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The time-dependent configuration interaction singles �TDCIS� method—an ab initio electronic-structure
technique with predictive character—is reformulated in terms of an effective one-electron theory with coupled
channels. In this form, the TDCIS equations of motion may be evaluated using standard wave-packet propa-
gation techniques in real space. The time-dependent orbital formulation of TDCIS has computational and
conceptual advantages for studying strong-field phenomena in many-electron systems. A simplified version of
this theory, referred to as the determinantal single-active-electron �d-SAE� method, is derived. TDCIS and
d-SAE are tested by their application to a one-dimensional two-electron model in a strong laser field. The
numerically exact time-dependent dipole moment of the interacting system is found to be very well reproduced
with TDCIS. The d-SAE method is less accurate, but still provides superior performance in comparison to the
standard single-active-electron approach.
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I. INTRODUCTION

At optical wavelengths, typical molecules and many at-
oms cannot be electronically excited by the absorption of a
single photon. When the optical radiation field is made suf-
ficiently intense, however, multiphoton absorption can take
place and there is an observable electronic response. Among
the interesting phenomena associated with the optical strong-
field excitation of atoms and molecules is the generation of
high-order harmonics �HHG� of the driving laser frequency
�1–3�. The high-order harmonics may serve as a convenient
source of coherent XUV and soft x-ray radiation �4–8�. HHG
technology forms the basis for the production of attosecond
pulses �9,10�. HHG can be utilized to study the properties of
atoms and molecules in an ultrafast manner �11–15�. The last
application, in particular, which focuses somewhat less on
the optical physics than on the atomic and molecular physics
underlying HHG, requires the support by a reliable and prac-
tically feasible electronic structure theory to unlock the full
potential of the HHG approach. The interpretation of experi-
mental data only in terms of the three-step model �16–18�
can be problematic �19–22� and seems to impose an unnec-
essary limitation.

Clearly, the most accurate way to describe the physics of
an atom or molecule interacting with a strong laser pulse is
to solve the exact time-dependent Schrödinger equation for
the system. The problem is that in the many-electron case,
this is not practically feasible. The usual strategy adopted at
this point is to recall one key concept of the three-step
model: the assumption that there is only a single active elec-
tron contributing to the HHG process. The standard single-
active-electron �s-SAE� approach consists in the solution of
an effective one-particle Schrödinger equation �23–29�

i
�

�t
��x,t� = �−

1

2
�2 + VSAE�x� − E�t�z���x,t� �1�

for the one-particle orbital ��x , t�. �Atomic units are used
throughout.� The single electron is assumed to move in a

suitably chosen potential VSAE�x�. �Potentials commonly em-
ployed are local and time-independent.� The system is ex-
posed to a linearly polarized laser field of strength E�t� �po-
larization along the z axis�. Within the s-SAE approach, the
expectation value of, for example, the electric-dipole opera-
tor along the z axis is approximated by

�z� = ��,t	z	�,t� . �2�

While s-SAE is attractive due to its simplicity, it lacks any
formal justification. It cannot be derived from first principles.
More rigorous effective one-electron approaches to the
strong-field problem are time-dependent Hartree-Fock
�TDHF� �30,31� and time-dependent density-functional
theory �TDDFT� in the Kohn-Sham formulation �32,33�.
However, there are well-known problems with TDHF
�34–36�; practical TDDFT calculations are affected by simi-
lar limitations �37,38�. More reliable, but computationally
much more challenging than an effective one-electron
method is the recently developed multiconfiguration time-
dependent Hartree-Fock method �39,40�.

Less explored, in the context of strong-field physics, is the
method of configuration interaction �CI� �41�. Computation-
ally and conceptually attractive is the CI singles �CIS� ap-
proach �42,43�, which is variational, size-consistent, and ap-
plicable to large molecules. Its time-dependent version,
TDCIS, has recently been applied to inelastic electron scat-
tering within a one-dimensional jellium model �44� and to
the laser-induced excitation of a polyatomic molecule �45�.
In the latter application, the laser intensity did not exceed
1012 W/cm2, so that strong-field ionization could be ne-
glected. References �44,45� adopt the following strategy. In a
first step, eigenstates of the many-body system are calculated
using stationary CIS. The time-dependent many-body wave
function is represented in this basis, and the equation of mo-
tion satisfied by the vector of CIS expansion coefficients is
solved.
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One of the purposes of this paper is to show that TDCIS
can be written as an effective one-electron theory with
coupled channels. We present in Sec. II A a time-dependent
orbital formulation of TDCIS, which renders TDCIS calcu-
lations amenable to wave-packet propagation techniques in
real space. For instance, there is no need to calculate the
virtual orbitals of the chosen one-particle model. There is
also no need to construct and diagonalize the CIS matrix. A
second purpose is to develop a simple scheme to improve on
the s-SAE equations. This is discussed in Sec. II B. In Sec.
III, we present a numerical application to a one-dimensional
two-electron system in a strong laser field. �In the calcula-
tions, the Keldysh parameter is about one.� This allows us to
assess the quality of the effective one-electron techniques
discussed in Secs. II A and II B. Conclusions are drawn in
Sec. IV.

