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The differential cross sections for low-energy muonic hydrogen atom scattering from hydrogenic molecules
are directly expressed by the corresponding amplitudes for muonic atom scattering from hydrogen-isotope
nuclei. The energy and angular dependence of these three-body amplitudes is thus taken naturally into account
in scattering from molecules, without involving any pseudopotentials. Effects of the internal motion of nuclei
inside the target molecules are included for every initial rotational-vibrational state. These effects are very
significant as the considered three-body amplitudes often vary strongly within the energy interval �0.1 eV.
The differential cross sections, calculated using the presented method, have been successfully used for plan-
ning and interpreting many experiments in low-energy muon physics. Studies of �− nuclear capture in p� and
the measurement of the Lamb shift in p� atoms created in H2 gaseous targets are recent examples.
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I. INTRODUCTION

A calculation of the differential cross sections for low-
energy scattering of muonic hydrogen atoms from hydrogen-
isotope �hydrogenic� molecules is the main subject of this
paper. The cross sections are expressed in terms of the cor-
responding amplitudes for muonic atom scattering from
hydrogen-isotope nuclei. Thus, a dependence of these three-
body scattering amplitudes on the collision energy, scattering
angle, and spin is directly included. For numerical calcula-
tions, the three-body amplitudes computed using the adia-
batic method �1–8� are employed.

Many experiments in low-energy muon physics are per-
formed using molecular hydrogen-isotope targets �see, e.g.,
Refs. �9–15��. For planning and interpreting such experi-
ments, the differential cross sections for the following pro-
cesses are often required:

elastic scattering: a��F� + BC → a��F� + BC , �1a�

isotopic exchange: a� + BC → b� + AC , �1b�

and spin flip: a��F� + AB → a��F�� + AB . �1c�

A monic hydrogen-isotope atom in the 1S state is denoted
here by a� or b�; F and F� stand for the initial and final
total spin of the muonic atom. The molecules BC, AC, and
AB denote the hydrogenic molecules H2, D2, T2, HD, HT, or
DT. The processes �1� can take place with simultaneous ro-
tational and vibrational transitions in a target molecule. Thus,
the name “elastic” assigned here to the scattering �1a� refers
solely to the state of the muonic atom. The cross sections for
the processes �1� are henceforth called the “molecular” cross
sections.

For many years, only the cross sections for muonic hy-
drogen atom scattering from hydrogen-isotope nuclei
�“nuclear” cross sections� were available:

elastic scattering: a��F� + b → a��F� + b , �2a�

isotopic exchange: a� + b → b� + a , �2b�

and spin flip: a��F� + a → a��F�� + a . �2c�

The application of the nuclear cross sections to a description
of experiments performed in molecular targets gives very
unsatisfactory results. A characteristic kinetic energy of
muonic atoms in typical gaseous targets is lower than a few
eV �16�. Therefore, it is necessary to take into account effects
of molecular binding and electron screening.

Since a muonic hydrogen atom is a small neutral system,
the methods developed for the description of neutron scatter-
ing in matter can be adapted, to a certain extent, for the
muonic atom case. Molecular effects in low-energy neutron
scattering from nuclei bound in chemical compounds are es-
timated using the Fermi pseudopotential �17–19�. Such a
pseudopotential is proportional to the constant scattering
length. The Fermi method was used for decades for the cal-
culation of low-energy neutron cross sections �see, e.g., Ref.
�20� and references therein�. In particular, a quantum-
mechanical treatment of slow neutron scattering from mo-
lecular hydrogen and deuterium was presented by Young and
Koppel �21�.

A method of calculating binding effects in the molecular
processes �1�, based on the Fermi approach, was derived in
Refs. �22,23�. In particular, specific spin-dependent pseudo-
potentials were introduced for a description of a muonic
atom interaction with a single nucleus. However, this method
has a limited applicability since the nuclear processes �2�
involve several partial scattering waves �5,8� even at low
��1 eV� energies, in contrast to low-energy neutron scatter-
ing. Moreover, muonic atom scattering often changes
strongly �e.g., p�+ p and t�+ t� with energy in the intervals
comparable with the rotational thresholds of hydrogenic mol-
ecules. A solution to this problem is to base a calculation of
the molecular cross sections on the full nuclear scattering
amplitudes, which include all the angular and energy depen-
dence. The effective radius of interaction between a muonic*Electronic address: andrzej.adamczak@ifj.edu.pl
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atom and a nucleus is much smaller than the internuclear
distance in a hydrogen molecule �1�. Therefore, the ampli-
tude for scattering from two bound nuclei can be well ap-
proximated by a sum of the two corresponding amplitudes
for scattering from isolated nuclei. In such an approach, it is
necessary to take into account the internal motion of the
nuclei inside a target molecule. This motion can be neglected
for a molecule consisting of heavy nuclei. However, we are
dealing with the lightest molecules and, therefore, the kinetic
energy of nuclear motion due to zero-point vibration is on
the order of 0.1 eV.

