncertainty

�NI,inf
=�Ni�1 − 
i�


i
2 +

Ni
2�
i

2


i
4 , �3�

where �
i
is the uncertainty in 
i.

In order to compare this uncertainty to Poissonian fluctua-
tions, we define the normalized count uncertainty:

� 

�NI,inf

2

NI,inf
. �4�

The quantity � is related to the measurement Fano factor
discussed in Sec. VI but includes an additional systematic
contribution due to the uncertainty in the detection efficiency
�the second term under the square root in Eq. �3��. �=1
implies the count uncertainty is equal to the uncertainty in-
herent in Poissonian statistics. In order to count ions with
error less than �NI, � must be less than 1.

In Fig. 2, contours of the normalized count uncertainty �
are plotted as a function of 
i and �
i

for NI=103. From this
figure it can be seen that for a detection system in which the
detection efficiency is known exactly, i.e., �
i

=0, the overall
ion detection efficiency 
i need only be greater that 50% to
achieve � less than 1. As the uncertainty in the detection
efficiency increases, the required detection efficiency to
achieve �
1 also increases. Thus, to achieve a low value of
�, we require a high-efficiency detector that is well cali-
brated. In the next section we examine how this can be done.

IV. DETECTOR CALIBRATION

To infer the number of atoms ionized and its uncertainty
from an ion count, we need to know the overall ion detection
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FIG. 2. Contours of the normalized count uncertainty � for an
atom-counting system with ion detection efficiency 
i±�
i

, for ion
number NI=103. The shaded area shows the region of parameter
space expected for common commercial ion detectors calibrated as
detailed in Sec. IV.
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efficiency 
i and its uncertainty �
i
. From Eq. �1� this means

we need to know the ion detection system efficiency 
det and
the ion temporal resolution probability pr, each with their
respective uncertainties. We first consider how to measure

det to high accuracy, or in other words, how to calibrate the
ion detection system.

Accurate calibration can be achieved by means of a
scheme in which an additional detector is used to count the
electrons produced by ionization �51�. If NI atoms are ion-
ized in a calibration, and the overall ion and electron detec-
tion efficiencies are 
i and 
e, respectively �where, analo-
gously to Eq. �1�, 
e=
det,epr,e�, then

Ni = 
iNI, �5�

Ne = 
eNI, �6�

Nc = 
i
eNI, �7�

where Ni is the number of ions counted, Ne is the number of
electrons counted, and Nc is the number of ion-electron co-
incidences counted. Therefore


i =
Nc

Ne
, �8�

which shows that only the coincidence and electron counts
are required to find the ion detection efficiency; we do not
need to know the efficiency of the electron detector.

In order to count the number of coincidences, it is first
necessary to specify how coincidences are identified. In gen-
eral there will be a distribution of times taken for ions to
move from the region of ionization to striking the detector
and producing a pulse. The width of this distribution will
depend on the range of initial velocities of the ions and the
variation in electric field at different locations within the
atom cloud. The same is true for the electrons. There will
therefore be a distribution of intervals between ions and their
corresponding electrons. With modern pulse counting elec-
tronics it is straightforward to produce lists of the arrival
times of electrons and ions with precisions on the order of
100 ps �52� and these can be used to generate a list of inter-
vals between electrons and the following ions. If a histogram
of these intervals is plotted, true coincidences will appear as
a peak against a small background of false coincidences.
This peak can then be used to define a window for true
coincidences.

The coincidence window may also contain false coinci-
dences, which occur when an unpartnered ion �i.e., one for
which the corresponding electron was not detected� arrives
within the window of an unpartnered electron. Also, due to
the finite size of the window, some true coincidences may
not be counted. The mean net number of false coincidences

N̄f and its uncertainty � f are derived in Appendix A.
In order to take false coincidences and background ions

and electrons into account in the ion detection efficiency, we
define corrected ion, electron and coincidence counts as Ni�


Ni− N̄ib, Ne�
Ne− N̄eb, and Nc�
Nc− N̄f, respectively. N̄ib

and N̄eb are respectively the mean numbers of background
ions and electrons counted in the calibration period and can

be measured by counting ions and electrons in the absence of
the calibration atoms. The overall ion detection efficiency is
then


i =
Nc�

Ne�
. �9�

The ion detection efficiency given by Eq. �9� is the value that
applies in a calibration and is valid for the ionization rate
used in the calibration. To find the system ion detection ef-
ficiency �which is ionization rate independent� we need to
correct 
i for the value of the ion temporal resolution prob-
ability pr that applies in the calibration. From Eqs. �1� and
�9�, the system ion detection efficiency is


det =
Nc�

Ne�pr

, �10�

and from Appendix B

pr = 1 − �rṄi −
1

2
��rṄi�2, �11�

where �r is the minimum time interval for which two ions

can be resolved from each other, and Ṅi is the average rate of
ion detection in the calibration.