II. DERIVATION OF EFFECTIVE ONE-ELECTRON
APPROACHES FROM TDCIS

The following derivation focuses on atoms or molecules
with a closed-shell ground state. �The vast majority of stable
molecules fall into this category.� Let 	�p�� stand for the
eigenstates �spin orbitals� of the selected one-particle Hamil-

tonian Ĥ0 �p is the spatial index, � is the spin label�. In the
language of second quantization �46,47�, the noninteracting
ground state of an N-electron closed-shell system may be
written as

	�0� = 

i=1

N/2

ĉi−
† ĉi+

† 	0� , �3�

where 	0� is the vacuum state and ĉp�
† creates an electron in

spin orbital 	�p��, i.e., ĉp�
† 	0�= 	�p��. The one-particle Hamil-

tonian in the absence of the laser field reads

Ĥ0 = �
p

�p�
�

ĉp�
† ĉp�, �4�

such that

Ĥ0	�p�� = �p	�p�� . �5�

The �p are the orbital energies.
Using the spin orbitals 	�p��, a set of N-electron determi-

nants can be formed that may serve as a basis to represent the
exact eigenstates �and, therefore, arbitrary wave packets� of
the interacting N-electron system. Determining the exact
Hamiltonian in this basis and diagonalizing the resulting ma-
trix is known as the method of CI �41�. A systematic way to
construct the basis states is to start with 	�0� and then re-
move one electron from an occupied orbital in 	�0� and re-
place it with an electron in an orbital that is unoccupied in
the noninteracting ground state. In this way, the class of
singly-excited �or particle-hole� configurations is obtained.
Adding all higher �double, triple, etc.� excitation classes al-
lows one to generate a complete basis for the N-electron
problem, provided the orbital basis is complete. While this
procedure is formally rigorous, it is in general not practical:
The order of CI matrices increases rapidly with the number
of excitation classes included.

In the following, we restrict our analysis to 	�0� and its
single excitations �CIS�. We will exploit that at the CIS level,

if and only if Ĥ0 is the Fock operator associated with the
Hartree-Fock ground state of the N-electron system, the ex-
act, laser-free Hamiltonian does not couple 	�0� to any of the
single excitations �Brillouin theorem� �41�. Within CIS, the
Hartree-Fock ground state remains stationary in the absence

of an external perturbation. Choosing Ĥ0 as the N-electron
Fock operator has practical and conceptual advantages. First,
all equations derived from the CIS matrix elements will be as
compact as possible. Second, excitations out of occupied or-
bitals occur only as a consequence of the interaction with a
laser pulse, not due to electron-electron interactions. If an-

other single-particle model �i.e., another Ĥ0� were selected,
the CIS ground state would have particle-hole components.
The laser field could couple these directly to doubly excited
configurations.

Let us now consider the behavior of the N-electron system
under the influence of a linearly polarized laser field. Ne-
glecting laser magnetic field effects and relativistic effects
such as spin-orbit coupling, the total spin �S=0� is a con-
served quantity. Thus, in the framework of TDCIS, the
many-body wave packet is given by

	�,t� = �0�t�	�0� + �
i

�
a

�i
a�t�	�i

a� , �6�

where

	�i
a� =

1
�2

ĉa+
† ĉi+ + ĉa−

† ĉi−�	�0� . �7�

Here and in the following, indices i , j ,k , l , . . . are used for
spatial orbitals that are doubly occupied in 	�0�. Unoccupied
�virtual� orbitals are symbolized by indices a ,b ,c ,d , . . .,
whereas for general orbitals �occupied or unoccupied� indi-
ces p ,q ,r ,s , . . . are employed. In view of the discussion
above, the expansion coefficients �0�t� and �i

a�t� may be
chosen to satisfy the initial conditions �before the laser pulse�

�0�t → − 	� = 1, �8�

�i
a�t → − 	� = 0. �9�

Based on the TDCIS ansatz for the time-dependent wave
function �Eq. �6��, different hierarchies of effective one-
electron approaches can be derived.

