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The multiphoton ionization of hydrogen atoms in a strong elliptically polarized microwave field exhibits
complex features that are not observed for ionization in circular and linear polarized fields. Experimental data
reveal high sensitivity of ionization dynamics to the small changes of the field polarization. The multidimen-
sional nature of the problem makes widely used diagnostics of dynamics, such as Poincaré surfaces of section,
impractical. We analyze the phase-space dynamics using the finite time stability analysis rendered by the fast
Lyapunov indicators technique. The concept of zero-velocity surface is used to initialize the calculations and
visualize the dynamics. Our analysis provides stability maps calculated for the initial energy at the maximum
and below the saddle of the zero-velocity surface. We estimate qualitatively the dependence of ionization
thresholds on the parameters of the applied field, such as polarization and scaled amplitude.
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I. INTRODUCTION

The multiphoton ionization of the hydrogen atom in a
strong microwave field is an example of a low-dimensional
quantum system that manifests behavior typical of classical
nonlinear systems, such as chaos and high sensitivity to field
parameters. Ever since the first experiments on the ionization
of hydrogen atoms in a strong microwave field �1� this sys-
tem has been studied extensively for various regimes of the
applied field: From high-to low-frequency regimes, and from
linear to circular polarization of the field �2�. The ionization
dynamics turns out to be strongly dependent on the param-
eters of the applied field, such as frequency, field amplitude,
the shape of the field envelope, and the choice of initial
ensemble of states subjected to the field �3,5�.

Experiments �3,6� on the ionization of hydrogen atoms in
strong elliptically polarized �EP� microwaves have demon-
strated the dynamics in this case to be quite complex, expos-
ing new effects that are absent from the circularly polarized
�CP� and linearly polarized �LP� field limits. The ionization
dynamics was observed to be extremely sensitive to the po-
larization degree of the electric field. Moreover, three-
dimensional classical simulations of the experiment repro-
duce the experimental results very well �6,7�. It was shown
in �3� that the ionization yields, deduced experimentally and
numerically, interpolate unevenly between LP and CP limits
and for the EP fields follow a nonmonotonic rise with the
increase of the scaled field amplitude. By viewing the system
in the frame rotating with the time-dependent angular veloc-
ity of the EP field the authors in �8,9� used a quantum-
mechanical approach to show that the problem can be re-
duced to a Rydberg atom subjected to two effective static
fields, magnetic and electric. The sensitivity of the ionization
to the ellipticity degree observed experimentally was as-
cribed to dependence of the effective magnetic interaction on
the ellipticity degree. While the use of the quantum-

mechanical approach for hydrogen in an EP field reproduces
the experimental trends, a connection with the classical ap-
proach, which has been traditional in this subject, is desir-
able. The question still remains open: Why are the current
experimental data on ionization yield curves of hydrogen
atom in EP microwave fields in good agreement with the
corresponding classical simulations �3,10�?

Most classical treatments in the literature use some sim-
plifications of dynamics based on the existing symmetries or
reduction of the full three-dimensional dynamics of the sys-
tem to a lower-dimensional one �7,11,12�. To give an ex-
ample, the adiabatic approximation used by Griffith and Far-
relly �11� to study three-dimensional hydrogen atoms in the
EP field reduces the dimensionality of the effective phase
space and limits the dynamics to that of the circular Rydberg
states. The averaging that is performed in �7� is valid only in
the low-frequency regime �the driving frequency of the field
is much smaller than the unperturbed Kepler frequency of
the problem�. The presence of a time-dependent term in the
rotating-frame Hamiltonian is another challenge that the EP
field brings. In addition, the absence of conserved quantities,
such as energy and angular momentum integrals, prevents
one from reducing the dimensionality of the dynamics. For
the LP and CP problems such a reduction is possible due to
existence of additional constants of motion. In contrast, for
the EP field problem the energy and angular momentum are
not conserved. In this paper we discuss the possibility to
view a full-dimensional system dynamics by means of fast
Lyapunov indicator �FLI� fields of stability �13�. The FLI
method is independent of the dimensionality of the system. It
provides pictures of global stability structures for any given
subspace of the phase space of the system �14�. Besides, the
method is robust because it is applicable even in regimes
which cannot be studied by any other existing analytical
methods.

The complex features of ionization dynamics of the hy-
drogen atom in EP microwave field reported in recent experi-
ments �3� are due to the higher dimensionality of the EP
problem as opposed to the CP and LP problems �15�. Clas-*Email address: elena@cns.physics.gatech.edu
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sically, for systems of three or higher degrees of freedom the
phase space dynamics is known to possess much richer fea-
tures than the one for the lower-dimensional systems. The
principal feature that distinguishes the phase-space dynamics
of the Hamiltonian system of dimension three and higher is
the possibility of a well-known phenomenon of Arnold dif-
fusion �diffusion along the resonances� �15,16�. This phe-
nomenon is essential for examining all the possible scenarios
that lead to the classical ionization for hydrogen subjected to
the electromagnetic field.

The relevance of the phase-space dynamics to the classi-
cal ionization of hydrogen in nonstationary fields has been
noted by many authors �2,17–19�. In short, invariant tori can
prevent chaotic diffusion of trajectories and, therefore, can
hinder them from ionizing. The onset of stochastic ionization
for the Hamiltonian systems has been traditionally investi-
gated by means of the resonance overlap criterion proposed
by Chirikov �20�. It was applied to the classical ionization
dynamics for the hydrogen atom driven by LP and CP field
in �2,19,21–24�. The set of action-angle variables required
for this analysis is only well defined in the limit of vanishing
fields. For the classical system of a hydrogen atom subjected
to a strong EP field the application of action-angle variables
in an overlap criterion is not practical. Instead, we propose to
study the onset of stochasticity in the phase space of the
system by means of FLI stability analysis �13�. By evaluat-
ing the indicator of chaoticity for each integrated trajectory
from an ensemble of trajectories we obtain the underlying
resonant structures for any given subspace.

