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A method to optically control a dark transition, for instance, the coupling between different spin states, is
proposed. The control is achieved by manipulating the direction, amplitude, and duration of dynamic Stark
shifts. Laser-driven spin switches can be prepared by conveniently generalizing different optical techniques,
such as �-pulse schemes and adiabatic passage schemes. The efficiency and robustness of the schemes is
analyzed for both two-level and multilevel systems, implying quantum state selective wave packet transfer
between states of different multiplicity.
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I. INTRODUCTION

In common molecular electronic structure calculations
one uses the Born-Oppenheimer approach, not including the
spin-orbit �SO� coupling or internal conversion terms at
conical intersections in the electronic Hamiltonian. This is
the standard procedure when the initial basis is not fully
adiabatic �1�. The SO couplings and internal conversion
terms appear as nondiagonal terms in the Hamiltonian that
are usually treated as perturbations. The evolution of a quan-
tum system in the presence of the SO couplings can be ana-
lyzed in the same way as under dipole-coupling external ex-
citation, except that it is not possible to directly control the
dynamics. In this paper we show that the control can be
achieved indirectly, by manipulating nonresonant dynamic
Stark shifts, which are second order field effects.

Quantum control by dynamic or dc Stark shifts has been
previously proposed in various contexts. The Stark shifts in-
duced by strong fields have been used for shaping light-
induced molecular potentials, as in laser-induced bond soft-
ening or hardening �2�, selectively driving population to
excited states �3�, changing the molecular structure �4�,
squeezing wave packets �5�, and even influencing the out-
come of photodissociation reactions at conical intersections
�6� or stopping a strong spin-orbit coupling �7�. These studies
analyzed the effects of Stark shifts induced by strong fields
on the molecular potentials, following the dynamics in the
position representation.

The effects of the couplings on the dynamics can be fol-
lowed more naturally in the energy-level representation in
the weak field regime. In this regime, Stark-shift control is at
the core of different chirping techniques both with cw fields
�8� and nanosecond pulses �9�. Additionally, coherent control
techniques have also been applied to maximize the yield of
dissociation reactions with spin-orbit crossings �10�. In this
work we employ the dynamic Stark shift to control the popu-
lation dynamics induced by “uncontrollable” dipole-
forbidden intra �or inter� system couplings. As an illustration,
we apply the method to the spin-orbit transition, but the va-
lidity of the results is more general.

The SO coupling has significant implications in the spec-
troscopy and predissociation of molecules �11,12�, and in the

rate of relaxation mechanisms �13�. More importantly for our
study, it has immediate use in solid or molecular magnetism.
The implementation of efficient and fast optical spin
switches, with potential applications in molecular �or solid or
surface state� memories, for example, would imply a techno-
logical breakthrough in the field of quantum information
�14�. Until now, only a few schemes have been proposed
using strong laser pulses. Most notably, Hübner et al. have
proposed and numerically tested the possibility of inducing
full optical spin switches by ultrashort � pulses �15�, while
Korolkov and Manz have used coherent control techniques
to achieve the same goals �16�.

In this work the target is the preparation of spin switches
by Stark-shift control. The principles of the scheme can be
illustrated in the following simple example. Consider a two-
level system with spin-orbit coupling VSO, and energy differ-
ence or splitting �SO. The spin-orbit coupling can be consid-
ered a weak perturbation as long as �= �VSO/�SO � �1. The
energy of the levels can be manipulated by Stark shift so that
�SO�E�t�� becomes a function of the field. By a proper choice
of the laser field one can reduce the splitting or even shift
both levels into resonance, thus artificially making ��E�t��
�1. Then, as long as the interaction is coherent and the
energy splitting does not suffer from incoherent fast oscilla-
tions, the population can flow from one level to the other.
Controlling the time duration and amplitude of the Stark shift
one can maximize the transition probability. In this work we
propose several schemes to implement efficient population
switches between singlet levels to triplet levels. On the other
hand, the same principles can be applied to attenuate the
spin-orbit perturbation. When ��1, one must choose a field
such that by Stark shift the splitting increases, making
�SO�E�t���VSO and ��E�t���1.