A. Orbital formulation of TDCIS: Exact Hamiltonian

In the following, we reformulate TDCIS in terms of a set
of coupled equations for time-dependent orbitals �single-

particle wave functions�. The one-body Hamiltonian Ĥ0 de-
fining the orbitals used in the TDCIS expansion is fixed as
the Fock operator of the Hartree-Fock ground state. In other
words, the TDCIS expansion in Eq. �6� is based on the oc-
cupied and virtual Hartree-Fock ground-state orbitals.

Let the N-electron system be subject to a laser field �field
strength E�t�� linearly polarized along the z axis. Within the
electric-dipole approximation, the time-dependent many-
body Hamiltonian can be written as
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Ĥ�t� = Ĥ0 + Ĥ1 − E0
�HF� − E�t�ẑ , �10�

where

Ĥ1 = V̂C − V̂�HF�, �11�

V̂C =
1

2 �
p�pq�qr�rs�s

vp�pq�qr�rs�s
ĉp�p

† ĉq�q

† ĉs�s
ĉr�r

�12�

is the Coulomb two-body operator, and

V̂�HF� = �
p�pq�q

��
i�i

vp�p,i�i�q�q,i�i��ĉp�p

† ĉq�q
�13�

represents the interaction with the Hartree-Fock mean-field
�vp�p,q�q�r�r,s�s�

=vp�pq�qr�rs�s
−vp�pq�qs�sr�r

�. Note that

vp�pq�qr�rs�s
= vpqrs
�p�r


�q�s
. �14�

In this expression, and in the remainder of the paper, all
electron-electron interaction matrix elements

vpqrs =� � d3x1d3x2�p
*�x1��q

*�x2�r12
−1�r�x1��s�x2� �15�

refer to spatial orbitals.
In Eq. �10� a constant energy shift has been introduced to

render subsequent equations more compact. The energy shift
is chosen as the Hartree-Fock ground-state energy

E0
�HF� = 2�

i

�i + ��0	Ĥ1	�0� , �16�

where

��0	Ĥ1	�0� = − �
ij

2vijij − vij ji� . �17�

The remaining matrix elements of Ĥ1, which within CIS
describe electron-correlation effects, are determined using
the Slater-Condon rules �41�

��0	Ĥ1	�i
a� = 0 �Brillouin theorem� , �18�

��i
a	Ĥ1	�i�

a�� = 2vai�ia� − vai�a�i + 
ii�
aa���0	Ĥ1	�0� .

�19�

The dipole operator, shown here in the length form, is a
one-body operator,

ẑ = �
pq

zpq�
�

ĉp�
† ĉq�, �20�

where the dipole matrix elements in terms of spatial orbitals
are defined as

zpq =� d3x�p
*�x�z�q�x� . �21�

The matrix elements of ẑ with respect to the many-electron
basis vectors employed to expand the wave packet are

��0	ẑ	�0� = 2�
i

zii, �22�

��0	ẑ	�i
a� = �2zia, �23�

��i
a	ẑ	�i�

a�� = 
ii�zaa� − 
aa�zi�i + 
ii�
aa�2�
j

zjj . �24�

The diagonal dipole terms zii and zaa vanish for atomic sys-
tems and are omitted in the following �i.e., zii=0 and zaa
=0 throughout�.

Inserting the ansatz �6� into the time-dependent
Schrödinger equation,

i
�

�t
	�,t� = Ĥ�t�	�,t� , �25�

and projecting the resulting expression onto 	�0� and 	�i
a�,

respectively, the equations of motion for the expansion coef-
ficients �0 and �i

a can be derived;

i�̇0 = − �2E�t��
i

�
a

�i
azia, �26�

i�̇i
a = ��a − �i��i

a + �
i�

�
a�

�i�
a��2vai�ia� − vai�a�i� − E�t�

���2�0zai + �
a�

�i
a�zaa� − �

i�

�i�
a zi�i� . �27�

As is generally the case when the Hilbert space is truncated,
the TDCIS equations are, strictly speaking, not gauge invari-
ant. Transforming the Schrödinger equation in the CIS sub-
space from length gauge to velocity gauge would lead to
couplings to higher-excited configurations. Solving Eqs. �26�
and �27� in the velocity gauge would therefore give slightly
different results.