The experimental data �3� do not provide much informa-
tion about the character of the states that determine the ob-
served ionization threshold. In fact, most of the initial states
used in the experiment are switched by the turn-on of the
field to different locations in the phase space �12,18�. Some
of the states that remain bounded after the rise of the field
pulse are closer to stochastic ionization than the other states.
The character of the states more favorable to ionization has
been a matter of debate in the theory community. Investiga-
tions on the ionization by the CP field in high-frequency
regime were carried out by Howard �23� and by Sacha and
Zakrzewski �25�. Using essentially the same technique, the
Chirikov overlap criterion, these two groups arrived at dif-
ferent conclusions regarding to the type of the orbits that
ionize first under the application of the field. Howard
claimed that most orbits become elongated before they ion-
ize, hence that the high eccentricity orbits are more prone to
ionization. However, results in �25� contradict this point of
view and the authors show that ionization occurs first for the
medium eccentricity orbits. In Refs. �12,18� it was pointed
out that the ionization mechanism strongly depends on the
region of phase space that the original ensemble will be
switched to by the application of the field. Generally speak-
ing, orbits with different eccentricities can be switched to
different regions of the phase space and to different energies
in the rotating frame of the CP field problem. In this paper
we describe in details the character of the states that undergo
ionization and determine the behavior of ionization yields for
the low amplitudes of the field. The principal difficulty is the
direct comparison of our results with experiments �3�. It is
essential to point out, that our qualitative analysis is per-

formed for ensembles of states with the same initial energy
and different values of classical action and angular momen-
tum, as opposed to the ensemble of states used in the experi-
ment. Our purpose in this choice is to relate the underlying
phase-space structures to the ionization dynamics of the sys-
tem.

The recent experimental success in creating field-
maintained nonspreading electronic wave packets �4� has re-
newed the discussion on synthesizing coherent states
launched from the Lagrange equilibria of the effective poten-
tial �26–28�. It was argued in Ref. �28� that the size of the
stability region surrounding the Lagrange equilibrium points
is important in maintaining stable nonspreading three-
dimensional coherent quantum states at those points. The
addition of a magnetic field to the CP problem was shown to
play an important role in the stabilization of the equilibria
and enlarge the critical region of stability in the parameter
space defined by the Jacobi constant, and the amplitudes of
the electric and magnetic fields. We extend these findings to
the EP problem by using the fast Lyapunov indicator stability
technique. We show that the stability of the Lagrange equi-
libria can be controlled by manipulating the field polarization
in addition to the Jacobi constant, and the amplitudes of the
electric and magnetic fields.

Much of our understanding of complex details of the clas-
sical ionization mechanism depends on a thorough knowl-
edge of the multidimensional dynamics of the system. There-
fore, we will apply the FLI method so as to obtain some
insight into the stability of the phase-space structures of the
system.

The paper is organized in five sections. In Sec. II we
introduce the Hamiltonian and describe the concept of time-
dependent zero-velocity surface �ZVS� in the frame rotating
with the frequency of the applied field. A brief description of
the method of FLI is given in Sec. III. We discuss the results
of the stability analysis rendered by the FLI method in Sec.
IV. By mapping out the value of the FLI for each trajectory
from the configuration space we obtain the FLI stability
plots. First, the structures of the FLI stability plots are de-
scribed for the well-studied cases of LP and CP electric fields
and zero magnetic field. The energy of the initial states is
equal to the maximum of the ZVS. In the case of the CP
problem the FLI plot matches perfectly the Poincaré surface
structure. Secondly, we perform the FLI analysis for more
complicated problems of hydrogen in EP fields �the magnetic
field is again equal to zero�. The ionization dynamics for the
EP problem is analogous to the LP and CP problems: two
distinct sets of bounded orbits located around the center and
near the maximum of the ZVS are identified. With the in-
crease of the amplitude of the electric field the orbits from
the latter set become chaotic and ionize. The size of the
stability zone around the ZVS maximum is used to estimate
qualitatively the behavior of the ionization probabilities ver-
sus a scaled amplitude of the field. Then, the FLI stability
analysis is applied to the ensemble of initial states with the
energy much below the saddle of the ZVS. Section IV con-
cludes with the detailed description of two ensembles of ini-
tial states involved in our calculations. A summary of our
results and conclusions are presented in Sec. V.
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II. HAMILTONIAN

The Hamiltonian for a hydrogen atom subjected to an EP
electric field �of magnitude F and microwave frequency ��
simultaneously with the static magnetic field B=Bẑ applied
perpendicular to the plane of polarization is, in atomic units
�a0=�=e=�=1� and assuming infinite nuclear mass, as fol-
lows:

H = 1
2 �px

2 + py
2 + pz

2� − 1
2B�xpy − ypx� −

1

r
+

1

8
B2�x2 + y2�

+ F�x cos �t + �y sin �t� , �1�

where r=�x2+y2+z2 and �� �0,1� is a polarization of the
electric field: �=1 for the circularly polarized field, and �
=0 for the linearly polarized field. In this paper we study the
planar classical model of hydrogen restricted to the x-y po-
larization plane. Most of the previous classical and quantum
calculations were performed in the planar limit
�5,11,12,18,28�. The planar limit of a three-dimensional �3D�
system is a reliable approximation to the actual three-
dimensional dynamics for the orbits with initial conditions
initiated on the z=0, pz=0 subspace. This subspace is invari-
ant. Moreover the classical phase-space dynamics for the
planar limit of the hydrogen atom inside CP and LP fields
can be studied by means of Poincaré surfaces of section,
which in this case is two-dimensional. Since the applied
electric field is polarized in the x-y plane the ionization of
hydrogen is expected to occur along any direction on the
plane as in the Stark effect.

