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We present an analytical and numerical analysis of neutron multilevel interference phenomena generated
when a neutron passes through a series of N resonant coils operated at the successive conditions ���0

+n���=2�n�B0+n�B� with n=0,1 , . . . ,N−1. Each coil produces spin flip with probability � between 0 and
1; thus the number of waves for the neutron is doubled after each coil, finally giving 2N interfering neutron
waves. The phase difference between any pair is a multiple of a time dependent “phase quantum” ���t�. The
analysis predicts for each number N a highly regular pattern for the quantum mechanical probability to find the
neutron spin in one specific state as a function of � and ��. These patterns evolve in time and show revivals
after a time T determined by the step �� according to T=2� /��. For some adjustments of the system an
analytical solution is obtained. Application of multilevel interference in high-resolution neutron modulated-
intensity-by-zero-effort–type spectrometers is discussed.
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I. INTRODUCTION

Multipath interference in optics �1,2� and multimode in-
terference in dynamical systems �3� has recently emerged as
an extremely active field of research. Dynamical systems
with a broad spectrum of excitations, when all the levels are
populated, reveal rich interference patterns in both time and
space �4,5�. Particularly, large scale interference leads to
well-ordered long-range regularities �such as quantum reviv-
als �5�� in the time-space probability distribution of the wave
function. Therefore it is of great interest to prepare a wave
packet in a controlled way and measure its multimode or
multipath interference.

In our previous paper �6� we studied multipath interfer-
ence of a neutron during passage through N resonant coils in
a dc field B0, each flipping the neutron spin with a probabil-
ity � between 0 and 1, interspaced by regions of length L
with a homogeneous magnetic field B1. For this study we
used Ramsey’s resonance method of the “separated oscillat-
ing fields.” The same configuration was described in Refs.
�7,8� for two coils only. It was found that after the first reso-
nant coil the neutron wave is split into two waves for the two
different spin states. In the subsequent region with field B1,
these waves collect opposite phase shifts. In the next reso-
nance coil each neutron wave is split again, thus making four
waves. Hence, after N resonance coils we have 2N interfering
waves. Each pair contributes to a highly regular pattern for
the quantum mechanical �QM� probability to find the neutron
spin in a specific state �e.g., “up”�, in a two-dimensional
space subtended by the “axes” spin flip probability � and line
integral �B1−B0�L. We derived an analytical expression for
this probability as a function of these parameters and the
number N. This expression was testified both by computer
calculations and by neutron experiments. The experimental
data were consistent with theory. We point out that the pat-
tern in this 2D space is stationary, since all interfering waves
correspond to states with the same energy and wave vector.

In the present paper we discuss again a set of N resonant
coils in series, but now operated at successively increasing
frequencies �0+ i�� �i=0¯N�. Again, the neutron wave is
split into 2N waves, however, each with different energy and
wave vector. We will see that the phase difference between
any pair of waves is a multiple of a phase quantum ��t, i.e.,
depending on time. Moreover, an energy spectrum of equi-
distant levels occupied according to a binomial distribution
is created. The resulting multilevel interference pattern is not
stationary, but evolves in time, giving revivals on a time
scale T=2� /��. The shape of the pattern is determined by
the number of resonant coils N and the spin flip probability
of one coil �.

This phenomenon has much in common with the neutron
resonant spin echo �NRSE� method recently developed
�9–11�, based on earlier works on the resonant interaction of
neutrons with time-dependent magnetic fields �12–14�. Thus,
a high resolution spectrometer for quasielastic neutron scat-
tering was proposed on the basis of the NRSE method with
the resonant coils of different frequencies �15�. It has re-
ceived the name modulation of intensity by zero effort
�MIEZE� and produces a sinusoidal intensity modulation of
the incoming beam. The first scattering experiment on
MIEZE had been performed and proved the possibilities of
this technique �16�. Furthermore, a combination of several
MIEZE setups with one common detector position was pro-
posed to get a periodic signal of arbitrary time shape �17�. In
this scheme sharp signals well separated in time are possible.
However, each MIEZE setup needs its own device for polar-
ization analysis, limiting in practice their number to values
around 5. In the present paper we lift out the analyzers and
demonstrate that multilevel MIEZE may be realized in an
easier way.