In Sec. II, the amplitudes for the molecular processes �1�
are expressed in terms of the amplitudes of the three-body
reactions �2�. The derived formulas depend on the momenta
of internal motion of the nuclei in a target molecule. The
differential cross sections for scattering from molecules are
obtained in Sec. III, using a harmonic model of molecular
vibrations. Also, electron-screening corrections to the cross
sections are given in this section. Some typical examples of
the computed differential cross sections are shown in Sec. IV.

II. AMPLITUDES FOR SCATTERING
FROM MOLECULES

Let us consider a� scattering from a molecule BC con-
sisting of hydrogen-isotope nuclei b and c and two electrons.
First, we assume that the nuclei b and c are different from the
nucleus a, so that the scattering is spin independent �1,2�.
Also, electron-screening effects are neglected in this section.
The scattering lengths of the processes a�+b �c� �5,8� are
much smaller than the molecular diameter R0�300a� �a�

denotes the Bohr radius of the a� atom�. The interaction of a
muonic hydrogen atom with nucleus b �or c� is important at
distances �R0 �1�. Hence, it is assumed that a� interacts
with a single nucleus during the collision with the molecule.
We also assume that the molecular bond is unperturbed at the
moment of collision. Therefore, a� collision with b�c� is
treated here as if this nucleus were free, except for its mo-
mentum distribution due to the molecular binding �24�. This
means that the amplitude for a� scattering from a bound
nucleus is the same as that for an identical free nucleus,
provided the momentum of the relative motion is not
changed.

At large distances between a� and BC, the initial �0 and
final �n coordinate wave functions of the system are as fol-
lows:

�0�r,r�,R� = �i�r���0�R�exp�ik0 · r� ,

�n�r,r�,R� = � f�r���n�R�exp�ikn · r� , �3�

where k0 and kn are the initial and final momenta of a�; �0
and �n are the wave functions of the initial and final
rotational-vibrational states of the molecule BC. The corre-
sponding wave functions of the 1S muonic atom are denoted
by �i and � f, where the indices i and f refer to the processes
�2� with the nuclear scattering amplitudes f if �3–8�. In Fig. 1,
the relative coordinates used for providing a description of
the system are shown. The vector R connects nucleus b with
nucleus c; r denotes the a� position with respect to the cen-

ter of mass �c.m.� of BC; r� is the a� internal vector. The
vector rb stands for the a� position relative to nucleus b.

It is convenient to express the amplitude for a� scattering
from BC in terms of the momenta k0 and kn in the center-
of-mass system �c.m.s.� for a�+BC. On the other hand, the
calculated amplitudes for a� scattering from nuclei are func-
tions of the initial pb and final pb� momenta in the c.m.s. of
a�+b. Therefore, further evaluation of the molecular ampli-
tudes involves the investigation of a transition between the
nuclear and molecular momenta. First, we assume that both
the nuclear and molecular scattering can be described in the
Born approximation. The amplitude for a� scattering from b
bound in BC is thus given by the following formula �in
muonic atomic units e= � =�a�=1�:

F0n
�b��k0,kn� = −

M
2�

� d3r d3r�d3R exp�i�k0 − kn� · r�

	 �n
*�R�� f

*�r��V�b��rb,r���i�r���0�R� ,

�4�

where M is the reduced mass of the a�+BC system �the
masses of the electrons are neglected� and �a� is the reduced
mass of the a� atom,

M−1 = Ma�
−1 + Mmol

−1 , �a�
−1 = Ma

−1 + m�
−1,

Ma� = Ma + m�, Mmol = Mb + Mc.