Insight into the dynamics can be obtained by considering
the system in the rotating frame precessing with the fre-
quency of the field �. By introducing the canonical transfor-
mation

S�x̄, ȳ,px,py� = − �x̄ cos �t − ȳ sin �t�px

− �x̄ sin �t + ȳ cos �t�py , �2�

one obtains the Hamiltonian in the rotating frame �for con-
venience we omit the bars in the following expression and
thereafter�:

H = 1
2 �px

2 + py
2� − �1 − 1

2B��xpy − ypx� −
1

r
+

1

8
B2�x2 + y2�

+ Fx + F�� − 1��x sin2 �t + y sin �t cos �t� . �3�

It is more convenient to work with scaled frequencies and
field strengths. We introduce the scaling of time, coordinates,
momenta, and field amplitudes as follows: t�=�t, r�=�2/3r,
p�=�−1/3p, K=�−2/3H, F�=�−4/3F, B�=�−1B. After drop-
ping the primes, the scaled Hamiltonian becomes

K = 1
2 �px

2 + py
2� − �1 + 1

2B��xpy − ypx� −
1

r
+

1

8
B2�x2 + y2� + Fx

+ F�� − 1��x sin2 t + y sin t cos t� . �4�

For the CP field ��=1� the Hamiltonian is time indepen-
dent and the system has two effective degrees of freedom.
The Jacobi constant introduced in celestial mechanics
�29,30� is equal to the energy of the system in the rotating

frame. For the EP field �0���1� the Hamiltonian is a time-
dependent quantity. For the EP problem due to the absence of
integrals of motion the system cannot be reduced to the two-
dimensional one as was done for the CP problem. Instead,
the time-dependent Hamiltonian in �4� can be made autono-
mous by introducing canonical transformation
S�x ,y , px , py , t ,w�=wK�x ,y , px , py , t�, where w= t is a gener-
alized coordinate. The corresponding generalized momentum
is defined as pw=−K�t�. The transformation yields the ex-
pression for the effective autonomous Hamiltonian:

Hef f = 1
2 �px

2 + py
2� + pw − �1 + 1

2B��xpy − ypx� −
1

r

+
1

8
B2�x2 + y2� + F�� − 1��x sin2 w + y cos w sin w� .

�5�

Equation �4� describes an autonomous Hamiltonian system
with three degrees of freedom.

In practice, the Hamiltonian is regularized by changing
coordinates to the set of semiparabolic coordinates. This sub-
stitution is used in order to avoid the singularity near the
origin �x ,y�= �0,0� �19�.

An additional complexity in the problem comes from the
the velocity-dependent Coriolis term proportional to xpy
−ypx in the expression for Hamiltonian �5�. In its presence,
the Hamiltonian cannot be split into a positive definite ki-
netic term depending on momenta alone and potential energy
term depending exclusively on positions. Because of the Co-
riolis term, the potential energy surface cannot be used for
understanding the stability of equilibria. Instead, the concept
of the zero-velocity surface, which constitutes an effective
potential, is adapted from celestial mechanics �29,30�. To
define the ZVS we express Hamiltonian �4� in terms of ve-
locities and positions:

K =
1

2
�ẋ2 + ẏ2� −

�1 + B�
2

�x2 + y2� −
1

r
+ Fx

+ F�� − 1��x sin2 t + y cos t sin t� . �6�

Setting velocities in the above expression to zero we arrive at
the following form of the effective time-dependent potential
surface:

V�x,y,t� = −
1

r
−

�1 + B�
2

�x2 + y2� + Fx

+ F�� − 1��x sin2 t + y cos t sin t� . �7�

For the CP case ��=1� the ZVS is time-independent in the
rotating frame. There are two equilibria lying on the x axis
�y=0� corresponding to the maximum ��� and saddle point
��� of the surface:

− �1 + B�x±
2 + F�1 + �� − 1�sin2 t�x±

2 ± 1 = 0. �8�

The expression for the maximum Kmax and the saddle Ksad of
the ZVS results:
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Kmax�sad� = −
1

�x±�
−

�1 + B�
2

x±
2 + F�1 + �� − 1�sin2 t�x±.

�9�

Figure 1 shows the zero-velocity contour plot and the loca-
tion of the equilibria x±�0� at time t=0.

Unlike the maxima of the potential surface that are always
unstable, the maxima of the ZVS need not to be. In fact,
linear stability analysis carried out in the vicinity of equilib-
ria in Ref. �28� demonstrates that in the CP limit the stability
of equilibria of the ZVS depends on the parameters of the
field such as scaled amplitudes of the electric and magnetic
field. The equilibria for the CP problem play the same role as
the Lagrange points, L4 and L5, for the restricted three-body
problem �29,30�.

Equation �7� shows that the ZVS of the EP problem is not
constant and oscillates around the origin with the frequency
of the applied field. The linear stability analysis of equilibria
performed in �28� for CP problem is not tractable for the EP
problem. We study local dynamics around the Lagrange
maximum by applying linear stability analysis rendered by
the FLI method.

III. DESCRIPTION OF THE FAST LYAPUNOV INDICATOR
METHOD

To characterize the multidimensional phase-space struc-
tures a method is needed that provides a clear representation
of the chaotic and regular regions in the phase space, simi-
larly to the pictures obtained by Poincaré sections. However
for the three- and higher-dimensional systems the construc-
tion and visualization of Poincaré sections might be very
complicated. An alternative is to define an indicator of chao-
ticity for each trajectory from a given subspace of phase
space. Various diagnostics for different types of dynamical
behavior are present in the literature; for instance, indicators
of chaoticity are the characteristic Lyapunov exponent �31�,
the strength of diffusion of the instantaneous frequency in

the frequency space �32�, the measure of complexity of the
Fourier spectrum �33�, and other available indicators that dis-
tinguish chaotic and regular dynamics �34,35�. As a short-
term dynamical diagnostic a method of FLI was proposed in
Ref. �13� to study weak chaos in high-dimensional systems.
The main idea of the method is to study the evolution of the
tangent vectors computed along a given trajectory of the sys-
tem. This method has been applied to search for phase-space
structures in different types of problems: coupled standard
maps �36�, celestial mechanics problems �37�, and vibra-
tional dynamics of polyatomic molecules �14�. In this paper
we apply this method to the atomic system. Below we
present a brief description of the method �for more details,
see Ref. �36��.

