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We study the macroscopic quantum tunneling of magnetization of the F=1 spinor condensate interacting
through dipole-dipole interaction with an external magnetic field applied along the longitudinal or transverse
direction. We show that the ground state energy and the effective magnetic moment of the system exhibit an
interesting macroscopic quantum oscillation phenomenon originating from the oscillating dependence of ther-
modynamic properties of the system on the vacuum angle. Tunneling between two degenerate minima are
analyzed by means of an effective potential method and the periodic instanton method.
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I. INTRODUCTION

Rapid experimental progresses in realization of spinor
condensates �1,2� have generated fascinating opportunities to
study the spin dynamics and magnetic properties of conden-
sate atoms. The properties of spinor condensates under ex-
ternal magnetic field are investigated both experimentally �3�
and theoretically �4�. The spin-exchange interaction plays an
important role in these works, which is reminiscent of the
exchange interaction responsible for interesting magnetic
properties in solid. Other interactions, due to much weaker
than the exchange interaction, are in most cases ignored.

Since the spin degree of freedom becomes accessible in
an optical trap, the magnetic dipole-dipole interaction which
arises from the intrinsic or field-included magnetic dipole
moment �5,6� should be taken into account. The dipolar cou-
pling was first considered between atoms at different sites,
based on the assumption that the spin-exchange interaction
dominates the on-site interaction �7�. Due to its long range
and vectorial characters, more and more attentions are paid
to this spinor dipolar condensate, for example, the ground
state structure and spin dynamics were examined for this
novel quantum system in a single trap �8� and in deep optical
lattices �9�.

Recently a major experimental breakthrough �10� has
been achieved in the condensation of chromium atoms 52Cr
which possesses a large magnetic dipole moment of 6�B
��B is the Bohr magneton� in its ground state. The dipolar
interaction in this condensate is a factor of 36 higher than
that for alkali metal atoms, which makes possible the study
of many dipolar phenomena and new kinds of quantum
phase transitions predicted by theory. Indeed, the long-range
and anisotropic magnetic dipole-dipole interaction in degen-
erate quantum gases has been shown to lead to an anisotropic
deformation of the expanding Cr-BEC which depends on the
orientation of the atomic dipole moments �11�.

In the present paper we mainly consider a rich set of
macroscopic quantum phenomena occurred in different
quantum phases of spinor dipolar condensate. These phases
may be tuned via modifying the trapping geometry so that

various effective strengths of the dipolar interaction can be
achieved. Based on the ground state structure of a spin-1
condensate with dipole-dipole interaction at zero tempera-
ture, macroscopic quantum tunneling, and oscillations occur
in different phases, which are quite similar to what happens
in molecular magnets �12,13�.

The paper is organized as follows. In Sec. II, we introduce
the dipolar spinor BEC model for T=0 under the single
mode approximation, taking as a starting point the spin sys-
tem analogous to the magnetization tunneling in magnetic
particles. The ground state structure of the system is summa-
rized in Sec. III for zero, longitudinal and transverse fields,
respectively. Sections IV and V are devoted to analyze the
macroscopic quantum phenomena in the ground state for dif-
ferent phases under longitudinal or transversal external
fields, in which cases tunneling between magnetizations arise
naturally. Finally a brief summary is given in Sec. VI.

II. SPINOR CONDENSATE WITH DIPOLAR
INTERACTION

Our starting point is the many-body Hamiltonian H pro-
posed in Ref. �7�, which describes a F=1 spinor condensate
at zero temperature trapped in an axially symmetric potential
Vext. Without loss of generality, the symmetry axis is conve-
niently chosen to be the quantization axis ẑ. We consider
here two atomic interaction terms, the short-range collisional
interaction and the long-range magnetic dipolar interaction,
the competition of which gives rise to different quantum
phases. Under an external magnetic field B, the second quan-
tized Hamiltonian of the system reads

H =� dr�̂�
†�r���−

�2�2

2M
+ Vext���� − g�BB · F��	�̂��r�

+
c0

2
� dr�̂�

†�r��̂�
†�r��̂��r��̂��r�

+
c2

2
� dr�̂�

†�r��̂�
†�r�F�� · F���̂��r��̂��r�

+
cd

2
� � drdr�


r − r�
3
��̂�

†�r��̂�
†�r��F�� · F���̂��r��̂��r��
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− 3�̂�
†�r��̂�

†�r���F�� · e��F�� · e��̂��r��̂��r��� , �1�

where �̂��r���=0, ±1� are the field annihilation operators
for an atom in the hyperfine state 
F=1,mF=��. The
two coefficients c0=4��2�a0+2a2� /3M and
c2=4��2�a2−a0� /3M characterize the density-density and
spin-spin collisional interactions, respectively. Here af
�f =0 or 2� being the s-wave scattering length for spin-1 at-
oms in the combined symmetric channel of total spin f . The
dipolar interaction parameter is cd=�0g2�B

2 /4� with g being
Landé g factor. The Vext represent the external trapping po-
tential which is spin independent for a far off-resonant opti-
cal trap. And e= �r−r�� / 
r−r�
 is a unit vector. In this study,
the external field B is assumed to be spatially uniform.