We also need to determine the uncertainty in 
det. This
uncertainty arises mainly from the fact that for a given num-
ber of atoms ionized, the number of ion, electron and coin-
cidence counts are described by binomial distributions. An
additional contribution comes from the uncertainties in the
number of background electrons and false coincidences
counted during the calibration. Taking all of these effects
into account, and for values of pr close to unity, the uncer-
tainty in the ion detection system efficiency is

�
det
=

Nc�

Ne�
�� 1

Nc�
−

1

Ne�
� +

�eb
2

Ne�
2 +

� f
2

Nc�
2 , �12�

where �eb is the uncertainty in the number of background

electrons counted and is equal to �N̄eb, assuming the detec-
tion of background electrons is a Poisson process.

To minimize the uncertainty in the ion detection effi-
ciency, it is desirable to minimize background counts. Back-
ground electrons and ions arise from three main potential
sources. The vacuum gauges and ion getter pumps com-
monly used in ultracold-atom experiments work by ionizing
atoms and hence some of the ionization products may find
their way to the detector. While the vacuum gauge can sim-
ply be turned off during the experiment, ion counts from the
pump can be reduced by adding appropriate shielding. The
third potential source of background ions and electrons is the
ionization by stray laser light of the Rb atoms covering the
interior of the vacuum chamber.

Background ions and electrons can be prevented from
reaching the detectors by using suitable ion optics, such as
the apparatus presented in �53�. In this apparatus four elec-
trodes are used to accelerate and focus ions and guide them
to the detector. The ion trajectories were calculated using
standard software and it was found that only a volume of
	1 cm3 is imaged onto the detector. Ions produced outside
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of this volume are not detected and it is estimated that back-
ground counts can be almost entirely suppressed.

From Appendix A, the uncertainty in the number of false
coincidences can also be made very small. From Eqs. �10�
and �12�, neglecting background counts and false coinci-
dences, and for pr�1, the average relative uncertainty in the
ion detection efficiency is

�
det


det
=� 1 − 
det


det
det,eNI
. �13�

For calibration parameters ṄI=105 s−1, 
det=
det,e=0.8, and
a calibration time of �cal=10 s, this expression is accurate to
within 1% for background electron and ion rates of up to
103 s−1. Equation �13� shows that this calibration method
works best for large atom numbers and high overall ion and
electron detection efficiencies.

In order to test the values for 
det and �
det
predicted by

the calibration equations, numerical simulations of calibra-
tion experiments were carried out. These simulations in-
cluded all the relevant features of a real calibration, such as
ionization following Poissionian statistics, detection of ions
and electrons subject to their respective detection efficien-
cies, background electrons and ions, resolution times of the
detectors, generation of a coincidence window from the lists
of electron and ion arrival times, and use of the coincidence
window to determine the number of coincidences.

Each simulation generated electron, ion, and coincidence
counts for both “real” and background electrons and ions.
Then, as would be done in a real calibration experiment, the
corrected counts were calculated using the estimated num-
bers of background electrons, background ions, and false co-
incidences. An inferred value and an inferred uncertainty of
the ion detection system efficiency 
det were then found us-
ing Eqs. �10� and �12�.

Excellent agreement was found between the theory and
simulation for a wide range of values. Figure 3 shows a
histogram of the inferred ion detection efficiency for 1000

runs of the simulation with 
det=
det,e=0.9, ṄI=104 s−1,

�cal=10 s, �r=10 ns, and Ṅib= Ṅeb=102 s−1. The inferred val-
ues of 
det have a mean of 0.899 993 in excellent agreement
with the actual value of 0.9. The standard deviation of the
inferred values was 1.047	10−3, also in excellent agreement
with the average theoretical value of �
det

, which for these
parameters is 1.049	10−3.