We note that the direct Coulomb matrix elements vai�a�i
and the exchange matrix elements vai�ia� can be written as

vai�a�i¬��a	Ĵi�i	�a�� , �28�

vai�ia�¬��a	K̂i�i	�a�� , �29�

where Ĵi�i and K̂i�i are, respectively, generalized Coulomb
and exchange operators associated with the orbitals 	�i� and
	�i��. The equations of motion �26� and �27� may now be
recast in terms of a coupled set of effective one-particle
Schrödinger equations. For this purpose, we introduce a
time-dependent orbital that collects all the single excitations
originating from the occupied orbital 	�i�,

	�i,t� =
1
�2

�
a

�i
a�t�	�a� . �30�

The orbitals 	�i , t� satisfy the initial condition �cf. Eq. �9��

	�i,t → − 	� = 0 �31�

and are, for all t, orthogonal to all orbitals occupied in the
Hartree-Fock ground state. �The factor of 1 /�2 in Eq. �30� is
purely cosmetic.� Using Eq. �27� and the definition
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P̂ = �
a

	�a���a	 = I − �
i

	�i���i	 , �32�

the equation of motion satisfied by 	�i , t� reads

i
�

�t
	�i� = �Ĥ0 − �i�	�i� + �

i�

P̂2K̂i�i − Ĵi�i�	�i�� − E�t�P̂ẑ�0	�i�

+ 	�i�� + E�t��
i�

zi�i	�i�� . �33�

This establishes a system of linear, coupled one-particle
equations for the orbitals 	�i�. These equations describe the
time evolution of the 	�i�, which become populated �i.e.,
their norm increases� over time under the action of the laser
field. Populating 	�i� corresponds to exciting an electron out
of 	�i�.

We would like to point out that TDCIS properly accounts
for Coulomb-mediated couplings among the particle-hole
configurations 	�i

a�. In other words, whereas the long-range

potential associated with the Fock operator Ĥ0 is that of a
neutral system �41� �assuming that the N-electron system is

neutral�, the operators 2K̂i�i− Ĵi�i in Eq. �33� ensure that the
excited electron experiences a Coulomb attraction to the re-
sidual cation. Exploiting the orthogonality among the orbit-
als 	�i�, it may be shown that for large distances of the elec-
tron from the cation

�
i�

�x	P̂2K̂i�i − Ĵi�i�	�i�� = −
1

	x	
�i�x,t� + O� 1

	x	2� . �34�

Also note that in the formalism adopted here, the ioniza-
tion potential Ii �corresponding to the formation of a hole in
orbital 	�i�� is given by −�i �Koopmans’ theorem �48��. For
outer-valence shells, Koopmans’ theorem is typically accu-
rate to within the energy of an optical photon �49,50�. For
strong-field applications, this may not be sufficiently accu-
rate. Since −�i enters Eq. �33� as a parameter, it may simply
be replaced, if necessary, with the experimentally determined
Ii.

With the definition given in Eq. �30�, the equation of mo-
tion for the ground-state amplitude �0 �Eq. �26�� simplifies to

i�̇0 = − 2E�t��
i

��i	ẑ	�i,t� . �35�

By calculating �0 and the 	�i�’s from Eqs. �33� and �35�, all
information is obtained to determine, for example, the TD-
CIS expectation value of an arbitrary spin-independent one-

body operator D̂=�pqdpq��cp�
† cq�;

��,t	D̂	�,t� = 2	�0	2�
i

dii + 2�
i

��i,t	d̂	�i,t�

+ 4�
i

dii�
j

�� j,t	� j,t� − 2�
ii�

dii���i�,t	�i,t�

+ 4 Re��0�
i

��i,t	d̂	�i�� . �36�

Another quantity that is easily calculated within this
framework is the reduced density matrix of the residual ion

produced in the excitation �ionization� process. Let

̂�t� = 	�,t���,t	 �37�

denote the density operator of the N-electron system. The
matrix elements of the reduced density matrix of the residual
ion may then be defined as �51�

ii�
�ion��t� ª �

a

��i
a	̂�t�	�i�

a � . �38�

Hence, using Eqs. �6� and �37�,

ii�
�ion��t� = 2��i�,t	�i,t� . �39�

This can be used to explore whether—and to which degree—
the strong-field ionization process establishes coherences
among the one-hole ionization channels. With the help of
Eqs. �30� and �39�, the conservation of the norm of 	� , t�
�Eq. �6�� can be expressed as