In order to simplify the Hamiltonian �1�, we usually adopt

the single mode approximation �SMA�: �̂��r��	�r�â� �14�,
where 	�r� is the spin independent spatial wave function of
the condensate, â� is the annihilation operator for mF=�
component. It is always safe to use this approximation for
ferromagnetic interactions, however, it may break down for
antiferromagnetic interactions if both the atomic number N
and the magnetization M are large. The interaction param-
eters in our case of study are such that 
c2

c0 and cd
�0.1
c2
. Under these conditions, the single mode approxi-
mation is expected to be valid if the trapping potential is
axially symmetric. All integral terms in the long range inter-
actions involving e±i�e vanish after integrating over the azi-
muthal angles of r−r�. We then obtain a much simpler
Hamiltonian by assuming that the mode function 	�r� hence
possesses the axial symmetry and dropping the spin-
independent constant terms �7�

H = �c2� − cd��L̂
2 + 3cd��L̂z

2 + n̂0� − g�BB · L̂ , �2�

where L̂= â�
†F��â� characterizes the total many-body angular

momentum operator, n̂0= â0
†â0 is the number operator for

mF=0 atoms. The new parameters are c2�= �c2 /2�dr
	�r�
4
and cd�= �cd /4�drdr�
	�r�
2
	�r��
2�1−3 cos2 e� / 
r−r�
3,
with e being the polar angle of �r−r��. Equation �2� may be
put into the following dimensionless form by rescaling it in
energy unit 
c2�
:

H = �±1 − c�L̂2 + 3c�L̂z
2 + n̂0� − B� · L̂ , �3�

where � and � correspond to c2�0 and c2�0, respectively.
The new parameter c=cd� / 
c2�
 thus measures the relative
strength of dipolar interaction with respect to the spin-
exchange interaction. The dimensionless magnetic field
B�=g�BB / 
c2�
=B��sin  ,0 ,cos � is assumed to lie in the xz
plane with an angle  relative to the z axis.

III. GROUND STATE STRUCTURE UNDER EXTERNAL
FIELD

We summarize the ground state structure which has been
described in Ref. �7�. In the absence of an external field, the
ground state of our system is divided into three distinct re-
gions A, B, and C in the c2�−cd� parameter plane �see Fig. 1�.
We denote here the simultaneous eigenstate of L̂2 and L̂z as


l ,m� with eigenvalues l�l+1��2 and m�, respectively. In re-
gion A �cd��0 and cd��c2�� the ground state is given by
G= 
N ,0�, a quantum superposition of a chain of Fock states

N /2−k ,2k ,N /2−k� in which the numbers of atoms in
the spins 1 and −1 are equal. In region B �cd��0 and
cd��−c2� /2�, G= 
N , ±N� is a Fock state with all the popula-
tion in either mF=1 or −1. In these two regions, the n̂0 term
is at least a factor of 1 /N smaller than the rest and therefore
can be neglected safely. In region C, however, the ground
state is a little more complicated because the n̂0 term is
expected to be important. In general it is expressed as
G=�lgl
l ,0�, a superposition of different angular momentum

states with �L̂z�=0.
When we apply a longitudinal field to the system along

the z axis �=0�, the condensate in different parameter re-
gions behave quite differently. In region A, the system can be
mapped onto an easy-plane anisotropic particle with the
transverse xy plane being the easy plane. The ground state is
G= 
N ,m� with m depends on the field strength linearly, with
steps. Region B corresponds to a uniaxial anisotropic mag-
netic spin model with the easy axis z. The presence of the
external magnetic field simply removes the twofold degen-
eracy and forces the atoms into the fully polarized state
G= 
N ,N�. The ground state in region C is changed into
G=�l�m0

gl
l ,m0� while m0 increases with the field strength.
Now we check the situation when a transverse field is

applied along the x axis, i.e., =� /2. Due to the easy plane
anisotropy in region A, the ground state of the condensate is
fully polarized, however, in this case along the x axis,
G= 
N ,0�mx=N. The situation in region B is more interesting
because the ground state here G=�mgm
N ,m� is twofold de-
generate and it provides another example that can exhibit
macroscopic quantum tunneling of magnetization. Stepwise
magnetization curve will appear in region C—each step
means the breaking of one spin singlet pair.