The potential of a� interaction with a free nucleus b is de-
noted by V�b�. Using the relation

rb = r + 
bR, 
b = Mc/�Mb + Mc� , �5�

in Eq. �4� leads to the following factorization:

F0n
�b� = −

M
2�

� d3rb exp�i�k0 − kn� · rb�Vif
�b��rb�

	� d3R exp�i
b�k0 − kn� · R��n
*�R��0�R� , �6�

in which Vif
�b� denotes the nuclear matrix element

Vif
�b��rb� � � d3r�� f

*�r��V�b��rb,r���i�r�� . �7�

The first integral in Eq. �6� is the Born amplitude for a�
scattering from a free nucleus b times the factor M /�b,
where �b stands for the reduced mass of the system a�+b:

FIG. 1. �Color online� Relative coordinates used for the descrip-
tion of muonic atom a� scattering from a molecule BC. The cross
denotes the position of the center of mass of this system.
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�b
−1 = �m� + Ma�−1 + Mb

−1.

The second integral in Eq. �6� is a form factor describing the
binding of b in BC.

In order to investigate the dependence of the molecular
amplitude F0n

�b� on the internal motion of b inside the mol-
ecule, a momentum representation of the wave function �n is
introduced,

�n�R� �
1

�2��3/2 � d3�n exp�i
b�n · R�gn
�b���n� ,

gn
�b���n� �


b
3

�2��3/2 � d3R exp�− i
b�n · R��n�R� . �8�

The vector �n is the momentum of the internal nuclear mo-
tion in the final rotational-vibrational state n. The analogous
equations can be written down for the initial molecular state
�0 with the internal nuclear momentum �0. Upon substitut-
ing Eq. �8� into Eq. �4� one obtains

F0n
�b� = −

M
�2��4 � d3r d3R d3�nd3�0 exp�i�k0 − kn� · r�

	 exp�i
b��0 − �n� · R�Vif
�b��rb�gn

�b�*��n�g0
�b���0� .

�9�

Then, using new variables rb and �b

r =
�b

M
rb + 
b

Mabc

Mc
�b, R =

Ma

Mab
rb −

Mabc

Mc
�b,

Mabc = Ma + Mb + Mc, Mab = Ma + Mb, �10�

in Eq. �9� and performing integration over the vector x
= �
bMabc /Mc��b, one has

F0n
�b� = −

M
2�
b

3 � d3�nd3�0� d3rb

	exp	− i
 �b

M
kn + 
b

�b

Mb
�n� · rb�

	 Vif
�b��rb�exp	i
 �b

M
k0 + 
b

�b

Mb
�0� · rb�

	 ��k0 − kn − �0 + �n�gn
�b�*��n�g0

�b���0� . �11�

The integral over rb times −�b /2� is the Born amplitude f if
�b�

for a� scattering on a free nucleus b, expressed by the mo-
menta kn, �n, k0, and �0. Thus, Eq. �11� can be written down
in the following form:

F0n
�b� =

1


b
3

M
�b
� d3�nd3�0f if

�b�

	
 �b

M
k0 + 
b

�b

Mb
�0,

�b

M
kn + 
b

�b

Mb
�n�

	 ��k0 − kn − �0 + �n�gn
�b�*��n�g0

�b���0� , �12�

where subscripts i and f label the kind of nuclear process �2�.
Now, we make the basic assumption that Eq. �12� is satisfied

by the exact nuclear amplitudes f if
�b�. The integration over �n

is performed readily using the conservation of the total mo-
mentum, which gives

F0n
�b��k0,q� =

1


b
3

M
�b
� d3�0f if

�b��pb,pb + q�

	gn
�b�*��0 + q�g0

�b���0� , �13�

pb �
�b

M
k0 + 
b

�b

Mb
�0, pb� � pb + q . �14�

The vector q denotes the momentum transfer

q = kn − k0 = pb� − pb. �15�

Thus, the molecular amplitude F0n
�b� for scattering with a fixed

momentum transfer q is determined by the free nuclear am-
plitude f if

�b� with the same momentum transfer. However, the
initial momentum pb in the a�+b c.m.s. is different from the
initial momentum k0 in the molecular c.m.s. According to
Eq. �14�, the vector pb depends also on the internal motion of
b. This gives the following a� kinetic energy in the a�+b
c.m.s.:

b =
�b

M
 + 
b

2 �b

�bc
bc + 2
b

�b

�bcM
bccos � , �16�

where � is the angle between the vectors k0 and �0. The
muonic atom kinetic energies in the nuclear �b� and molecu-
lar �� c.m.s. are