	�0�t�	2 + �
i

ii
�ion��t� = 1. �40�

Thus, ii
�ion��t� may be interpreted as the probability of form-

ing a hole in orbital 	�i�.
The autocorrelation function C�t� of the TDCIS many-

body wave packet 	� , t� is another useful quantity that can
be calculated from �0 and the 	�i�’s;

C�t� = ��,t0	�,t� = �0
*�t0��0�t� + 2�

i

��i,t0	�i,t� . �41�

After the laser pulse, the many-body Hamiltonian Ĥ�t�= Ĥ
�Eq. �10�� is stationary. Therefore, assuming that the laser
electric field E�t� vanishes for t� t0, the spectral composition
�including weights� of 	� , t� with respect to the eigenstates

of Ĥ can be extracted from C�t� �52,53�. For this purpose,
one may utilize the filter diagonalization method �54,55�,
which is particularly powerful if, for practical reasons, C�t�
can be calculated for only a short time segment after t0. In
order to determine the photoelectron spectrum, Eq. �41� sug-
gests one spectrally analyze the individual channel autocor-
relation functions, 2��i , t0 	�i , t�, and then subtract from each
channel spectrum the corresponding channel energy, −�i.
�Note that in view of Eq. �35�, �0�t�=�0�t0�.� This strategy
gives the photoelectron spectrum associated with each indi-
vidual channel, under the assumption that the channel cou-
plings in the wave-packet propagation are weak. As Eq. �34�
demonstrates, channel couplings drop at least as fast as
1 / 	x	2, where 	x	 is the distance of the photoelectron from the
parent ion. The total photoelectron spectrum is obtained as
the sum over the channel spectra.

Our analysis shows that TDCIS can be reformulated as a
time-dependent orbital approach. Neither the explicit calcu-
lation of the virtual HF orbitals 	�a� �or matrix elements with
respect to them� nor the calculation of the expansion coeffi-
cients �i

a�t� is necessary to solve Eqs. �33� and �35�. This is
an advantage over the traditional formulation of TDCIS in
the case of laser-driven systems, where ionization may play a
key role. In processes like HHG, an accurate treatment of the
continuum part of the wave function is crucial, i.e., a sizable
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number of continuum orbitals 	�a� have to be explicitly cal-
culated. This may render the conventional implementation of
TDCIS inefficient. The time-dependent orbital approach cir-
cumvents this problem by potentially allowing one to em-
ploy the efficient grid methods and wave-packet propagation
techniques that have been developed for quantum-dynamical
problems �see, for example, Ref. �56��. Maybe more impor-
tant is the fact that an effective orbital picture is ideally
suited for direct visualization of the wave-packet dynamics.
Finally, the computational effort to solve Eq. �33� together
with Eq. �35� is comparable to a standard TDHF calculation
with several active orbitals. However, as we will see in Sec.
III, TDCIS may generally be expected to provide a superior
description of electronic many-body physics in a laser field.

B. Approximate one-body Hamiltonian

Even if a simple one-body Hamiltonian is assumed, the
TDCIS ansatz �6� predicts a dynamical behavior that differs
from that obtained within the s-SAE approach. This is dem-
onstrated in the following. In particular, we formulate an
improved version of SAE theory that takes electron spin into
account.

We assume that the dynamics of the N-electron system is
governed by an appropriate time-dependent one-body Hamil-
tonian

Ĥ�t� = Ĥ0 − 2�
i

�i − E�t�ẑ . �42�

The one-body operator Ĥ0 describes the motion of indepen-
dent electrons in a �mean-field� potential VSAE�x� �cf. Eq.
�1��. The time evolution of the coefficients in the TDCIS
expansion of Eq. �6� is then given by Eq. �26� and

i�̇i
a = ��a − �i��i

a − E�t���2�0zai + �
a�

�i
a�zaa� − �

i�

�i�
a zi�i� .