For clarity, we choose two of above models which admit
extensive study of tunneling of magnetization, i.e., region A

2
c

d
c

B: |N,±N>

A: |N,0 >

C: |0,0 >
’

’

FIG. 1. �Color online� Magnetic phase diagram of dipolar spinor
condensate parametrized in the c2�−cd� plane. Corresponding ground
states are shown for zero external field. The two tunneling models
studied in this paper are in phase A with a longitudinal field and
phase B with a transverse field.
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with a longitudinal field and region B with a transverse field.
The dipolar spinor condensate thus provides another
platform for the investigation of macroscopic quantum
phenomena.

IV. MACROSCOPIC QUANTUM OSCILLATION
OF MAGNETIZATION

We first consider the spinor dipolar condensate under lon-
gitudinal field along the z axis in region A, in which case the
transverse xy plane corresponds to an easy-plane anisotropy.

After dropping the unimportant n̂0 and constant L̂2 terms, the
effective Hamiltonian can be obtained

HLA = 3cL̂z
2 − B�L̂z, �4�

where c�0. The model is precisely the same as that for a
ferromagnetic particle �12,13� with easy-plane anisotropy
and a magnetic field along hard axis. The Hamiltonian is

exactly diagonal in terms of the eigenstate L̂z and with the
eigenvalue Em=3 cm2−B�m. For zero temperature the mag-
netization increases stepwise as a consequence of the fact
that m take only integer values. This model, on the other
hand, provides a perfect manifestation of the � vacuum ef-
fect originating from the oscillating dependence of thermo-
dynamic properties of the system on the “vacuum angle”
�15�. The concept of the � vacuum was developed mainly
for the models of modern quantum field theory �16�, but also
in condensed media the nonperturbative vacuum is not a
mathematical abstraction. The vacuum angle is nothing but
the factor with which the total time derivative enters the
Lagrangian. For Aharonov-Bohm problem in conductors
with charge density waves, � is the normalized magnetic
flux �17�. In the Josephson junction of mesoscopic sizes, the
vacuum angle depends on the voltage applied to the junction
�18�. We see shortly the magnetic field enters the Lagrangian
and plays the role of vacuum angle in our spinor dipolar
condensate system.

We express the partition function as a spin coherent state
path integral for large number of atoms N�1

Z = Tr exp�− �HLA� =� D���n��exp�− SE� , �5�

where the measure of the integration is decomposed into
D���n��=�k=1

N−1�N sin kd	kdk /2��. The semiclassical ap-
proximation of the partition function turns out to be the tran-
sition amplitude between two spin configurations connected
by periodic orbits with fixed imaginary time period �. Fol-
lowing the usual procedure �19�, we represent the state vec-
tor of the system as coherent states and slice the integral into
N identical pieces of length �=� /N. Inserting complete sets
of states gives

Z = �nF
exp�− �HLA�
nI�

= �
k=1

N−1 � D��k�n�� �
k=0

N−1

�nk+1
�1 − �HLA�
nk� . �6�

After some algebraic evaluation and finally passing to the

time continuum limit N→� we obtain the Euclidean
action in imaginary time �= it as �overdots now denote �
derivatives�

SE = �
0

��

d��iN	̇�1 − cos � + 3cN�N + 1�cos2  − B�N cos �

�7�

with �=1/kBT and T the temperature. Integrating over cos 
we map the magnetic system onto a particle problem with
Lagrangian

L =
meff	̇

2

2
+ i�	̇ , �8�

where the effective mass meff=1/6c and �=N�1−B� /6cN�.
This Lagrangian is exactly the one for � vacuum of the
non-Abelian gauge field in Refs. �16,18�. We noticed that the
second term of L is the total imaginary time derivative and
has no effect on the classical equation of motion, while it
indeed alerts the canonical momentum into �	=meff	̇+ i�.
In order to minimize the Euclidean action SE, we try to find
the classical configuration, that is, the periodic instanton so-
lution under the boundary condition 	n��+��=	n+2�n. The
result is 	n=2�n� /� and the Euclidean action for this solu-
tion is SE=s0n2+ i2n��, where n is the winding number
characterizing homotopically nonequivalent classes and s0
=�2kBT /3c. The Euclidean functional integral of the parti-
tion function contains thus an additional summation over the
homotopic number and detailed calculation leads to