The organization of the paper is the following. In Sec. II
we develop the Hamiltonian with second-order field effects.
In Sec. III we propose two strategies for inducing a spin
switch in a two-level system, which apply the principles of
Rabi flopping and adiabatic passage, respectively. In Sec. IV
we extend the results for wave packet population transfer
using both schemes. Finally, Sec. V is the conclusions.
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II. MOLECULAR MODEL

In this section we derive the Hamiltonian of a quantum
system with uncontrolled molecular couplings under non-
resonant pulse excitation. To be specific, we consider three
electronic states: the excited singlet �S1�, the energetically
close triplet �T1�, and a further excited triplet �T2�. The first
two are coupled via spin-orbit interaction, VSO, while the last
two are coupled via dipole moment, �, using the fields E j�t�.
Although more electronic states can be included in the
model, the previous ones provide a minimal number needed
for controlling the singlet-triplet transition. In general, a
three electronic states model is sufficient to give a good de-
scription of the dynamics for most molecular systems under
moderately weak fields.

In the energy representation, the system wave function
can be expanded as

���t�� = �
j

aj�t��S1, j� + �
j

bj�t��T1, j� + �
j

cj�t�e−i�j
�l�t�T2, j� ,

�1�

where the second quantum number is a collective label for
the nuclear wave function and aj�t�, bj�t�, cj�t� are the prob-
ability amplitudes associated with state j. We can typically
assign j to vibrational or rovibrational quanta of a molecule
�in fact, to any degree of freedom other than spin�. The no-
tation used here is conventional. The only important point to
notice is that the active levels in the quantum system involve
a set of states that can be coupled by Raman processes �those
sharing the first label�, a set of states that can be coupled
directly by dipole moment �all the �T1 , j� with all the �T2 , j�
states� and a set of states that are coupled via a dark or
dipole-forbidden transition �all the �S1 , j� with all the �T1 , j��.
A qualitative picture of the energy states of a possible spin-
switch system for j=1, . . . ,3 is shown in Fig. 1. The phase of
the excited triplets in Eq. �1� is defined by the laser fre-
quency, � j

�l�, not by the level energy, � j
T2. When more than

one laser is used, the chosen phase corresponds to the fre-
quency tuned to that transition �or closer to resonance, since
the excitation will be nonresonant�. Expanding the field as a
sum of laser pulses of frequency �n

�l� and envelope En�t�, the
time-dependent Schrödinger equation �TDSE� for the system
is �	=1�

iȧj = � j
S1aj − �

k

Vjkbk, �2�

iḃj = � j
T1bj − �

k

Vkjak − �
k

� jk��
n

En�t�cos��n
�l�t�	e−i�k

�l�tck,

�3�

iċj = �� j
T2 − � j

�l��cj − �
k

� jk��
n

En�t�cos��n
�l�t�	ei�j

�l�tbk,

�4�

where Vjk= 
S1 , j�VSO�T1 ,k�, which can always be chosen
real. We have neglected the SO coupling between the �T2 , j�
states and �S1 , j� states, which are very off resonant �see Fig.
1�. The rotating wave approximation is now applied by mak-
ing

�
n

En�t�cos��n
�l�t�e±i�j

�l�t �
1

2�
n

En�t�e±i
�jn
�l�t, �5�

where 
� jn
�l�=� j

�l�−�n
�l� �the phase difference is obviously

zero for n= j�. If 
 j�t��� j
T2 −� j

�l��t��� jk�nEn /2 for all
�T2 , j� to �T1 ,k� transitions, the nonresonant interaction can
be treated by adiabatic elimination of the probability ampli-
tudes cj. Since the laser frequency can be chirped, in general

k�t� is time dependent and the criteria for adiabatic elimi-
nation must hold for all the pulse bandwidth. Assuming that
this is the case, and making ċj �0, one obtains

cj � �
k

� jk

2
 j�t�
�

n

En�t�ei
�jn
�l�t. �6�

In Eq. �6� we do not neglect the phase oscillations due to the
detuning of the different carrier frequencies. This is impor-
tant only if 
� j,j±1
� jn

�l��
 j�t�; the opposite case
�
� j,j±1�
 j�t�� implies an expression similar to Eq. �6�
where a single pulse, E j�t�, replaces the sum over all the
pulses.