We give a theoretical treatment of multimode interference
of neutron waves. The concept is developed in Sec. II and we
describe how 2N neutron waves appear in an experiment
with N resonant coils. We derive analytical expressions for
the interference in the case of identical and nonidentical
coils. Numerical calculations for the interference are given in
Sec. III. Section IV presents both a short discussion and final
conclusion.*Email address: grigor@pnpi.spb.ru
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II. NEUTRON MULTIWAVE RESONANCE
INTERFERENCE

A. Identical resonant devices

The succession of magnetic fields B0 and B1, which is N
times repeated, is shown in Fig. 1�a�. rf coils in the path
sections with field B0 are operated at the resonance fre-
quency �0. To understand interference between neutron
waves in this configuration of fields we need to solve the
Schrödinger equation, in which each rf coil is described as a

�2�2� matrix Ĉ �given in Eq. �18� below� operating on the
2D complex spinor

	�r�,t� = �
�t1�exp�ik0x + �t�
��t1�exp�ik0x + �t�

�, ��
2 + �2 = 1 at any time�

representing the spin state of the neutron at entrance time t
into the coil after the neutron entered the first coil at t1.
Before presenting the mathematics of its solution in Sec. III,
we give an intuitive description �7–12�.

A valid solution is a plane neutron wave with wave num-
ber k0, traveling along the x axis through the field configu-
ration defined above. When the neutron enters the field B0,
the wave number k0 changes to k1. By energy conservation,
the total energy �� does not change and the resulting wave
number k1 differs from k0 in first approximation as

k1 = k0 + �nB0/��v� , �1�

where mn, �n, and v are the mass, the magnetic moment, and
the velocity of the neutron, respectively.

When spin flip occurs, a photon of energy ��0 is ex-
changed between the neutron state and the rf field, i.e., the
neutron spin state with momentum k1 gains or loses an
amount of potential energy �E=2�nB0. When the neutron
passes the field boundary from B0 to B1, this potential energy
is released as a kinetic energy change. We assume that the
spin flip in the rf field was not complete but only partial, with
a probability �=1/2, for all resonance coils. Then at this
boundary the neutron wave is split into 2 plane waves with
wave numbers k+ and k− corresponding to the spin states � 1

0
�

�up� and � 0
1

� �down�, respectively. Again, by energy conser-
vation, the total energy corresponding to each state does not
change at the transition from B0 to B1, so the wave numbers
k+ and k− in the first approximation are

k± = k1 ±
�n�B0 − B1�

�v
. �2�

So, the initial neutron wave is split into a “nonflipped” and
“flipped” part with wave vectors k− and k+ and energies ��
and ���+�0�. After the next coil each of these waves is split
again into two waves with equal amplitudes—and so on.
Thus, after N coils the initial wave is split into two groups of
2N−1 neutron waves with amplitudes �1/2�N of the initial
wave. In the first group the neutron was flipped an odd num-
ber of times and therefore these waves have spin state
“down.” The energy of the states corresponding to these
waves is ���+�0�. They are located at the upper k level of
diagram Fig. 1�b�. In the other group the neutron was flipped
an even number of times �or not flipped at all�, so these
waves have spin state “up.” In the states corresponding to
these waves the neutron has the same energy �� as initially.
These waves are at the lower k level. In �k ,x� space �Fig.
1�c�� we can follow the phase shifts �� of the individual
waves relative to the phase value �0=k1x. Each wave in each
group has its specific path in this diagram.

At any position after the system of resonance coils the
phase difference for an arbitrary pair is m�
, where m
=0,1 , . . . ,N and

�
 = �
0

l

�k+�x�� − k−�x���dx� �3�

is the line integral over one path section with field B1. Thus,
�
 is a quantum of phase. The amplitude of the wave with a
given phase shift m�
 �m=0,1 . . . ,N� is determined by three
factors.

�i� The spin flip probability of one rf coil

� = sin2�2�n

�
Brf�/2� 	 sin2 � �4�

�so � depends on the amplitude of the rf field Brf and the
residence time �, which is proportional to the neutron wave-
length � and the length of the rf coil l�.

�ii� The number of flipping events m.