To determine the values of 
i and �
i
that apply in a

counting experiment, the calibrated values of 
det and �
det
must be corrected for the value of the ion temporal resolution
probability pr that applies for the ion detection rate used in
the experiment. 
i is found from Eq. �1� and �
i

=�
det
for

pr�1. For the case of ionization at a constant rate in atoms
per second, pr is given by Eq. �B7� in Appendix B. If ion-
ization occurs at a constant per atom rate �i.e., ionizing laser
powers are held constant�, we use the effective ion resolution
probability pr�, given by Eq. �B11�. It should be noted that for
the calibration to be valid, the ion collection efficiency 
coll
must remain constant between calibration and experiment.
This could be achieved by calibrating using cold atoms in the

same trap as used in the experiment. To achieve the lowest
possible uncertainty in the atom count, 
coll should be unity,
which can in principle be achieved with well-designed ion
optics.

V. TRAP LOSS AND OPTIMAL IONIZATION RATE

In an atom-counting experiment it is important to know
how the rate of ionization affects the normalized count un-
certainty �. The greater the rate of ionization, the smaller the
value of pr and the larger its uncertainty. This in turn de-
creases 
i and increases �
i

, resulting in an increased value
of �. However in most experiments it would generally be
desirable to ionize a cloud as quickly as possible without
overly affecting the count accuracy. Figure 4 shows how � is

affected by the ionization time �I
NI / ṄI, for NI=103 and
�r=5 ns, assumed to be known with a 10% uncertainty. The
crosses correspond to an infinitely long ionization �in which
case 
i=
det� and the circles and triangles correspond to ion-
ization times of 2 and 1 ms, respectively. It can be seen that
down to a certain ionization time, � is close to its minimum
value. However as the ionization time decreases, � begins to
increase rapidly.

If there is negligible trap loss, the number of atoms ion-
ized NI is the same as the number of atoms originally in the
trap N, and the inferred atom number Ninf is the same as the
inferred ion number NI,inf. If there is trap loss, however, we
have to correct the inferred ion number to obtain an inferred
atom number. In the remainder of this section we show how
this is achieved and how the uncertainty in the inferred atom
number is affected by trap loss. We also find the optimal
ionization rate that minimizes the uncertainty in the inferred
atom number due to both trap loss and imperfect ion tempo-
ral resolution.
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FIG. 3. Histogram of the inferred values of the ion detection
system efficiency 
det for 1000 runs of the calibration simulation
with 
det=0.9, electron detection system efficiency 
det,e=0.9, ion-

ization rate ṄI=104 s−1, calibration time �cal=10 s, pulse resolution
time �r=10 ns, and background electron and ion detection rates

Ṅib= Ṅeb=102 s−1, respectively.

ATOM COUNTING IN ULTRACOLD GASES USING… PHYSICAL REVIEW A 74, 043612 �2006�

043612-5



To calculate the atom count corrected for trap loss, we
assume a constant loss rate Rl and that ionization occurs at a
constant rate RI �both rates are per atom�. The respective
time-dependent probabilities of an atom being in the trap and
of having been ionized follow

ṖT = − �RI + Rl�PT, �14�

ṖI = RIPT. �15�

The probability that an atom is ionized rather than lost is

pI = 

0

�

ṖIdt =
RI

RI + Rl
. �16�

The total number of atoms ionized NI is described by a bi-
nomial distribution, which again can be approximated by a
normal distribution with mean pIN and standard deviation
�pI�1− pI�N �50�. The original number of atoms in the trap
can then be inferred to be

Ninf = �1 +
Rl

RI
�NI,inf , �17�

with a statistical uncertainty of

�Ninf,stat =�Rl

RI
�1 +

Rl

RI
�NI,inf . �18�

Due to uncertainties in Rl, RI, and NI,inf, we get extra terms in
the uncertainty in Ninf and we find

�Ninf

2 = �NI,inf�Rl

RI
�2

+ �RlNI,inf�RI

RI
2 �2

+ ��1 +
Rl

RI
��NI,inf

�2

+
Rl

RI
�1 +

Rl

RI
�NI,inf , �19�

with NI,inf and �NI,inf
given by Eqs. �2� and �3�. Thus in order

to infer the atom number and its uncertainty, we need to
know RI and Rl and their uncertainties in addition to Ni, 
i,
and �
i

. We now consider how these values can be measured
in a given experiment.