Inserting Eq. �6� into Eq. �3� we find

iḃj = � j
T1bj − �

k

Vkjak − �
k,l

� jk�kl

4
k�t�
�
n,m

En�t�Em�t�ei�
�jn
�l�+
�mj

�l� �t

�7�

from where, separating the diagonal �m=n� from the cross
interference terms, we finally obtain

iḃj = � j
T1bj − �

k

Vkjak − �
k,l

� jk�kl

4
k�t���n

En
2�t�

+ 2 �
n�m

En�t�Em�t�cos�
�nm
�l� t�	bl. �8�

It is interesting to observe that in Eq. �8� all pulses act on all
transitions, which restricts some possible quantum interfer-
ence effects. This is a consequence of assuming 
� j,j±1
�
 j�t�. To further simplify the equations we use an average
detuning, that is, we consider the average effect of the ex-
cited states. Thus we define the two-photon effective Rabi
frequency

|T|T1,j>,j>|S|S1,j>,j>

|T|T2,j>,j>

δj-1,j-1j-1,j-1

∆j(t)(t)

εj(t)(t)

|T|T1,j+1>,j+1>

|S|S1,j-1>,j-1> Vj-1,j-1j-1,j-1

Vj+1,j+1j+1,j+1

FIG. 1. �Color online� Simplified sketch of the energy level
scheme of the system used for the spin switch problem.
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� jk�t� =
 jkE2�t�
2
�t�

, �9�

where  jk is related to the polarizability matrix element, 
�t�
is the average detuning and E�t� is the sum of all field am-
plitudes. In this work we use a single pulse or a sequence of
nonoverlapping pulses so that the optical interference term is
zero. Therefore, only one pulse intervenes in all transitions at
each instant of time.

Alternatively, we could consider the opposite limit of

� j,j±1�
 j�t�. Since 
 j�t� is also greater than the laser cou-
plings, the Raman couplings could be neglected. Then Eq.
�9� could still be applied for the diagonal elements, � j j�t�,
where E�t� would be just a single laser, E j�t�, and 
 j�t� �de-
fined for each nonresonant laser transition� would replace 
.
Making these adjustments, the approximate formulas that
will be developed in Secs. III and IV for the pulse schemes
will be valid in both limits. For the numerical results we
shall assume the first case �
� j,j±1�
 j�t��, which involves
more undesired couplings and therefore poses more demand-
ing conditions for the efficiency of the spin switch.

To further simplify the equations we shall also omit all
SO coupling terms except for the nearest states in the singlet
and triplet manifolds �Vjk=0 for j�k�. This assumption can
be easily removed, but it will always be satisfied for all the
energy-level schemes explored in this work, in which the
energy difference between �S1 , j� and �T1 , j� �� j j�, must be
much larger than Vjj. Then the TDSE is

iȧj = � j
S1aj − Vjjbj ,

iḃj = �� j
T1 − � j j�t�/2�bj − �

k�j

� jk�t�bk/2 − Vjjaj , �10�

where the first term in the equation for bj includes the Stark-
shift effect, the second term includes the possible Raman
couplings, and the last term includes the spin-orbit coupling.
For pulse parameters such that � jk�
� jk, one can neglect
the Raman transitions. In the following section we will see
that � j j must be of the order of the energy difference be-
tween the singlet and triplet levels coupled by Vjj, so that the
previous condition will not be always satisfied and, in gen-
eral, we will not neglect the Raman couplings. In this work
the pulses are parametrized as E�t�=E0 sin2��
t /2�1� for the
switch on period t��1; E�t�=E0 during the plateau region
�1� t��1+�2; and E�t�=E0 cos2��
t /2�3� during the switch
off period �2� t��2+�3, where E0 is the peak �or plateau�
field amplitude.

In the following we analyze two particular models. In the
first one we consider population transfer from a single singlet
level �S1 ,1� to a single triplet level �T1 ,1�. We assume that
the pulse parameters can be chosen so that all Raman tran-
sitions can be neglected and only those two levels participate
in the dynamics, which depends on a simple effective two-
level Hamiltonian. In the second model we consider popula-
tion transfer from singlet to triplet superposition states. We
assume all polarizability matrix elements equal to one.