�43�

As in the case of the exact time-dependent many-body
Hamiltonian, it is possible to derive a set of coupled equa-
tions of motion for the time-dependent orbitals 	�i , t� defined
in Eq. �30�;

i
�

�t
	�i,t� = �Ĥ0 − �i�	�i,t� − E�t�P̂ẑ�0	�i� + 	�i,t��

+ E�t��
i�

zi�i	�i�,t� . �44�

Equation �35� remains unchanged.
In analogy to the s-SAE approach, we now consider the

special case of a single active orbital �SAO�, which we will
refer to as 	�SAO�. �Similarly, the orbital describing the exci-
tation out of 	�SAO� is symbolized by 	�SAO, t�.� Typically, for
strong-field applications, 	�SAO� is chosen as the energeti-
cally highest occupied orbital. In case of degeneracies �i.e., if
there is not a single highest occupied orbital�, additional cri-
teria have to be applied �see, for example, Ref. �57��. In the
SAO approximation, single excitations out of 	�SAO� are al-
lowed, but all other orbitals 	�i� remain doubly occupied

throughout. This makes it possible to combine the informa-
tion contained in �0�t� �Eq. �35�� and 	�SAO, t� �Eq. �44�� into
a single orbital

	�,t� ª �0�t�	�SAO� + 	�SAO,t� . �45�

Choosing the energy �SAO of 	�SAO� as the origin of the
one-electron energy scale, the effective one-electron
Schrödinger equation satisfied by 	� , t� is found to be

i
�

�t
	�,t� = � p̂2

2
+ V̂SAE�	�,t� − E�t�P̂ + 2	�SAO���SAO	�ẑ	�,t� .

�46�

Here, p̂ is the electron momentum operator. The projection

operator P̂ is defined in Eq. �32�.
Even when it is recognized within the s-SAE approach

that the effective one-electron wave function must remain
orthogonal to all occupied orbitals except 	�SAO�, the factor
of 2 �instead of 1� multiplying the projection operator
	�SAO���SAO	 in Eq. �46� cannot be reproduced. The origin of
this factor can be traced back to the determinantal spin-
singlet ansatz made for the many-electron wave packet in
Eqs. �6� and �7�. We therefore refer to Eq. �46� as the d-SAE
approximation. Note that the time evolution of the effective
one-electron wave function 	� , t� is nonunitary. The norm of
the many-electron wave function 	� , t�, however, is con-
served.

Another difference of d-SAE from s-SAE is revealed
when the expectation value, with respect to 	� , t�, of a spin-

independent one-body operator D̂ �cf. Eq. �36�� is expressed
in terms of the orbital 	� , t�;

��,t	D̂	�,t� = 2��,t	d̂	�,t� . �47�

The factor of 2 in this equation can also not be understood if

it is assumed that �� , t	D̂	� , t� can be obtained from the
dynamics of a single electron moving in an effective poten-
tial �cf. Eq. �2��.

Finally, we would like to emphasize that in contrast to the
TDCIS method developed in Sec. II A, d-SAE is not an ab
initio method. The d-SAE method, just like the s-SAE
method, depends on the choice made for the potential
VSAE�x�.

III. TWO-ELECTRON MODEL SYSTEM

To test the accuracy of the TDCIS and d-SAE approaches
derived in Secs. II A and II B, we introduce a one-
dimensional �1D� two-electron model system for helium in-
teracting with a laser field. As a figure of merit, we choose
the time-dependent dipole moment of the system. The low-
ered dimensionality of the model allows one to easily solve
the time-dependent two-electron Schrödinger equation

i
�

�t
��x1,x2,t� = Ĥ�t���x1,x2,t� �48�

numerically and, thus, to establish a benchmark for compari-
son. Related systems served already in the past to assess the
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quality of various self-consistent-field approaches
�38,39,58–62�.

The two-particle Hamiltonian of the model system �in first
quantization� is given by

Ĥ�t� = �
i=1,2

� pi
2

2
−

2

1 + 	xi	
− E�t�xi� +

1

1 + 	x1 − x2	
. �49�

The Coulomb interaction is modeled by a singularity-free
cusp potential �63�, which allows the electrons to bypass
each other. The laser electric field E�t� is chosen as a double-
period sine wave of driving frequency �;

E�t� = E0 sin��t���4� − �t�, t � 0. �50�

The system starts from the ground state at t=0.
The Schrödinger equation �48� is discretized on an equi-

distant grid of grid spacing �x=0.147. The simulation box
size was chosen to be 	xmax	=180, which gives converged
results for the considered laser parameters. An absorbing
boundary was introduced at xcut= ±150 a.u. to avoid spurious
reflections. The Schrödinger equation was propagated by
means of the fourth order Runge-Kutta algorithm with a
fixed time step of �t=0.0083. Spatial integrals were solved
using the trapezoidal rule.