The sum of RI and Rl can be found by plotting ln�Ni
−Ni�t�� against time, where Ni�t� is the cumulative ion count.
The slope is then −�RI+Rl�. The value of Rl �and hence of RI�
may be found by plotting RI+Rl against the intensity of the
778 nm laser for a number of runs. Rl is given by the ex-
trapolated y intercept of this plot. �Extrapolation is required
because Rl cannot be measured by counting ions if no ion-
ization occurs. However, Rl could be measured directly by
absorption imaging at successive times in the absence of
778 nm light.�

The optimal ionization rate is that which gives the lowest
value of � for given values of Rl, 
det, �r, and N. In Fig. 5,
the optimal value of 1 /RI is plotted as a function of N for
various values of 1 /Rl, for 
det=0.9, �
i

=0, �r=10 ns, and
assuming a 10% uncertainty in the measured values of Rl and
RI. The corresponding minimum values of � /�min are plotted
in Fig. 6, where �min is the value of � for zero trap loss. It
can be seen that reasonably sized atom clouds �103–104 at-
oms� can be counted in times on the order of 10 ms with
close to the theoretical minimum count uncertainties for re-
alistic trap lifetimes.

An improvement on the uncertainties resulting from ion-
izing with constant per atom probability would be obtained
by increasing the 778 nm laser power during the ionization
in such a way as to obtain a constant ionization rate in
atoms/s. This would mean that the cloud would be ionized
faster with less trap loss. The time dependent rate equations
describing this scheme could be integrated numerically to
determine the probability that an atom is ionized rather than
lost, from which the original atom number and its uncer-
tainty could be inferred.

VI. DISCUSSION

We now consider the application of our atom-counting
scheme to the characterization of unknown atomic samples.
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To determine the number of atoms in a single cloud, one
would simply count a certain number of ions Ni and use the
known calibration data to obtain an inferred atom number
and uncertainty Ninf ±�Ninf

from Eqs. �2� and �3�. In the case
that trap losses are not negligible, Eqs. �17� and �19� are also
required. If, however, we wish to know the atom number
variance in a specific situation we need to analyze a number
of repeated measurements. As an example, consider a sample
of n measurements on atom clouds generated in an identical
manner which, under ideal �noise-free� circumstances, would
yield identical numbers of atoms �for example, using a quan-
tum tweezer to extract atoms from a BEC �32,33��. Each
experiment yields a measure Ninf,j ±�Ninf,j

where j
=1,2 , . . . ,n. The quantities of interest are the mean atom
number, the atom number variance, and the uncertainties in
these values.

The population mean can be estimated from the mean of

all inferred atom numbers N̄ and has an uncertainty of
�sT

2 /n+ ��
i
N̄ /
i�2 where sT

2 is the bias-corrected sample to-

tal variance and is given by sT
2 = �1/ �n−1����Ninf,j − N̄�2. The

true atom number variance �A
2 is estimated by the difference

of the total variance of the measurements sT
2 and the variance

associated with the binomial statistics of the ion counting

�m
2 � N̄�1−
i� /
i. Note that the expression for �m

2 does not
include a term due to �
i

as in Eq. �3�, since we assume that
any error in the detection efficiency �calibration� will be the
same for each measurement. This leads to a systematic error
in the atom count and does not contribute to the variance �m

2 .
The degree of number squeezing of the atomic population

is described by the Fano factor FA=�A
2 / N̄ �54�. A Poissonian

sample has FA=1 and a sub-Poissonian �number-squeezed�
sample has FA�1. We can define a total Fano factor

FT=sT
2 / N̄ and measurement Fano factor Fm=�m

2 / N̄,
which accounts for the fluctuations due to the binomial
counting of ions. The population Fano factor is then given by

FA=FT−Fm, and it can be shown that for �
i
�5% and N̄

�5 the uncertainty in FA is well approximated by �FA

=�2/n�FA+Fm�.
Knowing Fm from the calibration it is possible to deter-

mine how many measurements are required to obtain a suit-
ably small uncertainty �FA

in the measured �normalized�
atomic variance FA, or conversely, for a given number of
measurements, to what accuracy FA can be determined. For
example, suppose 50 measurements are performed on an
population that has FA=0.2, using a well-calibrated, 90%
efficiency detector. The uncertainty in the inferred value of
FA is then 0.06. For mean atom numbers of 103 and 104,
FA=0.2 corresponds to atom number standard deviations of
14 and 44, respectively. Given that �FA

=0.06, these standard
deviations can be measured to uncertainties of 3.1 and 9.8
atoms, respectively. Naturally, these uncertainties can be re-
duced by increasing the number of measurements. However
since �FA

�1/�n, a large number of measurements is re-
quired to substantially reduce these uncertainties. For ex-
ample, if n is increased from 50 to 100, the uncertainties in
the population standard deviations are only reduced to 2.2
and 7.0, respectively.