III. SPIN SWITCH IN THE TWO-LEVEL SYSTEM

Following Eq. �10�, the effective Hamiltonian including
the SO coupling of �S ,1� with �T ,1� and the Stark shift in-
duced by a nonresonant field acting on the transition between
the triplet states, has the form

H = � 0 V11

V11 �11 − �11�t�/2
	 , �11�

where �11=�1
T1 −�1

S1. The effective Rabi frequency acts on
the diagonal terms and thus, it can only enhance the coupling
by inducing the energy resonance between �S1 ,1� and �T1 ,1�.
Alternatively, it can also reduce the coupling by moving the
states more out of resonance. In the limit of weak coupling,
�= �V11/�11��1, only the first case requires laser control. In
addition, a second laser could be used on the transition be-
tween the singlet states, so that the Stark-shift effect could be
split between both fields.

There are two simple ways of affecting the singlet-triplet
transition: controlling E�t� and controlling 
�t�, which are
related to the �-pulse scheme and the adiabatic passage
scheme, respectively.

A. �-pulse scheme

In order to have an efficient population transfer between
�S1 ,1� and �T1 ,1�, one must adjust the Stark shift so that both
levels are in resonance. If the resonance is maintained during
the time

� =
�

2�V11�
, �12�

then all the population is transferred to the �T1 ,1� state ac-
cording to the Rabi formula �17�. The resonance, �11=2�11,
can be achieved by applying a constant field of amplitude

E0 = �4�11
/11. �13�

Notice that the spin switch duration is only controlled by the
molecular coupling V11. The pulse must be basically a con-
stant field with fast switch on and switch off.

B. The adiabatic passage scheme

Adiabatic passage transfer is possible if we induce a chirp
in �11�t�. This can be done in two ways, by approximately
linearly increasing or decreasing the amplitude E�t�, or the
detuning 
�t� via the laser frequency. Since frequency chirp-
ing is a widely extended optical technique, we first consider
an adiabatic singlet-triplet crossing induced by pulse chirp-
ing. In Sec. IV C we will present some results of transform-
limited pulses where the pulse amplitude is shaped so that
the effective Rabi frequency changes in time, sweeping the
resonance and inducing the crossing. Other pulse shapes can
also induce the same overall effect.

Using a linear chirp, 
=
0+�
t /2 �with temporal chirp
�� we find that

�11 =
11E0

2

2�
0 + �
t/2�
�

11E0
2

2
0
�1 −

�

2
0

t	 .
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In Landau-Zener theory �17� the difference between the
diagonal elements of the Hamiltonian is H22−H11=�
+�
t /2, so that the diabatic energies linearly cross each
other at a certain time. By defining �eff=�11−11E0

2 /4
0 and

�eff = −
11�

4
� E0


0
	2

�14�

we observe that the Hamiltonian in Eq. �11� is of Landau-
Zener type. Thus the adiabatic passage will occur if ��eff�
�V11

2 �17� which requires

��� �
4V11

2 
0
2

�11�E0
2 . �15�

Additionally, we make the effective chirp to sweep across the
resonance at 
t=0, so that �eff�0 and

E0  �4�11
0/11. �16�

In this case the condition for the laser amplitude is not strict.
Finally, the frequency spanned by the effective chirp must be
larger than V11, so that the time duration of the chirped pulse
� must be approximately larger than 2V11/�eff or

� � �2V11

�eff
� = � 8V11
0

2

11�E0
2� . �17�

Inserting Eq. �16� for the field amplitude onto Eqs. �15� and
�17�, we obtain the following “optimal” conditions for the
chirp and time duration of the pulse

���  � 
0

�11
�V11

2 �18�

and

� � �2V11
0

��11
� 

1

��V11�
, �19�

where ��0.5. Finally, in order to guarantee the adiabatic
passage, special care must be taken either at the beginning
�for negative chirp� or at the end �for positive chirp� of the
pulse. Since the effective chirp in Eq. �11� is induced by the
Rabi frequency, the chirp is always parabolic, that is, it
changes sign as the pulse turns on or off, causing a double
crossing with the triplet state. In order to avoid the unwanted
adiabatic crossing the pulse must be either turned on or off
abruptly making the corresponding crossing nonadiabatic.

The advantage of the adiabatic passage scheme over the
�-pulse scheme is that � can be varied over a reasonable
range so that E0, �, and � do not have to satisfy exact control
conditions. This is important for multiple singlet-triplet tran-
sitions. The clear disadvantage of the adiabatic passage
scheme is the need for long pulse durations which in turn
require a long coherence time.