b =
pb

2

2�b
,  =

k0
2

2M
. �17�

The internal kinetic energy bc of the molecule BC is

bc =
�0

2

2�bc
, �bc

−1 = Mb
−1 + Mc

−1. �18�

At →0, the collision energy b in the a�+b system is
determined solely by bc. This energy never vanishes be-
cause of the zero-point vibration of the molecule. In particu-
lar, for the lightest H2 molecule, the second term of Eq. �16�
is on the order of 0.01 eV. This energy is inaccessible, but it
affects the molecular scattering amplitude �13�. For a fixed ,
the spectrum of b is quite wide. Its width is determined by
the term bc, which depends on the hydrogenic-molecule
vibrational quantum ��0.3–0.5 eV�. Therefore, at a given ,
the molecular amplitude �13� contains contributions from the
nuclear amplitude f if taken at different energies. This effect
should be taken into account when f if changes significantly
within the spectrum �16� of b, which often occurs in muonic
atom scattering.

If k0��0 and kn��n, the dependence of pb on �0 in Eq.
�14� can be neglected. As a result, we get

pb �
�b

M
k0 �19�

and Eq. �13� is then factorized as follows:
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F0n
�b� =

1


b
3

M
�b

f if
�b��pb,pb + q� � d3�0gn

�b�*��0 + q�g0
�b���0� .

�20�

This formula can also be used when f if
�b� weakly depends on

the variation of pb due to the characteristic spectrum of �0.
After the substitution of the Fourier transforms �8� into Eq.
�20� and integration over �0, we obtain

F0n
�b� =

M
�b

f if
�b�
 �b

M
k0,

�b

M
k0 + q�

	� d3R �n
*�R�exp�i
bq · R��0�R� . �21�

The molecular scattering amplitudes �13� and �21� naturally
take into account the dependence of the nuclear amplitude f if
on the a� energy and scattering angle �. At low collision
energies, the amplitudes f if are well approximated by the
corresponding constant scattering lengths �if

0 . As a result, Eq.
�21� is simplified:

F0n
�b��q� � −

M
�b

�if
�b�0� d3R �n

*�R�exp�i
bq · R��0�R� ,

F0n
�b��q� ——→

q→0
−

M
�b

�if
�b�0. �22�

This equation can be formally obtained in the first Born ap-
proximation, using the pseudopotential

Vif
�b��rb� =

2�

�b
�if

�b�0��rb� =
2�

�b
�if

�b�0��r + 
bR� �23�

in Eq. �4�. Such a potential for a constant scattering length
was first introduced by Fermi �17� and more rigorously de-
rived by Breit �18� and then by Lippmann and Schwinger
�19�.

In the case of a general spherical potential with a finite
range, it is possible to generalize the Fermi pseudopotential
by the introduction of partial pseudopotentials corresponding
to subsequent scattering waves �25,26�. However, the calcu-
lations of the cross sections for muonic atom scattering on
molecules, presented in this paper, are directly based on a
knowledge of the amplitudes for nuclear scattering. There-
fore, a formulation of a generalized pseudopotential, in this
case, is superfluous. Let us only note that the correct nuclear
partial amplitudes can be formally obtained by the substitu-
tion of the following pseudopotentials:

Vif
�b�J�rb� =

2�

�b
�2J + 1��if

�b�J�pb���rb�PJ�cos �b� �24�

into Eq. �4�. The energy-dependent nuclear scattering length
�if

�b�J is defined as follows:

f if
�b�J = − �2J + 1��if

�b�JPJ�cos �b� , �25�

where f if
�b�J are the partial nuclear amplitudes for a�+b scat-

tering �3–8� and J is the angular momentum of the a�+b
system. The angle between the vectors pb and pb� is denoted

here by �b. The function PJ is the Jth Legendre polynomial.
The problem of the angular and energy dependence of the

nuclear scattering t�+d in the t�+D2 process was alterna-
tively solved in Ref. �27� by the introduction of the effective
polarization potential ��r−4�. However, the magnitude of
such a potential for the t�-d interaction was determined
separately for every given collision energy. Thus, such an
approach is more complicated than the direct use of the com-
puted nuclear-scattering amplitudes and neglects a wide dis-
tribution of the deuteron kinetic energies in the D2 molecule.