To obtain a numerical estimate on the growth of tangent
vectors along the flow the equations of motion are integrated
together with the corresponding equations for Jacobian ma-
trix, i.e., we integrate the flow given by f�X� and the tangent
flow:

d

dt
X = f�X�,

dJ
dt

= Df�X�J , �10�

where X= �x1 ,x2 , . . . ,xn� is a n-dimensional vector in the
phase space, J is n�n Jacobian matrix of the flow, Df�X� is
the matrix of partial derivatives ��f i /�xj�i,j=1,n of the flow,
and J�0� is the identity matrix. The columns of the Jacobian
matrix are the tangent vectors of the flow �v j� j=1,n. Given an
initial tangent vector v0 for each initial condition x0 from the
phase space of the system the FLI is defined at time t as
follows:

	�t;x0� = max
0
t�
t

log10	v�t�;x0�	 , �11�

where v�t� ;x0� is the tangent vector at time t�. For any initial
choice of the tangent vector v0 it will eventually converge to
the direction of the most unstable eigenvector of the Jacobian
matrix J. Hence, characteristic dynamics can be observed by
integrating Eqs. �10� for one of the tangent vectors from the
set of all the tangent vectors in J.

The Lyapunov indicator defined in Eq. �11� serves as an
efficient diagnostic of chaoticity for any analyzed trajectory
with initial condition x0. The FLI procedure supplies infor-
mation about the dynamical behavior of a trajectory, analo-
gously to the method of the characteristic Lyapunov expo-
nents. The tangent vector growth evaluated by integration of
Eq. �10� is proportional to the growth of the distance be-
tween two neighboring trajectories in phase space. In fact,
the evolution of the tangent vector computed for chaotic tra-
jectories obeys an overall exponential law. Therefore, the
FLI increases linearly in time. At the same time, the tangent
vector growth for regular trajectories follows approximately
a global linear behavior. Thus the FLI increases logarithmi-
cally in time. Already after a short interval of time it is pos-
sible to make a clear distinction between different dynamical
behaviors of trajectories by looking at the maximum value
attained by the FLI. To provide an example, in Fig. 2 the FLI
evolution in time is shown for two chaotic and one regular
trajectories from the phase space of the system defined by

−1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

X

Y

FIG. 1. �Color online� Zero-velocity surface contour plot at time
t=0 for the hydrogen in the EP microwave electric field. F=0.117,
B=0 �in scaled units�. The circle �cross� indicates the location of the
maximum �saddle� point of the ZVS.
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Hamiltonian �5�. Already after a time t=100 two different
types of dynamical behavior can be clearly identified. Mean-
while the curves a and b evolve almost linearly, the curve c
follows logarithmic growth with time. Note that b and c are
launched very close and hence the FLI are very close for
some time before they are distinguished since b is chaotic
and c is regular �by inspections of their Poincaré sections�.

The main advantage of the FLI technique over other
available methods is its power to discriminate regular from
chaotic motions over a relatively short time period.

IV. NUMERICAL RESULTS

A. Ionization dynamics at the maximum of zero-velocity
surface

1. Choice of initial conditions

We analyze the ionization dynamics of hydrogen atoms in
an EP field by applying FLI stability analysis for trajectories
from a mesh of initial conditions from the x-y plane. For the
CP problem we consider the subspace of initial conditions
defined in Ref. �28�. Namely, the initial energy is chosen to
be equal to the maximum of the ZVS: K�0�=Kmax as defined
in Eq. �9�. The initial momenta px , py are chosen to satisfy
the relation pxx+ pyy=0.

For the CP problem the above defined subspace of initial
conditions is two dimensional and coincides with the two-
dimensional Poincaré section. Similarly to the CP problem
the dynamics for the EP problem is visualized on the x-y
plane. For the EP problem the effective Hamiltonian of the
system has three degrees of freedom. In order to reduce the
configuration space of the system to two-dimensional in five-
dimensional energy subspace one needs to specify three ini-
tial conditions for coordinates and momenta. One condition
is the same as for the CP problem. Additional conditions are

defined by taking a generalized coordinate w=0 and initial
generalized momentum pw=−K�0�.

2. FLI analysis for CP and LP fields

In this section the FLI stability results are presented for
the LP field case. The magnetic field is zero. For each initial
condition from the subspace defined in the previous section
Eq. �10� is integrated for a time t=100 �the time unit is 1 ps�.
The value of 	�t� in Eq. �11� was evaluated at each moment
of time. The maximum value attained over the integration
interval �0, 100� is mapped onto the FLI plot. In Fig. 3 FLI
contour plots are shown for several distinct amplitudes of the
scaled LP electric field. The color code is assigned according
to the maximum value of the FLI evaluated for each trajec-
tory. The dark �blue in color version� color corresponds to
the low values of the FLI and hence regular behavior; mean-
while the light �yellow and red� color indicates high values
of the FLI and hence chaotic behavior. All the trajectories
that ionize quickly are discarded and not marked on the plot
�white regions�. In addition, strongly chaotic trajectories with
the value of the FLI greater than the critical value 	c�50
were discarded. In most cases strongly chaotic trajectories
with 	�100��50 escape to infinity and ionize over the
finite-time interval.