C. Numerical results

The numerical results shown here and in the following
sections imply solving the time-dependent Schrödinger equa-
tion in the energy representation by the standard fourth-order

Runge-Kutta scheme �18�. A practical spin switch requires
��1, since otherwise the natural spin dynamics already
switches the populations in a uncontrolled way. We choose

�̄11=�11/V11=10, which already implies a non-negligible
singlet-triplet population transfer in the absence of the laser
pulse, with consequences of the laser-induced population dy-
namics. Without loss of generality we consider 11=1.

The results of implementing the �-pulse scheme are
shown in Fig. 2�a�. We use a pulse with a fast turn on and
turn off and constant field amplitude �Fig. 2�b��, so that the
pulse duration is approximately �2. The laser-induced reso-
nant population transfer occurs during �2=� /2, where the
time scale is normalized by V11. We choose �1=�3=0.2 and

0=16�11 so that E0=80V11. The population transfer depends
weakly on the wave function phase, which is changing even

in the RWA because of V11. For �̄11�1 this dependence is
negligible.

The results of implementing the adiabatic strategy are
shown in Fig. 2�c�. We use a negatively chirped pulse and

0=16�11, �=0.1, so that following Eqs. �16�, �18�, and �19�
we find E0=80V11, �=−16V11

2 , and �=10. Given our choice
of chirp sign, the system crosses the resonance from lower
frequencies to higher frequencies, therefore the pulse must
imply slow turn on and fast turn off stages. We use �2=0 and
�1�2�=20 and as before �3=0.2. Again the results depend
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FIG. 2. �Color online� Population dynamics in the two-level
spin switch using the �-pulse strategy �a� and the adiabatic passage
strategy �c�. The required scaled pulse amplitudes �solid line� and
effective Rabi frequencies �dashed line� for the previous strategies,
are shown on �b� and �d�, respectively.
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on the phase of the wave function and the population transfer
is relatively sensitive to the time duration and even to the
turn off time.

In Landau-Zener theory the transfer occurs for infinite
time and it is only sensitive to the chirp rate. For the chosen
parameters, Landau-Zener predicts a yield of population
transfer better than 99.8%, which could be improved by de-
creasing the chirp rate �. However, in the spin-orbit laser-
induced adiabatic passage scheme, the initial distance from
the resonance is given by �11, a fixed molecular parameter.
The time duration of the transfer is finite and the final sepa-
ration from the resonance depends on the shape of the laser
pulse, the chirp rate and the pulse duration. The smaller �,
the larger the pulse must be to assure significant population
transfer. But a too small � implies considerable phase depen-
dence of the population transfer, since at initial times the
energy separation from the resonance is not large enough.
Therefore, if V11 is not much smaller than �11, the dynamics
is sensitive both to the shape and to the sign of the chirp.

In Fig. 2�d� we show the effective Rabi frequency and the
position of the resonance. In Fig. 3�b� we use the same pa-
rameters but with positive chirp, �=16V11

2 . Now the reso-
nance is crossed from higher frequencies to lower frequen-
cies. Therefore we need a fast turn-on and slow turn-off

pulse shape. The transfer is not so perfect since the Rabi
frequency sweeps the resonance in a less efficient way. Typi-
cally the results are more sensitive to the initial wave func-
tion phase, since the laser must be turned on abruptly with
positive chirp. In Figs. 3�c� and 3�d� we show results using a
constant field with both fast turn-on and turn-off. We have
chosen �1=�3=0.2 and �2=20��, so that �=0.05 and �=
−24V11

2 . In order to achieve excellent population transfer
with constant fields we need to use longer pulses and higher
chirp rates, so that the energy levels are more distant from
the resonance both at the beginning and at the end of the
process. Alternatively, the pulse could be asymmetrically
chirped in time, such that the carrier frequency �
0� is dis-
placed to the tail of the pulse.

IV. SPIN SWITCH OF SUPERPOSITION STATES

We consider now the transfer of a singlet superposition
state, that is, a wave packet of singlet states, onto the triplet
manifold. Again we address the case where the laser-free SO
couplings are weak among all participant levels, that is � j j

= �� j
T1 −� j

S1��Vjj. As in the two-level system, a better trans-
fer efficiency is achieved by manipulating the energy levels
via Stark shifts. For an n-level superposition state the re-
quired Stark shifts can be induced by a single pulse or by a
sequence of n pulses, each driven by a different nonresonant
carrier frequency.