Z = �
n=−�

�

Zn = �3„�,exp�− s0�… , �9�

where �3�v ,q� is the Jacobi theta function oscillating with v.
By means of the well known asymptotics of the Jacobi theta
function, the ground state energy can be shown clearly oscil-
lating with �, i.e., the external magnetic field B

E0 = − kBT ln Z = −
�B��2

12c
+

1

2meff
�����2, �10�

where ��x�� is the difference between x and its nearest inte-
ger. According to this, the external magnetic field induces
quantum oscillations in the dipolar spinor condensate. The
period of oscillation is shown to be �B=6cd� /g�B
�see Fig. 2�.

The topological term in the Lagrangian �8� leads to the
oscillation behavior of our system. We emphasize here the
ground state �or in the language of quantum field theory, the
instanton vacuum� of the condensate acquires a vacuum
angle owing to the presence of the external magnetic field,
which breaks the symmetry and changes the topology of the
system. In a charge density wave ring-shaped conductor
placed in an external vector potential field the magnetic sus-
ceptibility and the electrical conductivity oscillate as a func-
tion of the flux �17�, while the voltage applied on the Joseph-
son junction induces the oscillation of the effective
capacitance of the junction �18�. In our system of investiga-
tion the macroscopic quantum effect manifests itself by

QUANTUM TUNNELING OF MAGNETIZATION IN … PHYSICAL REVIEW A 74, 043604 �2006�

043604-3



the oscillation of the effective magnetic momentum
M =−kBT� ln Z /�B as a function of the applied magnetic
field. The magnetization curve at zero temperature is step-
wise due to the macroscopic quantum oscillation of the ef-
fective magnetic moment and the period of oscillation de-
pends on the strength of the dipolar interaction cd� uniquely.
We show this oscillation period in Fig. 2, together with the
mathematical function ��x��. The functional integral ap-
proach presented here becomes necessary when environmen-
tal friction or dissipation is included, which amounts to the
introduction into the Euclidean Lagrangian of an additional
term describing the nonlocal interaction of the instantons
�20�. This is, however, beyond the scope of this paper. It is
interesting to estimate the modulation period in the typical
laboratory experiment on spinor condensates. For a conden-
sate with N�5�105 sodium atoms 23Na and density
��1014 cm−3 �23� we obtain the regular interval of magnetic
field �B�1.4 G. This oscillation period can be as small as
1.5�10−3 G for 2�104 rubidium atoms 87Rb with density
2.6�1012 cm−3 as in the first experimental achievement of
BEC in JILA �24� and can be as large as 10.5 G for
5�104 chromium atoms 52Cr with density 1014 cm−3 as in
the latest dipolar condensate experiments in Stuttgart �10,11�.
Moreover, it can be adjusted flexibly by changing the trap-
ping potential geometry.

V. QUANTUM TUNNELING OF MAGNETIZATION
BETWEEN TWO LOCAL MINIMA

Now we prepare the system properly in Region B and
apply a transverse field along the x axis to the condensate.
Again we drop the constant terms and are left with the fol-
lowing effective Hamiltonian:

HTB = − 3dL̂z
2 − B�L̂x, �11�

where d= 
c
. The model describes a quantum spin system
with the easy-axis anisotropy while the external field is along
x axis. This model has been extensively studied in the con-
text of spin tunneling. Classically under the influence of a

weak transverse field along the x direction, the two energy
minima move away from the zero filed positions �+z or −z�
and towards the x axis while remaining in the xz plane. For
0�B��6dN, they are located at �−=arcsin�B� /6dN� and

�+=�−−, respectively, with the angle � between L̂ and z
axis. The degeneracy is removed when B��Bsat� =6dN,
where the system is completely polarized by the external
field and the two minima merge along the x axis. Quantum
mechanically, the degeneracy is lifted before the magnetic
field reaches Bsat� due to the magnetization tunneling. A well-
known consequence of the tunneling between two degenerate
states is the lifting of their degeneracy: The two new eigen-
states are a symmetric and an antisymmetric superposition of
the original states characterized by an energy difference
�or tunneling splitting� �E0 inversely proportional to the tun-
neling rate. The quantity of interest to determine the occur-
rence of tunneling is therefore this energy difference between
the two lowest eigenstates of the Hamiltonian.