In the FLI contour plots presented in Fig. 3 two islands of
stable motions can be clearly distinguished. In fact, a similar
structure of the FLI plots exists for amplitudes of the electric
field in the interval �0.117, 0.2�. The central and right islands
are located at the center and at the maximum of the ZVS,
respectively �see Fig. 1�. The structure of the central island
does not change with increasing amplitude of the field. This
island is constituted by the bounded states that remain stable
in a given range of the field amplitude. A layer of chaotic
motions is located around the edges of the main stable is-
lands. By comparing the FLI plots on Fig. 3 with the zero-
velocity contour plot in Fig. 1 we observe that the stable
island on the right-hand side is located exactly in the vicinity
of the Lagrange maximum of the ZVS. The area and the
structure of the island change with increasing amplitude. The
island remains almost the same for the field amplitudes F
=0.117 and F=0.13. It shrinks at a field amplitude F=0.16
and completely disappears at F=0.2. These changes are the
consequence of the breakup of invariant tori within the is-
land. With increasing amplitude of the field they open paths
for chaotic orbits to escape from the vicinity of the Lagrange
maximum and to ionize.

In Fig. 4 the FLI plots are shown for the CP problem.
First, one observes that in all the four plots the size of the
stability island around the Lagrange maximum is much
smaller than the size of similar structures for the LP problem.
Second, the size and structure of the central island look ex-
actly the same as for the LP case. For the CP problem, the
bounded states inside the central island remain stable for all
the field amplitudes from the interval �0.117, 0.2�. The field
amplitude for which all the trajectories launched from the
right-hand side island ionize �F=0.15� is lower than the cor-
responding amplitude �F=0.2� for the LP case. As was men-
tioned before, for the CP field the system is time independent
in the rotating frame. The structures of the FLI contour plot
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FIG. 2. FLI curves for chaotic and regular trajectories of the
hydrogen atom in a CP microwave field. F=0.117, Kmax=−1.3807,
B=0. Initial coordinates �x ,y� for the corresponding trajectories are
a �1.5, 0.01�, b �0.9, 0.01�, and c �0.8, 0.01�. The values of the
initial momenta are chosen as described in Sec. IV A 1. The time t
is scaled and dimensionless.
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FIG. 3. �Color online� FLI contour plots for hydrogen in a LP microwave field. Initial energy is equal to the maximum of the ZVS
Kmax=−1.3807, B=0. The scaled amplitudes of the electric field F are �a� 0.117, �b� 0.13, �c� 0.16, and �d� 0.2.

FIG. 4. �Color online� FLI contour plots for hydrogen in a CP microwave field. Initial energy is equal to the maximum of the ZVS
Kmax=−1.3807, B=0. The color scale is assigned according to the values of the FLI. The scaled amplitudes of the electric field F are �a�
0.117, �b� 0.13, �c� 0.14, and �d� 0.15.
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coincide with the ones of the Poincaré section. As an ex-
ample, in Fig. 5 the Trojan bifurcation is shown on the
Poincaré section ��a� panel� and on the FLI contour plot ��b�
panel�. Figure 5�b� is the magnification of the small island of
Fig. 4�a�. A one-to-one correspondence of both plots is evi-
dent. On a close inspection, the symmetry about the y axis is
observed. The resonant zones on the Poincaré section corre-
spond to the dark �blue in color version� islands on the FLI
plot. The chaotic zones are marked around the edges of the
islands.

To illustrate the FLI stability results, we show the ioniza-
tion dynamics for the trajectories with the initial conditions
inside two stable regions identified on the FLI plots and one
trajectory with initial conditions inside the chaotic region. In
Fig. 6 the configurations of three trajectories are shown as
well as the ZVS surface in the rotating frame. Initial condi-
tions are chosen from different regions in Fig. 4: �a� from the
big stable island, �b� from the small stable island, and �c�
from the chaotic region. Trajectories �a� and �b� correspond
to the low eccentricity bounded states and trajectory �c� is
chaotic and ionizes after several close encounters with the
nucleus.

3. FLI analysis for EP field

The FLI plots in Fig. 7 illustrate the structures for the
hydrogen atom in an EP field for the polarization degree �

=0.6. The scaled amplitude of the electric field is taken
within the interval �0.117, 0.17�. In general, the structure of
the FLI plots for the EP field appears to be similar to the
stability plots for the CP field case. Two islands of stability
are apparent: a big island located at the center of ZVS and a
small island located at the maximum of ZVS �see Fig. 1�.
The ellipticity of the field destroys the symmetry that is
present for the CP field case. It is evident that the right-hand
side island in Fig. 7�a� is not symmetric around the y axis as
opposed to the ones around the maximum in Fig. 4. Lightly
colored regions can be seen on the edges of the two islands.
These are initial conditions corresponding to chaotic trajec-
tories with high values of the FLI. Trajectories with the val-
ues of the FLI higher than the critical 	c=50 are not repre-
sented. It can be observed that the large area surrounding the
stable islands corresponds to rapidly ionizing chaotic mo-
tions. Similarly to the structure of the central island observed
in Figs. 3 and 4, the equivalent structure for the EP field
remains essentially unchanged with increasing strength of
the field. At the same time noticeable changes are seen in the
size and structure of the small island. The size of the small
island varies substantially with the increase of the field am-
plitude. The growth of the island at certain amplitudes is
accounted for the stabilization of some resonant motions
within the island. For example, at F=0.13 the size of the
island is noticeably larger than its size at F=0.117 in Fig.
7�a�. At F=0.17 the small island disappears, i.e., most of the
invariant tori within the island that existed at lower ampli-
tudes of the field have been broken and almost all of the
trajectories in the vicinity of the maximum become chaotic
and ionize. The FLI plots shows that the dynamics in the EP
case is more regular than the CP case. For example, the size
of the stable zone around the maximum point in Fig. 7 ap-
pears to be larger than the size of the stable zone in Fig. 4.
On the other hand the size of the right-hand side island in
Fig. 7 for the EP field is much smaller than the size of the
corresponding island in Fig. 3 for the LP field. From our
detailed examination of the FLI results for the initial energy
equal to the maximum of ZVS we conclude that the phase-
space dynamics is more regular for the LP field case than for
the EP and CP field cases. Moreover, the size of the stable
region around the Lagrange maximum point is observed to
vary nonmonotonically with the increase of the field ampli-
tude for the EP field case. These changes are ascribed to

FIG. 5. �Color online� The Poincaré surface of the section and the magnification of the small island from Fig. 4�a� are shown on panels
�a� and �b�, respectively.