The model depends now on many parameters, namely the
energy difference between the singlet and triplet levels or
spin-orbit splittings � j j, the spin-orbit couplings Vjj, and the
energy difference between adjacent levels on the triplet
manifold, 
� j,j+1. The role of the different parameters can be
conveniently described by their statistics. We consider the
average of the singlet-triplet splittings 
�� and its standard
deviation 
�; and the average of the spin-orbit couplings 
V�
and its standard deviation 
V. These four parameters char-
acterize the molecular system of the singlet-triplet switch.
We define the variability parameter �=
V / �
V� � =
� / �
���
�we typically use the same variability for both parameters,
although this is not necessary� to account for the statistics in
a simplified way. Finally, the average energy difference be-
tween adjacent states in the triplet, 
�, determines the im-
portance of the Raman transitions. In order to simplify the
model we shall consider that the detuning 
 to the excited
triplet states is the same for all levels and that the initial state
is a linear superposition of three singlet levels with identical
populations. All polarizability elements ij are taken as unity.
These simplifications do not pose any fundamental constraint
to the model.

A. �-pulse scheme

Depending on the parameters of the system, the �-pulse
scheme can be implemented in different ways. The straight-
forward extension of the two-level scheme implies using a
pulse sequence in which each pulse E j�t� controls a single
transition �S1 , j�→ �T1 , j� with optimal parameters

E0j = �4� j j
 j/ j j �20�

and
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FIG. 3. �Color online� Population dynamics in the two-level
spin switch using the adiabatic passage strategy with a positively
chirped fast turn-on, slow turn-off pulse �a�; and with a negatively
chirped, constant field �c�. The required pulse amplitudes �solid
lines� and effective Rabi frequencies �dashed lines� are shown on
�b� and �d� for both previous schemes, respectively.
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� j =
�

2�Vjj�
�21�

such that � j j /2=� j j. The pulses could be applied at the same
time or sequentially, since in principle the order of the se-
quence should not affect the outcome of the dynamics.

There are two problems with the sequential transfer, how-
ever. The first one is that each pulse in the sequence crosses
every resonance at the switch on and switch off. Consider-
ing, for instance, that we first apply the pulse for which the
splitting is the smallest ��ss�, which requires the smallest
pulse amplitude, the population will flow from �S1 ,s� to
�T1 ,s�. However, when we apply the next pulse to transfer
the population from a different singlet level, the induced
Stark shift will also operate over �T1 ,s�, crossing again the
resonance. The switch on and off periods must therefore be
fast enough to avoid changing the pulse area of each “inde-
pendent” interaction.

The second problem is related to the previous one. If for
two levels in the manifold ��kk−�ll � � �Vkk � , �Vll�, then both
Ek�t� and El�t� will affect both transitions. One needs ��kk

−�ll � � �Vkk �Vll � ∀k , l, or roughly 
�� �
V��, in order that the
transfer of all levels is independent. This condition can be
easily satisfied only for very weak couplings. With the pa-
rameters explored in this work for the two-level system, the
dependence of the transfer �the area of the Rabi flopping� on
the phase is even more severe in the n-level case than in the
two-level system, as we show numerically.

In a different limit, the parameters of the system may be
such as to allow a parallel switching. If 
�� �
��� and 
V
� �
V� � �
� �assuming as well that 
 j j 
 and  j j  are
similar for all transitions, as built in our model� then it is
possible to switch the whole singlet wave packet to the trip-
let manifold using a single pulse with average parameters
E0=�4
��
 / and �=� /2 � 
V�� such that �eff /2= 
��.

Finally, since �ij � j j 2� j j, the Raman Rabi frequen-
cies � jk �Eq. �10�� will couple the different triplet levels
unless 
�� �
���. We show numerically that when the Ra-
man couplings are important, not only the relative popula-
tions of the triplet levels may differ from those of the initial
singlet wave function, but also the whole singlet-triplet trans-
fer can be severely affected.

B. Adiabatic passage scheme

The extension of the adiabatic passage scheme to the spin
switch of superposition states is straightforward. A single
pulse can be used with the same parameters given by Eqs.
�16�, �18�, and �19� substituting � j j and Vjj by the corre-
sponding average values 
�� and 
V�, as long as the standard
deviations in the parameters �the variability �� are not too
large. That is, 
��±
� must fall under the envelope of the
effective Rabi frequency �eff�t� /2 and � must be small
enough that

� � �2
0

�


V� + 
V


�� − 
�
� . �22�

Under these conditions the wave packet can be switched to
the triplet manifold by a single pulse, whose effective Rabi

frequency adiabatically sweeps all � j j resonances. However,
the relative populations in the triplet manifold may suffer
oscillations if 
� is not much larger than �
���.