FIG. 1. �a� System with many �N=6� identical resonant coils
with flip probability 0���1 in dc fields B0 separated by segments
with field B1, �b� �k ,x� diagram of the wave vectors of the waves
arising after the successive resonant coils due to the incomplete flip,
�c� Diagram of the phases �� of the waves produced in the succes-
sive resonance coils relative to a wave which would go at undis-
turbed level k=k1 through the system.
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�iii� The number Am of pathways in �k ,x� space having
this particular phase shift m�
 after N coils �binomial dis-
tribution�:

Am =
N!

m!�N − m�!
.

Thus, the waves with the spin state “up” can be summarized
as

�1 = 

m=1

N−1
Am

2N �sin ��N−m�cos ��m exp�im�
� �5�

and the waves with the spin state “down” as

�2 = 

m=1

N−1
Am

2N �sin ��m�cos ��N−m exp�− im�
� . �6�

According to quantum mechanics the probability R for the
neutron spin to collapse into the spin state “up” or “down” is
equal to ��1�2 or ��2�2, respectively, with the polarization
component Pzz along the z axis given as

Pzz = ��1�2 − ��2�2. �7�

This problem was considered in detail in Sec. IV of Ref.
�6� and the quantitative solution was obtained through the
matrix method. The analytical expression for the probability
R is

R = �
sin2�N�/2�
sin2��/2�

, �8�

where the angle � is given by

cos��/2� = �1 − � cos��
/2� . �9�

In this expression �
= ��n /2���B1−B0�L /v is identical to
the phase quantum Eq. �3�.

B. Nonidentical resonance devices

Equations �8� and �9� imply that for identical resonance
devices one obtains a stationary interference pattern in a 2D
space subtended by the axes: field B1 and spin flip probabil-
ity �. However, in some cases, mentioned below, it is impor-
tant that a time evolution occurs.

For this purpose, let us take N resonant coils, adjusted
such that they have the successive resonance conditions ful-
filled

���0 + i��� = 2�n�B0 + i�B� , �10�

where i �i=1, . . . ,N� is the number of the coil. So, the reso-
nance frequency and magnetic field increase from one coil to
the next by �� and �B, respectively �Fig. 2�a��. Again we
suppose that each coil has flip probability ��1, so a neutron
wave entering the system is doubled after each coil and 2N

waves exist at the end of the system. As in the case of iden-
tical coils, each wave has its own path in the �k ,x� diagram
�Fig. 2�b��.

To find an analytical expression for the behavior of the
neutron wave, similar to the case of identical coils in Eqs.

�7�–�9�, we must split the problem in two steps. First, the
path through the system of coils 0�x�N�l+L�. Here the
neutron wave, with energy �, is N times flipped and split into
waves with wave vectors k0− i�k �i=1, . . . ,N�, and now also
with different energies ��+ i���, illustrated in Fig. 2�c�.
Each wave acquires its specific phase as a result of its history
through the system, which is a multiple of the phase shift
inside one resonance coil �
=���=2l�k. Here � is the
residence time in one coil. So we create a phenomenon of
“multilevel” interference.

The second step is the space after the system of coils:
x�N�l+L�. Here these waves interfere and produce a pattern
evolving in time and space. We want to express the interfer-
ence analytically in the same way as in the case of identical
coils. However, the phase of the individual waves contains
the phase history of the first step, which is different for all 2N

waves.
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FIG. 2. �a� System with many nonidentical resonant coils with
successively increasing dc fields B0+n�B �n=1. . .n−1� giving
resonance conditions �B0+n�B�= �� /2�n���0+n���. �b� �k ,x� dia-
gram of the wave vectors and their numbers arising after the suc-
cessive resonance coils. �c� Development of the multilevel �� ,x�
diagram of the energies of the waves produced in the system.
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To eliminate the effect of these phase shifts we adjust the
frequency step �� and the time � such that we fulfill the
condition

�
 = ��� = 2�kl = n2� , �11�

where n is an integer number. Then, at the end of the system
of coils the phase differences between all N waves are mul-
tiples of 2�. As in the previous case, the amplitude of the
wave with a given energy and wave vector is determined by
�i� the spin-flip probability of one coil �=sin2�, �ii� the num-
ber of flipping events m, and �iii� the number of waves Am at
a particular energy level �binomial distribution�.