VII. CONCLUSION

We have analyzed photoionization and ion detection as a
means of achieving accurate counting of ultracold atoms.
The scheme relies on a three-photon, cw ionization process
and can also be used for efficient single-atom detection with
high spatiotemporal resolution. To count large numbers of
atoms, one of the lasers acts as an optical dipole trap for the
target atoms. We have shown that a well-calibrated ion de-
tector with realistic efficiencies can achieve single-shot atom
counts with sub-Poissonian accuracies for atomic samples
containing many thousands of atoms. This is potentially use-
ful for studies of the quantum properties of cold atomic
gases. The variance of an ensemble of systems can also be
characterized in a manner that only weakly depends on un-
certainties in the absolute detection efficiency. Similarly, this
scheme could allow direct probing of atom number correla-
tions in molecular down-conversion and four-wave mixing
experiments which are predicted to show number difference
squeezing.
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APPENDIX A: NET NUMBER OF FALSE COINCIDENCES

In this appendix we derive the required correction to a
coincidence count to account for false coincidences and un-
counted true coincidences. In a given calibration there will
be Ni−Nc unpartnered ions and Ne−Nc unpartnered elec-
trons. �We assume negligible background ion and electron
numbers.� The probability of a given unpartnered ion being
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in the window of an unpartnered electron is well approxi-
mated by

pf = �Ne − Nc�
�win

�cal
, �A1�

where �win is the window length and �cal is the duration of the
calibration.

The probability of a true coincidence being outside the
window is

pw = 1 − erf� �win

2�2�int
� , �A2�

where �int is the the standard deviation of the time intervals
between electrons and their corresponding ions.

The net number of false coincidences counted in a given
calibration is then

Nf = N̄f ± � f , �A3�

where

N̄f = pf�Ni − Nc� − pwNc �A4�

and

� f = �pf�1 − pf��Ni − Nc� + pw�1 − pw�Nc. �A5�

APPENDIX B: CALCULATION OF pr AND pr�

As the overall ion detection efficiency 
i is ionization rate
dependent, relating the ion detection efficiency measured in a
calibration to the ion detection efficiency which applies in an
experiment requires finding an expression for pr in terms of
the ionization rate �see Eq. �1��. We consider two cases: con-
stant ionization rate in atoms per second, and constant per
atom ionization rate. We look first at the former.

We assume the ion detection system has some resolution
time �r, such that if an ion arrives at the detector within �r of
the previous ion it will not be counted. We define Ni

* as the
average rate �ions/s� at which ions are detected as �r→0.
Assuming a constant average detection rate, the detections
follow Poissonian statistics, and the time interval between
successive detections �, is described by a negative exponen-
tial probability density function �50�

f int��� = Ṅi
*e−Ṅi

*� for � � 0. �B1�

The probability that an ion arriving at the detector is resolv-
able from the previous ion is

pr = 1 − 

0

�r

f int���d� . �B2�

From Eqs. �B1� and �B2� we find

pr = exp�− �rṄi
*� . �B3�

The rate at which ions are actually detected is

Ṅi = prṄi
*. �B4�

The number of ions counted during a calibration period �cal

is described by a Poisson distribution: Ni= Ṅi�cal±�Ṅi�cal. If
Ni ions are counted in time �cal, the ion detection rate in the
calibration is inferred to be

Ṅi,cal =
Ni

�cal
±

�Ni

�cal
. �B5�

From Eqs. �B3� and �B4� we find

Ṅi
* = �1 + �rṄi�Ṅi + O„��rṄi�3

… . �B6�

Substituting Eq. �B6� into Eq. �B3� and neglecting the third-
order term �which results in a relative error in pr of less than

10−9 for �rṄi�10−3� we get

pr = 1 − �rṄi −
1

2
��rṄi�2. �B7�

Now we consider the case of ionization with a constant
per atom ionization rate. In this case we need to use an
effective ion resolution probability pr� because by ionizing
with a constant per atom rate, the ionization rate in ions per
second is a function of time and hence so is pr. The effective
ion resolution probability is given by

pr� = 

0

�

pr�t�fa�t�dt , �B8�

where from Eqs �B3�, �14�, and �15�

pr�t� = exp�− �e−�RI+Rl�t� , �B9�

where �=�r
detNRI and

fa�t� = �RI + Rl�e−�RI+Rl�t �B10�

is the probability density function of arrival times of ions at
the detector. It can be shown that, neglecting terms of O��3�,

pr� = 1 −
1

2
� +

1

3
�2. �B11�
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