The ground state of the two-particle Hamiltonian of Eq.
�49� �E�t�=0� was calculated by propagation in imaginary
time; the ground-state energy of the 1D helium model was
found to be E0

He=−1.7181. The ground-state energy of singly

ionized 1D helium is E0
He+

=−1.1402 a.u. Hence, the ioniza-

tion energy I=E0
He+

−E0
He is 0.5779. The amplitude of the

laser field was chosen as E0=0.07 a.u. at a driving frequency
of �=0.087 a.u. �i.e., for single ionization of the 1D helium
model at least seven photons are required�.

For the s-SAE �Eq. �1�� and d-SAE �Eq. �46�� approaches,
a one-particle potential VSAE�x� must be selected. Figure 1
shows a comparison between the numerically exact dipole

moment of the 1D helium model and d-SAE data obtained
with three different one-particle potentials.

The first effective one-particle potential Vmod�x� was cho-
sen as an interpolation between the unscreened core potential
−2/ �1+ 	x	� and the long-range −1/ �1+ 	x	� behavior of the
electron-He+ interaction potential;

Vmod�x� = −
1

1 + 	x	
�1 + e−a	x	� . �51�

The parameter a was tuned so that the negative ground-state
orbital energy in this potential equals the ionization energy I
of the fully correlated 1D helium system. The second one-
particle potential VHF�x� is the converged Hartree-Fock po-
tential for the Hartree-Fock ground-state orbital 	�0

�HF��,

VHF�x� = −
2

1 + 	x	
+� 	�0

�HF��x��	2

1 + 	x − x�	
dx�. �52�

The Hartree-Fock ground-state orbital energy is �0
�HF�

=−0.5756 a.u. The third one-particle potential is the effective
Kohn-Sham potential VKS�x� producing the exact ground-
state density n0�x� of the fully interacting two-electron sys-
tem, which can be easily constructed from the exact density
�62,64� in the two-electron case considered;

VKS�x� =
1

4

n0�

n0
−

1

8
�n0�

n0
�2

+ �0
�KS�. �53�

The effective Kohn-Sham ground-state orbital energy �0
�KS�

may be chosen such that limx→±	 VKS�x�=0.
All potentials asymptotically approach −1/ �1+ 	x	�. As il-

lustrated in Fig. 1, the Hartree-Fock potential VHF gives the
best agreement with the exact result. The largest discrepancy
is observed with the Kohn-Sham potential VKS, where the
dipole moment is noticeably out of phase with the exact
solution.

In Fig. 2, we show a comparison of s-SAE and d-SAE,
based on VHF. d-SAE slightly overestimates the magnitude of
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FIG. 1. �Color online� Comparison of the dipole moment of the
exact 1D helium model �solid line� and the dipole moment calcu-
lated using the d-SAE approximation �Eqs. �46� and �47��. The
three different one-electron potentials Vmod �dashed line�, VHF

�dashed-dotted line�, and VKS �dotted line� employed in the d-SAE
calculation are explained in the text.
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FIG. 2. �Color online� Time evolution of the dipole moment of
the 1D helium model. Comparison of s-SAE �Eqs. �1� and �2�� and
d-SAE �Eqs. �46� and �47��. The one-particle potential used is VHF

�Eq. �52��.
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the dipole moment, whereas s-SAE is seen to underestimate
the magnitude of the dipole moment by a greater amount.
This result suggests that the simple d-SAE approach, which
requires essentially the same computational effort as s-SAE,
is a cost-effective way to correct at least some of the short-
comings of s-SAE.

Even higher accuracy is obtained with the TDCIS orbital
equations �Eqs. �33�, �35�, and �36��. As a matter of fact, for
the model system studied here, the TDCIS dipole moment is
almost indistinguishable from the exact one. This is shown in
Fig. 3. The small differences between the exact dipole mo-
ment and the TDCIS result are due to doubly-excited con-
figurations, which are not included in TDCIS �see Sec. II�.
Note that the TDCIS dipole moment is a pure ab initio result:
In a first step, a restricted Hartree-Fock calculation was per-
formed for the laser-unperturbed atomic ground state. The
calculated Hartree-Fock ground-state orbital energy �0