Under the condition �11� the waves with the spin state
“up” after the system can be summarized as

�1 = 

m=1

N−1
Am

2N �sin ��N−m�cos ��m exp�im���t,x�� �12�

and the waves with the spin state “down” as

�2 = 

m=1

N−1
Am

2N �sin ��m�cos ��N−m exp�− im���t,x�� . �13�

In full analogy to the case of identical coils �Eq. �8��, the
quantum mechanical probability R can be analytically ex-
pressed as

R = �
sin2��N��x,t�/2�

sin2���x,t�/2�
, �14�

where � is the spin flip probability of the neutron in one coil
�Eq. �4�� and the angle ��x , t� is given by

cos���x,t�/2� = �1 − � cos����x,t�/2� . �15�

The “phase quantum” �� now depends on time t and coor-
dinate x:

���t,x� = �k�x − x0� − ���t − t0� , �16�

where x0 is the coordinate of the exit of the system and t0 the
time when the neutron leaves it. For nonidentical resonant
devices �� is no longer a quantum of phase, but rather the
evolution of time t. We see that the phase differences after
the system increase both in time and as observed at increas-
ing distance behind the system. We notice that the phase will
reproduce after a “revival time” �t− t0�rev given by

�t − t0�rev =
2�

��
.

This holds at any place behind the system at increasing time
t.

III. NUMERICAL EXPERIMENT

In order to testify the theoretical consideration done in the
previous section and to formally solve the Schrödinger equa-
tion for the full system of N �non�identical resonance coils, a
computer calculation was performed. The solution for a neu-
tron entering one coil at time t1 and leaving it at t1+� �where
�= l /v� can be written �18�

��t1 + �� = Ĉ�t1,�,�0���t1� , �17�

where the initial spin state of the neutron is ��t1�
=
�t�� 1

0
�+��t�� 0

1
� with 
=1 and �=0. The matrix

Ĉ�t1 ,� ,�0� is a 2�2 matrix of the form

Ĉ�t1,�,�0� = � cos���exp�i�0�/2� − i sin���exp�i�0�t1 + �/2��
− i sin���exp�− i�0�t1 + �/2�� cos���exp�− i�0�/2�

� . �18�

Here we remind the reader that �= �2�n /��Brf� /2.
Then after N resonance coils the neutron wave function

can be written

��t1 + N�� = Ĉ�tN,�,�0 + N���Ĉ�tN−1,�,�0 + �N − 1���� ¯

�Ĉ�t2,�,�0 + ���Ĉ�t1,�,�0���t1� , �19�

where ti= t1+ �i−1�� �i=1,2 , . . . ,N�. Thus, the calculation in-

volves successive multiplication of the matrices Ĉ �Eq. �18��
describing the action of one resonant coil.

The polarization component Pi is found by evaluating the
well known expression

Pi 	 ��i
 = ��*�t1 + N����i���t1 + N��
 , �20�

where i=x ,y ,z and �i are the corresponding Pauli matrices.

From this we obtain the quantum-mechanical �QM� probabil-
ity R according to R= �1− Pzz� /2.

As seen from Eqs. �18� and �19�, the pattern of the QM
probability R depends on parameters of the system that one
can vary.

�i� Obviously it is ruled by the number of resonant coils
N. This is the first parameter.

�ii� The second one is �, which determines the spin flip
probability of the resonant coil according to Eq. �4�: �
=sin2�. We vary � from 0 to 2�.

�iii� The third parameter is the frequency step ��. It is
important that its value, combined with the residence time �,
is adjusted such that we fulfill the condition ���=n2� �Eq.
�11��. Then, the resultant patterns can be also described by
Eqs. �14�–�16�.