FIG. 6. �Color online� Two stable orbits �a�, �b�, and one ioniz-
ing orbit �c� versus the zero-velocity surface. The parameters are
K=Kmax, F=0.117, B=0, and �=1.
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various nonlinear resonant effects that were studied classi-
cally in Ref. �7� and quantum mechanically using Floquet
state approach in Ref. �9�.

B. Study of ionization probability curves

It has been pointed out in Ref. �18� that the apparent
ionization threshold for Rydberg atoms in the CP microwave
field must be determined by the fraction of orbits that un-
dergo first transition to chaos. Such orbits are located outside
of the ZVS and they represent the atomic states that can be
easily populated in the experiment �3�. In connection with
these results we found the set of bounded orbits in the vicin-
ity of the Lagrange maximum of the ZVS. These are the
orbits that undergo the transition from a regular to chaotic
behavior within the range of electric field amplitude F
� �0.12,0.18�. The FLI plots in Figs. 3, 4, and 7, which are
computed for the linear ��=0�, circular ��=1�, and interme-
diate ��=0.6� polarizations, illustrate the changes of the sta-
bility of these orbits. While the dynamics in the central is-
land remain unaffected by the increase of the field, the orbits
located near the Lagrange maximum become chaotic and
ionize with the increase of the field amplitude. For this rea-
son, we determine an apparent ionization threshold by mea-
suring the fraction of chaotic orbits from the phase-space
volume enclosing the Lagrange maximum. The calculations
of the ionization probabilities are carried out for the polar-
izations of the field from the circular to the linear limit �0
���1�. The behavior of the ionization probabilities versus
scaled electric field amplitude F� �0.12,0.18� is estimated
by means of the FLI analysis.

By monitoring the evolution of the FLI along each inte-
grated trajectory we count the number of chaotic trajectories
with the FLI value equal or above the critical value 	c=50.
All chaotic trajectories are considered as possible candidates
for the classical ionization. Indeed, the absence of invariant
tori outside of the two stable structures distinguished by the
FLI analysis shows that all chaotic trajectories escape from
the vicinity of the Lagrange maximum to a zone associated
with the high classical action values. The FLI plots in Figs.
3, 4, and 7 show that the phase space surrounding the island
at the Lagrange maximum is chaotic. There are no stable
structures �except the big stable island at the center� that can
prevent the escape of chaotic trajectories and their subse-
quent ionization.

We define the percentage ionization probability from the
ratio of the number of chaotic trajectories Nchaot to the total
number of trajectories Ntotal from the volume of phase space
surrounding the maximum point as follows:

Pion =
Nchaot

Ntotal
� 100 % . �12�

The resulting apparent ionization probabilities versus the
scaled field amplitude are shown in Fig. 8. Each curve rep-
resents the ionization probability for different field polariza-
tions �. On the top panel of Fig. 8 results are shown for the
polarizations of the field close or equal to the LP limit. The
curve a indicates the percentage of chaotic trajectories in the
vicinity of Lagrange maximum for the LP field. It is clearly
seen that on average the percentage of chaotic trajectories
within the phase-space volume around the Lagrange maxi-

FIG. 7. �Color online� FLI stability plots for hydrogen in EP microwave field. K0=Kmax, �=0.6, B=0. The scaled amplitudes of the
electric field F are �a� 0.117, �b� 0.13, �c� 0.15, and �d� 0.17.
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mum point is below 20%. The ionization probability a in-
creases slowly with the increase of the amplitude of the field.
It is evident, that for the LP limit the dynamics around the
Lagrange maximum remains predominantly regular for the
electric field amplitude F in the interval �0.12, 0.18�. A quali-
tative illustration of the changes in dynamics for the LP limit
is given in Fig. 3. From this figure one observes that the
transition from regular to chaotic dynamics occurs at F
=0.2. On the top panel of Fig. 8 sharp changes in the behav-
ior of the probabilities c and d are observed for the polariza-
tions �=0.2 and �=0.3, respectively. First, the probabilities
c and d rise rapidly from the 20% and 40% for F=0.117 to
80% for the higher field amplitudes. Secondly, ionization
probabilities c and d exhibit nonmonotonic rise with the in-
creasing field amplitude. Two pronounced local maxima in
the ionization probabilities are observed for F=0.16, �=0.2
and for F=0.14, �=0.3. The main feature of the ionization
probabilities seen on top panel is the sharp transition from
almost monotonic behavior for �=0 and �=0.1 to the non-
monotonic behavior for �=0.2 and �=0.3. This shows that
dynamics around the Lagrange maximum strongly depends
on the field polarization.

On the central panel the ionization probabilities are shown
for intermediate polarizations. The behavior of the ionization
probabilities is nonmonotonic. For instance, there is a local
maximum at F=0.13 and local minimum at F=0.162 for
curve a. The percentage of chaotic trajectories in the vicinity
of the Lagrange maximum is equal to 80%. In fact, for the
field amplitude F=0.18 and polarization �=0.6 the percent-
age of chaotic trajectories is almost 90%, which means that
most of the orbits around the Lagrange maximum ionize at

these parameters of the field. These results were shown pre-
viously on the FLI stability plots in Fig. 7. Close inspection
of the top and central panels shows that the probabilities for
the higher polarizations are shifted to the left with respect to
the probabilities for the lower polarizations. For example, the
maximum for the a probability from the central panel hap-
pens at F=0.13 and the maximum for the d probability from
the left panel occurs at F=0.14.

On the bottom panel of Fig. 8 the ionization probabilities
are shown for polarizations of the field close to the CP limit.
The fact that the ionization probabilities stay close to each
other for polarizations �� �0.8,1� demonstrates the lack of
significant variations of dynamics in the vicinity of the
Lagrange maximum. The probabilities change from the 80%
for F=0.12 up to 100% for F=0.18. Moreover, the ioniza-
tion curves follow almost monotonic growth with the in-
crease of the amplitude of the field. For the CP limit all the
trajectories around the Lagrange maximum become chaotic
and ionize for F=0.15. This is the lowest ionization bound
observed.