To calculate analytically this energy splitting, we use the
effective potential method �21� which maps the spin system
onto a particle system and the result can be easily obtained
with the periodic instanton method. The Schrödinger equa-

tion HTB
��=E
�� in the L̂z representation takes the form

2�E + 3dm2�Cm + B���N − m��N + m + 1�Cm+1

+ B���N + m��N − m + 1�Cm−1 = 0, �12�

where m=−N ,−N+1, . . . ,N and Cm=0 for 
m
�N.
Let us introduce the generating function

� = �
m=−N

N
Cm

��N − m�!�N + m�!
exp�mx� . �13�

Multiplying Eq. �12� by a factor exp�mx� /��N−m�!�N+m�!
and summing all terms with −N�m�N, we can transform
Eq. �12� into

3d�� − B� sinh x�� + �E + B�N cosh x�� = 0. �14�

In order to remove the first derivative term, let us define a
new function �=� exp�− 1

2B� cosh x�. When we replace �
with �, the new Schrödinger equation can be written after
dividing by N2 in the form

N−2�� + �� − U� = 0, �15�

where the corresponding parameter  describe the dimen-
sionless energy  =E /3dN2, and U= �a cosh x−1�2−a2 is the
effective potential well with a=B� /6dN.

The value N−1 plays the role of the Planck constant �, the
potential takes the form of a double well for a�1, i.e., for
external magnetic field not exceeding the saturation value
Bsat� =6dN. The two local minima thus play the role of the
degenerate classical states and the energy splitting of the
lower states takes the following form according to Ref. �22�:

�En = �E0qn/n! �16�

with the splitting for the ground state

M

µ
B

{{x}}

−3c  /g

1 2

B

x

3c  /gµB

’

’d

d

FIG. 2. The mathematical function ��x�� and the oscillation of
the magnetization with period �B.
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�E0 = ��!/�C exp�− S/�� . �17�

Here SE is the Euclidean action evaluated along the trajectory
from the left minimum x−=−cosh−1�1/a� to the right
x+=cosh−1�1/a�, !=�1−a2 is the small oscillator frequency
near the bottom of potential well x±. The asymptotic form of
the instanton trajectory determined the constant C and
q=C2 /2�!. For the potential U we have

SE = ln�1 + �1 − a2

a
� − �1 − a2. �18�

Including the prefactor we have finally

�E0 =
24d
��

N3/2 �1 − a2�5/4a2N

�1 + �1 − a2�2N
exp��2SEN + 1��1 − a2� .

�19�

Experimentally this level splitting can be measured by
means of the resonance measurement developed by Awscha-
lom �25�. Tunneling between two degenerate orientations of
magnetization leads to the splitting of the “nontunneling”
ground state energy level into two levels separated by �E0.
Correspondingly a very weak ac field of frequency �E0 /�
will induce transitions between the two levels, which should
result in the resonant absorption of the energy of the field.
The atoms in the condensate are utterly identical and we do
not have the problem of distribution of particle sizes and
shapes. The level splitting �19� is expressed in units of c2�. It
is easily shown that for the sodium condensate in Ref. �23�
the dipole-dipole interaction, i.e., the anisotropic energy in
our model, is estimated as cd�=1.69�105 Hz or 11.5 �K, a
quantity much smaller than the anisotropy energy of molecu-
lar magnets Mn12Ac or Fe8 �26�. The level splitting can be
greatly enhanced by a smaller number of atoms in the con-
densate and also by a stronger dipolar-dipolar interaction.

Taking, as an example, sodium atoms �N=38� under an ex-
ternal field of a=0.6, we have �E0�=1.14�102 Hz. For the
condensate of 52Cr, the anisotropic energy is enhanced
to cd�=2.44�106 Hz or 166 �K. For N=39, we have
�E0�=3.15�102 Hz. The level splitting remains in the same
magnitude order because it depends very sensitively on the
total number of atoms. These data are easily accessible in the
present ultracold atom experiments.

VI. SUMMARY

Inspired by the macroscopic quantum tunneling in the
magnetic system, we have investigated the macroscopic
quantum tunneling in the dipolar spinor condensates at zero
temperature and obtained some interesting results by analyz-
ing different phase areas with applied external fields. We
found that the ground state energy and the effective magnetic
moment oscillate with the external magnetic field in region A
under a longitudinal field and the oscillating period depends
on the strength of the dipolar interaction as �B=6cd� /g�B.
This model provides a condensed media realization of the �
vacuum in quantum field theory. The model in region B with
a transverse field provides an example where quantum tun-
neling of magnetization occurs between two local minima.
We estimated the level splitting to be at the reach of current
ultracold atom experiments.
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