In Fig. 3 we show the QM probability R for systems of
N=2, 6, and 10 nonidentical coils as a function of the phase
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���x , t� �see Eq. �16�� at x=x0 �just after the last coil�, so the
phase depends only on time t. For all N the parameter � was
taken as � /4, so � becomes 1/2. To define a specific time
scale, we set the parameter ��=200 kHz. For this value we

can readily satisfy Eq. �11� for some wavelength in the ther-
mal spectrum with a length of the rf coils equal to a few cm.
As seen, the revival time comes at 2� /��=�0.01 ms for
this choice. For N=2, with Eqs. �14�–�16� we get R
=cos2���t /2�. As N increases, we get sophisticated patterns
with narrower main maxima and with secondary maxima.
The points �squares� obtained by the computational tech-
nique fall on the lines on the basis of Eqs. �14�–�16�.
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FIG. 3. The QM probability R �according to Eq. �14�, lines� to
measure the neutron spin state “up” as a function of time t at the
exit of systems consisting of N=2,6 ,10 nonidentical resonance
coils with spin flip probability �=1/2. The condition ���=2� �Eq.
�11�� is fulfilled. To define a time scale, the frequency step is set
��=200 kHz. We notice a periodicity �revival time� equal to
2� /��=��0.01 ms. Squares: the same result obtained with the
numerical approach �Eqs. �18�–�20��.
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FIG. 4. The same as Fig. 3 for a system of N=6 nonidentical
resonance coils for various values for the spin flip probability �
=sin2� with �= i� / �2N�, i=1,2 ,3. The condition ���=2� is
fulfilled.
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Figure 4 shows the same as Fig. 3, now for fixed N=6 but
various values for the parameter � in the spin flip probability
�=sin2�: �= i� / �2N� with i=1,2 ,3. Experimentally, these
curves can be observed by taking appropriate values for the
amplitude Brf in the rf coils �see Eq. �4��. Again, the points
�squares� obtained by the computational technique fall on the
lines on basis of Eqs. �14�–�16�.

Our computational technique enables us also to investi-
gate the QM probability R when the condition �11� is not
fulfilled. Figure 5 shows R as a function of time t for N=6
and for the value of the frequency ���=2� / j with j
=1,2 ,3 ,4 ,5. It is seen that the function R is periodic in time
with the period of T=2� / j��. The shape of the function
within one period changes significantly with increase of j.
Thus, it shows an arbitrary waving behavior with the shifted
phase, which is difficult to describe in an analytic way in
simple expressions.

IV. CONCLUDING REMARKS

In this paper we give, first, a theoretical description of
polarized neutron multilevel experiments in a system of N
nonidentical resonant coils with spin flipping probability be-
tween 0 and 1. A large number of neutron waves with differ-
ent wave vectors and energies are obtained. These waves
interfere and each pair contributes to highly regular patterns
in quantum mechanical probability to find the neutron in a
specific spin state. Behind the system this pattern evolves in
time and in space. For the specific adjustment of the system
of resonators ����=2�� we derived an analytical expression
for this probability, for arbitrary values of the flipping prob-
ability � of one resonator and a phase quantum equal to the
line integral of the field between the resonators, which in
practice becomes equal to time t. This expression was testi-
fied by computer calculations.

Secondly, such a system of resonators may be used for
multilevel MIEZE but with no restrictions on the number of
the resonators because one can use only one single analyzer
at the exit of this device. For practical purposes it is not
convenient to work with N resonators, whose frequencies
increase from one to another by ��. Then, the last Nth reso-
nator will have �a rather high� frequency �0+N�� with the
corresponding dc field B0+N�B. It is also difficult to keep
the difference in frequency between two neighboring coils
equal to ��. Fortunately for experimentalists, multilevel
splitting will occur also when the resonant devices in the
system are operated in the following way: all odd resonant
devices at frequency �0 in the dc field B0=�0�� /2�n� and all
even resonant devices at �0+�� in the dc field B0+�B
= ��0+����� /2�n�.

In this case the same analysis of Sec II B may be applied
with exactly the same results as given by Eqs. �14�–�16�. It
will simplify significantly the experimental efforts to realize
multilevel interference. Therefore we conclude that the prob-
lem of multilevel interference may be of interest both from
theoretical and experimental points of view.
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FIG. 5. Dependence of the QM probability R on the time t for
systems of resonance coils with number of coils N=6 and for spin
flip probability � in the resonance coils equal to 1/2, providing the
condition ���=2� / j fulfilled with j=1,2 ,3 ,4 ,5.
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