C. Numerical examples

As in the two-level system we only address the weak
coupling ���1� case, choosing 
��=10
V�. In Fig. 4 we
show the dynamics of a typical �-pulse implementation with
�=
� / �
�� � =
V / �
V� � =0.2. This case implies small vari-
ability in the spin-orbit couplings and splittings, and one can
implement the �-pulse strategy using both one pulse and a
sequence of three pulses. In both cases we obtain a relatively
good 80% overall transfer from the singlet manifold to the
triplet manifold, starting with a three-level superposition
with equal populations in the singlet manifold. For the dy-
namics shown in Fig. 4, we have chosen 
�=10
��, so that
the vibrational spacing is 5 times the maximum Rabi fre-
quency. The pulse parameters of the three-pulse sequence
were chosen following Eqs. �20� and �21�, while the param-
eters of the single pulse are the same as those for the two-
level system, since 
V�=V11 and 
��=�11. In Fig. 4 we show
the individual populations of the different singlet and triplet
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FIG. 4. �Color online� Population dynamics in the spin switch of
a superposition state using the generalized �-pulse strategy with a
sequence of � pulses �a� and with a single pulse with averaged
parameters �c�. The required pulse Rabi frequencies for the previous
strategies together with the position of the different resonances are
shown in �b� and �d�, respectively.
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levels so that for each �S , i�→ �T , i� transition a relatively
high yield is achieved.

In fact, for the chosen molecular parameters the three
transitions cannot be considered independent, since 
�
2
V� and therefore every pulse acts on every transition, as
Fig. 4�a� shows. The high efficiency of the pulse sequence is
due to the accidental fact that the accumulated pulse areas for
each transition are approximately � at the end of the pulse
sequence. In Fig. 5�a� we show the overall population of the
triplet for different variabilities in the model. Clearly, the
sequential �-pulse scheme performs better as � increases.
This is because one needs 
��6
V� �which in the model is
obtained by choosing 
��=14
V� and therefore �0.4� for
the transitions to become more independent. But even when
the transitions are not independent and Eqs. �20� and �21� do
not guarantee a high yield of population transfer, it is always
possible to optimize the pulse amplitudes and time durations
so that a high efficiency is finally achieved. That is, the se-
quential scheme involves enough laser parameters to control
the dynamics.

On the contrary, using the single �-pulse scheme, the dy-
namics depends only on two laser parameters, � and E0,

which are insufficient to fully control the spin switch and
guarantee an efficient transfer when � is large. In Fig. 5�b�
we show how the efficiency of the singlet-triplet transfer is
affected as � varies. The � scheme is more sensitive to large
variations in 
� than in 
V. The numerical results show that
using the average parameters the yield is always close to
maximum, although this maximum quickly decreases with �.

The �-pulse scheme �both with a single pulse or a pulse
sequence� is quite sensitive to the Raman couplings. Raman
transitions induce significant population transfer among the
triplet levels, as Figs. 4�a� and 4�c� show, and affect as well
the overall efficiency of the transfer. In Fig. 5�c� we show the
overall triplet population as a function of time for increasing
Raman couplings �
��, using the �-pulse scheme with a
single pulse and �=0.1. The efficiency of the transfer is ba-
sically not affected until 
��7
��. For 
�4
�� �twice the
peak effective Rabi frequency� the population remains
mainly in the singlet manifold. Similar results are obtained
with the sequential �-pulse scheme.