C. Phase-space dynamics below the saddle point
of a zero-velocity surface

In this section we discuss the FLI stability results for the
ensemble of states with initial energy below the ZVS saddle
point. In addition, a nonzero constant magnetic field was
applied perpendicular to the plane of polarization.

Previously it has been shown that the application of a
magnetic field perpendicular to the polarization plane leads
to stabilization of some of the phase-space invariant tori for
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FIG. 8. Ionization probability Pion computed for the ensemble of trajectories of hydrogen in EP microwave electric field. The parameters
are B=0, K�0�=Kmax=−1.3807. Top: ionization probabilities for the polarizations close to LP, �a� 0, �b� 0.1, �c� 0.2, and �d� 0.3. Center:
Ionization probabilities for the intermediate polarizations �a� 0.4, �b� 0.5, �c� 0.6, and �d� 0.7. Bottom: Ionization probabilities for the
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hydrogen in a CP field �19,28�. In turn, the invariant tori
create barriers to the diffusion of chaotic trajectories within
the phase space. In this section we perform FLI stability
analysis for the hydrogen in EP microwave field and nonzero
magnetic field. As a starting point, the FLI stability analysis
is applied to hydrogen in the CP field for the same param-
eters of the electric and magnetic fields. The FLI calculations
are carried out on a grid of points from the x-y plane for
magnetic field B=0.2 and initial energy K0=−2 �the saddle
point value of the ZVS is Ksad=−1.7022�. The resulting FLI
stability plots are shown in Fig. 9.

In panel �a� the structure of the phase space is shown for
the CP field. Note the dark �blue in color version� island of
stability around the nucleus. The same stable island was ob-
served in Figs. 3, 4, and 7. It is located around the center of
the ZVS. The island is surrounded by the classically inacces-
sible region. The phase space outside of the region is foliated
with regular and chaotic motions. Chaotic dynamics is asso-
ciated with high values of the FLI and color coded with light
colors �yellow and red in color version�. The large resonant
zone is located on the right from the center of the FLI plot.
The phase space appears to be mostly regular, except for thin
chaotic layers winding around the large resonant zones. It is
easy to not that the structure is symmetric with respect to the
y axis. On panel �b� the phase-space dynamics is pictured for
the polarization �=0.8. The structure resembles the one
shown in panel �a�: the FLI plot shows the same resonant
structures and chaotic layers as those observed in panel �a�.
However, the overall dynamics appear more chaotic than for
the CP field case. The stability results for the intermediate
polarizations �=0.5 and �=0.3 are shown in the panels �c�
and �d�, correspondingly. The phase-space dynamics on both
panels appear to be much more chaotic than the dynamics for
the CP limit. Although the large part of the phase space on
contour plots �c� and �d� corresponds to strongly chaotic mo-

tions, several stable islands can be distinguished. For ex-
ample, two small islands of stability are located symmetri-
cally with respect to the y axis.

Our main observation from the FLI stability results de-
scribed in this section is that the application of magnetic field
leads to the stabilization of the resonant structures within the
phase space of the system. The FLI plots reflect the onset of
stochasticity in the phase space of the system that occurs
when the field polarization approaches LP limit. The phase-
space structure appears to be more regular for the field po-
larizations close to the CP limit as opposed to the polariza-
tions close to the LP limit.

D. Description of an ensemble of initial states and comparison
with the stability analysis results

Finally, in this section we introduce the classification of
the ensemble of orbits used for the FLI stability calculations
in the previous sections. In the experiment �3� the ensemble
of initial states are prepared spanning a narrow range of the
Keplerian energy E=− 1

2n2 and a variety of high eccentricity
orbits. As the field is turned on, the states with the same
action n will appear in different regions of the phase space
having different values of energy and eccentricities �
=�1− lz

2 /n2 �lz is angular momentum� in the rotating frame.
While the Hamiltonian dynamics is traditionally studied by
restricting the phase space to the constant energy manifold,
one would ideally prefer to relate numerical results with the
experiment and to study an ensemble of states with the same
Keplerian energy. However, most of the numerical simula-
tions based on the examining of the structure of the Poincaré
section use trajectories with different values of the Keplerian
energy K. For the FLI stability analysis we use an ensemble
of initial states with equal initial energies K�0� and different
values of initial action n and eccentricity �. We choose these

FIG. 9. �Color online� FLI stability plots for hydrogen in an EP microwave field. F=0.117, B=0.2, K=−2. The polarization of the field
is �a� 1, �b� 0.8, �c� 0.5, and �d� 0.3. The color scale is assigned according to the maximum values of the FLI attained over the integration
interval t=100.
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initial states to compare the stability pictures given by the
FLI method with the Poincaré sections.

The interpretation of numerical results and comparison
with experiments is much more complicated for the EP prob-
lem. The presence of the time-dependent term in the expres-
sion of the Hamiltonian in the rotating frame prevents the
one-to-one relation between the initial state �at time t=0� and
the final state �obtained after the turn-on of the field�. There-
fore, it is instructive to relate the FLI stability results for the
ensemble of states analyzed with their initial eccentricities,
actions, and angular momenta. The importance of the con-
figuration of initial states in the ionization mechanism was
realized, e.g., in Refs. �12,18,27�. We found that our results
agree in their key features with the conclusion stressed out in
Ref. �27�: The fate of the initial states subjected to the appli-
cation of the field cannot be predicted from the initial action
values and eccentricities of such states. In essence, the states
with the same initial action and eccentricity values can be
moved by the application of the field to different parts of the
phase space. We illustrate these conclusions by comparing
the FLI stability results given in Secs. IV A and IV C with
the configuration of initial states involved in the FLI compu-
tations.