�HF�

was then inserted into Eq. �33�; the Hartree-Fock ground-

state orbital 	�0
�HF�� was used to construct the operators Ĥ0,

Ĵ00, and K̂00 �cf. Eq. �33��.
Also plotted in Fig. 3 is the result of a restricted TDHF

calculation. In the case of two electrons in a spin-singlet
state, the equation of motion for the doubly occupied TDHF
orbital 	�TDHF, t� is given by

i
�

�t
�TDHF�x,t� = �−

1

2

�2

�x2 −
2

1 + 	x	
+� 	�TDHF�x�,t�	2

1 + 	x − x�	
dx�

− E�t�x��TDHF�x,t� �54�

with the initial condition 	�TDHF, t=0�= 	�0
�HF��. �For the spin-

singlet system starting from the ground state, the TDHF
equations are equivalent to the time-dependent Kohn-Sham
equations in the self-interaction corrected version of the
exchange-only adiabatic local density approximation �65�.�

As can be seen in Fig. 3, the TDHF approximation underes-
timates the magnitude of the dipole moment. The accuracy is
comparable to that achieved with the simple d-SAE method.

We would like to mention that simply replacing
�TDHF�x� , t� in the electron-electron interaction term of Eq.
�54� with �0

�HF��x�� �35� is equivalent to s-SAE using VHF,
except for the fact that, in contrast to Eq. �2�, the dipole
moment is given by �x�=2��TDHF, t	x	�TDHF, t� �cf. Eq. �47��.
The magnitude of the resulting dipole moment �not shown�
exceeds the magnitude of the d-SAE dipole moment notice-
ably. Also note that linearizing Eq. �54� by assuming that
	�TDHF, t� differs only little from 	�0

�HF��, as suggested in Ref.
�35�, is not equivalent to the TDCIS equations �33� and �35�.

IV. CONCLUSIONS

In this paper, we have suggested configuration-
interaction-based techniques—d-SAE and TDCIS—for treat-
ing the electronic dynamics of an initially closed-shell atom
or molecule in a strong optical laser field. The methods are
applicable to problems where it is sufficient to focus on the
excitation of at most one electron. The production of high-
order harmonics is an example.

The d-SAE method is a single-active-electron approach in
the sense that the associated equation of motion �46� de-
scribes the time evolution of an electron excited from one
selected occupied orbital. It is derived, assuming a one-body
Hamiltonian, from a many-body wave function �Eq. �6�� that
preserves the spin symmetry. Channel couplings are not in-
cluded. TDCIS improves on d-SAE through a systematic
treatment of electron-electron interactions. In general, TD-
CIS involves the propagation of several coupled orbitals 	�i�.
The excited electron described by the TDCIS equations of
motion �33� and �35� has a certain probability, given by the
respective density-matrix element ii

�ion��t� �Eq. �39��, that its
excitation is accompanied by the formation of a hole in the
�initially doubly occupied� orbital 	�i�. Even if the laser field
couples primarily to the most weakly bound orbital, electron-
electron interactions may cause �virtual� excitations from
deeper lying orbitals. The d-SAE method is a much simpler
and less accurate method, but our calculations indicate that it
is clearly preferable over the s-SAE method. In a recent in-
vestigation of the role of many-electron dynamics in HHG
�22�, we employed the d-SAE method.

The success of the TDCIS method in our 1D helium
model calculation is encouraging. Since TDCIS is more ac-
curate than, e.g., TDHF, at essentially the same computa-
tional cost, we believe that the time-dependent orbital formu-
lation of TDCIS could become a useful tool for ab initio
calculations on atoms and molecules exposed to a strong
laser pulse. In particular, if such phenomena as HHG are to
be experimentally exploited to study the electronic structure
of molecules, guidance by reliable ab initio calculations
seems crucial. A practical implementation of TDCIS in the
molecular case in three dimensions might benefit from com-
bining a Gaussian basis set, which is the standard in molecu-
lar quantum chemistry �see, for example, Ref. �66��, with a

0 50 100 150
Time [a.u.]

-1

-0.5

0

0.5

1
D

ip
ol

e 
M

om
en

t [
a.

u.
]

exact
TDCIS
d-SAE VHF
TDHF

FIG. 3. �Color online� Comparison of the dipole moment of the
exact 1D helium model, TDCIS, d-SAE �with VHF�, and TDHF. The
TDCIS dipole moment is almost indistinguishable from the exact
result.
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more flexible grid basis, e.g., a finite-element basis �see, for
example, Ref. �67��. The Gaussian basis set would be used to
represent the 	�i�. It could also be used to represent the 	�i�
in the vicinity of the atomic nuclei. The purpose of the grid
basis would be to describe the dynamics of the 	�i�, primarily
in the region outside the molecule. A similar idea was pro-
posed in Ref. �68� for the treatment of electron-molecule
collisions.
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