For the singlet-triplet wave packet transfer it is certainly
much more efficient to use the adiabatic strategy. In Fig. 6
we show two typical examples with �=0.2, using either a
pulse with slow switch on and fast switch off �with the same

FIG. 5. �Color online� Efficiency of the overall spin switch of a
superposition state. In �a� we show the effect of the system variabil-
ity over the �-pulse sequence scheme; the same effect is observed
over the single �-pulse strategy in �b�. In �c� we show the effect of
the Raman couplings over the single �-pulse scheme, and in �d� we
show the effects of both Raman couplings and system variability
over the adiabatic strategy. Details of the parameters are given in
the text.
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FIG. 6. �Color online� Population dynamics in the spin switch of
a superposition state using the adiabatic strategy with a negatively
chirped slow turn-on, fast turn-off pulse �a�; and with a transform-
limited pulse with linearly increasing amplitude �c�. The required
scaled pulse amplitudes �solid lines� and effective Rabi frequencies
�dashed lines� for the previous schemes are shown in �b� and �d�,
respectively. The different crossed resonances are shown by dotted
lines.
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parameters as in the two-level system, �=0.1, in Sec. III C�
or a transform-limited pulse with linear variation in the pulse
amplitude, in which the plateau region is replaced by a lin-
early increasing field. For this field the time duration is typi-
cally close to �2, instead of the �1 for the slow switch on
pulse. Other pulse shapes such that the effective Rabi fre-
quency sweeps across the level resonances work in the same
way.

For both pulses in Fig. 6 the spin switch performs with
high efficiency �greater than 90%�, since the effective Rabi
frequency sweeps across the resonance of all the singlet-
triplet transitions. The method is quite robust to large varia-
tions in the spin-orbit couplings and splittings, and the pulse
parameters can vary over a broad range. In fact, the
amplitude-shaped pulse is typically even more efficient, re-
quiring smaller pulse durations.

In Fig. 5�d� we show that for �=0.5 the efficiency of the
transfer is still better than 80% using the same pulse as in the
two-level case. Additionally, the adiabatic passage scheme is
much more robust to the effect of the Raman couplings. In
Fig. 6 we use 
�=20
��, so that the vibrational spacing is
about 5 times the maximum Rabi frequency. However, even
for 
�=4
�� �when the vibrational spacing is approximately
equal to the maximum Rabi frequency� the overall efficiency
of the transfer is higher than 80%, as Fig. 5�d� shows. That
is, even when all transitions interfere with each other and
very significant transient population transfer among the trip-
let levels occurs, the overall singlet-triplet switch efficiency
is not severely affected.

V. CONCLUSIONS

In this work we have proposed different ways of using
transform-limited or chirped pulses to induce transitions be-
tween states of different spin, which are dipole uncoupled.
The proposed scheme is a general procedure for transferring
time-dependent control exerted by the field on one part of the
Hamiltonian �where dipole moments are nonzero� into en-
ergy control that affects the desired region of the spectra
where the dipole couplings are symmetry forbidden. In prin-
ciple, it can be used to control any type of intramolecular �or
even intermolecular� coupling. In this work we have de-

signed optically induced spin switches between two levels or
superposition states. The same procedure can be applied to
stop a stronger coupling by breaking the close degeneracy. It
is interesting to note that the sequential �-pulse scheme in
principle uses enough pulse parameters to control the area of
each transition. Arbitrary superpositions of singlet and triplet
states, that is, mixed-spin wave packets, can thus be pre-
pared.

The pulse requirements of the method do not meet very
demanding conditions. If we consider a rather usual weak
spin-orbit coupling of the order of 0.1 cm−1 between two
quantum states separated by one or more wavelengths, then
the scaled parameters used in our simulations imply using
pulses of 100 ps duration with an intensity of the order of
10 MW/cm2. For these parameters, the simplified model
provides a reasonably good estimate of the molecular laser-
induced spin-orbit dynamics as long as the energy spacing
between the vibrational levels in the singlet and triplet elec-
tronic states is larger than 10 cm−1. These conditions are sat-
isfied by many diatomic molecules where the density of
states is not very large. For the adiabatic passage scheme, a
temporal chirp rate of 6.6�10−9 fs−2 would be needed,
which could be easily achieved by linear chirping of a 300 fs
transform-limited pulse, for example. The adiabatic scheme
could also be applied to molecules with weaker state-to-state
couplings requiring nanosecond pulses of MW/cm2 intensity
with harder to meet chirping conditions. Alternatively, one
could apply it to molecules with stronger couplings using
picosecond pulses of GW/cm2 intensity. In this case many
quantum states would participate in the dynamics, so that the
estimates of the simple models herein employed would be
questionable. It is however possible to extend the theory of
spin-orbit control in the strong-field regime using the con-
cept of laser-induced coupling or decoupling of molecular
potentials �6,7�.
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