First, we analyze the ensemble of states with initial en-
ergy equal to the maximum of the ZVS. In Fig. 10 the action
variables n, angular momenta lz, and eccentricities � are
computed for the ensemble of initial states used for the FLI
stability analysis in Sec. IV A. The case of zero magnetic
field is considered. The scaled amplitude of the electric field
is F=0.117, polarization is �=1, and the initial energy value

is equal to the maximum Kmax=−1.3807 of the ZVS defined
in Eq. �9�. In panel �b� the values of initial angular momen-
tum lz are shown. It can be seen from Fig. 10�b� and FLI
plots in Fig. 7 that the states inside the central stable island
correspond to negative angular momentum states. The rest of
the trajectories in the FLI plots in Fig. 7 corresponds to posi-
tive angular momentum initial states. Another important ob-
servation is that the central stable island is associated with
bounded states of different eccentricities. From the stability
results given in Sec. IV A these states remain bounded for
the range of the scaled field amplitude �0.117,0.2� and for
different polarizations of the field. From Fig. 10�c� and FLI
plots in Fig. 7 it is apparent that the initial states around the
maximum of ZVS are the low eccentricity states. In fact,
these are the states that determine the low ionization thresh-
old computed in Sec. IV B. Summarizing data given in Figs.
7 and 10 we argue that the ultimate fate of initially low
eccentricity and positive angular momentum states is to be
moved by the driving field to the chaotic region of the phase
space and undergo fast ionization. At the same time, the ini-
tial states with a negative value of angular momentum lo-
cated around the center of the ZVS remain bounded.

Next, we classify the initial states with energy below the
saddle point of the ZVS. In Fig. 11 the action, angular mo-
mentum, and eccentricity together with the FLI plot are pre-
sented for the initial states of hydrogen subject to the EP field
F=0.117 with polarization �=0.9 and magnetic field B
=0.2. The initial energy K�0�=−2 is chosen below the saddle
point Ksad=−1.7022 of the ZVS. The main conclusion from
the data given in Figs. 9 and 11 is that the initial states with
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low eccentricity tend to be more stable than the states with
high eccentricity values. For example, from Fig. 9�d� one
observes three small stable islands with low values of the
FLI: one island is around the center of ZVS and the other
two islands are symmetric with respect to the y axis. Two
symmetric islands correspond to low eccentricity states in
Fig. 11�c�.

The comparison of data presented in this section with the
stability results given by FLI analysis shows that, although
the fate of initial states can be determined from their eccen-
tricity and angular momentum values in some cases, in gen-
eral, this information is not sufficient for predicting the dy-
namics of the states after the turn-on of the field. Instead, the
analysis of the character of the states should be performed in
conjunction with the stability analysis.

V. CONCLUSIONS

In this paper, we provide a qualitative description of the
classical phase space and its relevance to the ionization of
hydrogen atom in a strong EP microwave field. Using the
FLI stability analysis, the complex multidimensional dynam-
ics is shown to depend sensitively on the changes of param-
eters including polarization, amplitude of the electric and
magnetic fields and the initial state ensemble. The FLI sta-
bility analysis allows us to picture complex phase-space
structures, such as important resonant and chaotic zones.

We map out the FLI values for each trajectory originating
on the zero-velocity subspace for the ensemble of orbits with
initial energy at the maximum of the ZVS. Our FLI stability
computations for the LP and CP fields reveal two main reso-
nant structures: a small stable island around the Lagrange
maximum of the ZVS and a large stable island around the
center of the ZVS. The small stable island corresponds to the
initial states with low eccentricity values and positive angu-
lar momenta. In contrast, the initial states from the large
stable island are the negative angular momentum states with
different eccentricity values. These states remain bounded
and their dynamics is almost unaffected by the application of
the microwave field. The remaining part of phase space is
attributed to chaotic motions that ionize quickly over the
interval of time considered in the computations. The main
feature of FLI stability results is that the ionization dynamics
is determined by the orbits with low eccentricity and positive
momentum states located around the maximum of the ZVS.
These states are the first to become chaotic and ionize for a
given strength of the field. Similar observations hold for the
EP field case: The FLI plots reflect stable structures similar
to those observed for the LP and CP problems. The main

distinction from the LP and CP field results is the behavior of
stable islands around the Lagrange maximum. It changes
nonmonotonically with the increase of the amplitude of the
electric field due to breakup and stabilization of resonant
torus structures within the island.

Our main conclusion is that the nonlinear stability of the
Lagrange maximum is determined by the parameters of the
field, such as the amplitude of electric and magnetic field as
well as the field polarization. The ionization probabilities
versus the amplitude of the electric field reflect the changes
in the local dynamics around the Lagrange maximum. They
manifest nonmonotonic growth for intermediate ellipticities
of the field. This behavior agrees with the experimentally
observed ionization yields in Ref. �3�.

The FLI stability analysis was also carried out for the
ensemble of states with initial energy below the saddle value
of the ZVS. In this case the FLI plots reflect the onset of
stochasticity in phase space that takes place as the field po-
larization changes from the circular to the linear limit. The
FLI simulations reveal the detailed structure of phase space
that is more regular for the field polarizations close to the
circular limit as opposed to the polarizations close to the
linear limit.

The application of the method can be potentially impor-
tant for the control of ionization of Rydberg states in recent
experiments �38�. The main advantage of this technique over
other available analytical and numerical methods is its inde-
pendence from the dimensionality of the system. Thus, the
stability analysis can be carried out for any subspace of ini-
tial conditions in the full-dimensional phase space of the
system.

The method can be useful for estimating the size of a
stable zone around the equilibria for the wave packet calcu-
lations and stabilization of quantum wave packets at the
Lagrange equilibria points discussed in Ref. �28�. We expect
that by varying polarization and amplitude of electric and
magnetic fields, one can achieve the stabilization of a set of
resonances around the Lagrange maximum that can possibly
lead to the stabilization of the quantum wave packets in the
EP field system.
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