When the internal motion of the nuclei inside the target
molecule cannot be neglected, the molecular amplitude is
given by Eq. �13�. However, in a general case, the numerical
evaluation of the integrals over �0 is difficult. The role of the
internal motion is most important if the condition q��0 is
satisfied, which implies that the internal state of the molecule
is not changed �gn

�b�=g0
�b��. In this case, Eq. �13� is approxi-

mated as follows:

F00
�b��k0� �

M
�b

f if
�b��k0� ,

f if
�b��k0� � � d3�0f if

�b��pb,pb��P0
�b���0� , �26�

with P0
�b���0� being the distribution of the momentum of

nucleus b in the molecule:

P0
�b���0� � 
b

−3�g0
�b���0��2. �27�

For elastic scattering at k0→0, when one expects that the
internal-motion effect is the strongest, the molecular scatter-
ing amplitude is

F00
�b� � −

M
�b

�if
�b�0, �28�

where the overbar denotes averaging over �0. Equations �26�
and �28� suggest a reasonable approximation of formula �13�
for finite k0. When the exact nuclear amplitude f if

�b� is re-
placed by the averaged function

f if
�b��k0,q� � − �

J

�2J + 1��if
�b�J�k0�PJ�cos �b� ,

�if
�b�J�k0� � � d3�0�if

�b�J�pb�P0
�b���0� , �29�

Eq. �13� is factorized. This leads, finally, to an equation simi-
lar to Eq. �21�, with f if

�b� replaced by the mean amplitude f if
�b�.

This approximation gives the limit �28� at k0→0. On the
other hand, this approximation coincides with the asymptotic
amplitude �21� at k0��0. The dependence of �b on �0 is
neglected here since the higher partial waves �J�0� in the
nuclear scattering are important only at k0��0.

III. MOLECULAR DIFFERENTIAL CROSS SECTIONS

A. Spin-independent scattering

In the presented approach, the total amplitude F0n for a�
scattering on a molecule BC is equal to the sum of the am-
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plitudes for scattering on the bound nuclei b and c,

F0n�k0,q� = F0n
�b��k0,q� + F0n

�c��k0,q� , �30�

where F0n
�b� is given by Eq. �21�, and the derivation of F0n

�c� is
analogous. Let us first consider the spin-independent case a
�b, c. Assuming that vibrations of the molecule are har-
monic and that there is no coupling between the vibrational
and rotational degrees of freedom, the molecular wave func-
tion �n�R� takes the form

�n�R� =
u��R�

R
YKMK

�R̂�, R̂ �
R

R
, �31�

where the quantum numbers K and MK label the rotational
state of BC. The radial wave function u� corresponding to the
vibrational quantum number � is

u��R� = N�H�„��R − R0�…exp�− 1
2�2�R − R0�2� ,

N� = �

�2��!
, � = �bc �0, �32�

where H� denotes the �th Hermite polynomial. The rotational
EK and vibrational E� energy levels are given as

EK = BrotK�K + 1�, E� = �� + 1
2��0. �33�

At the temperatures usually applicable to experiments, hy-
drogenic molecules are initially in the ground vibrational
state �=0.

Inserting the expansion of the free-wave function �in
terms of the spherical Bessel functions jl and the spherical
harmonics Ylm� into Eq. �21�, one obtains for the bound
nucleus b

F0n
�b� = 4�

M
�b

f if
�b��

l,m
ilD�l�
bq�Ylm

* �q̂�

	� d�RYK�MK�
* �R̂�Ylm�R̂�YKMK

�R̂� . �34�

The real function D�l�
bq� is a result of the integration over
R,

D�l�
bq� � �
0

�

dR u��R�jl�
bqR�u0�R� ,

D�l�
bq� ——→
q→0

�1 if � = 0 and l = 0,

0 otherwise.
�35�

The initial state of the molecule is denoted here by the set of
rotational and vibrational quantum numbers 0= �K ,MK ,�
=0�. The final state is labeled by n= �K� ,MK� ,��. The indices
i and f in the nuclear amplitude f if

�b� refer to the initial and
final states �spin or isotopic� of the scattered muonic atom.
Integration of the three spherical harmonics in Eq. �34� over
the solid angle �R leads to the following result:

F0n
�b� = �4��2K� + 1��2K + 1��1/2�− 1�MK� iK−K�

	
M
�b

f if
�b��

l,m
�2l + 1�1/2D�l�
bq�Ylm

* �q̂�

	 
K� l K

0 0 0
�
 K� l K

− MK� m MK
� ,

�36�

expressed by the Wigner 3j symbols.
The molecular differential cross section, averaged over

the projection MK of the initial angular momentum and
summed over the projection MK� of the final angular momen-
tum, is equal to

d�0n

d�
=

kn

k0

1

2K + 1 �
MK,MK�

�F0n
mol�2. �37�

The solid angle ��� ,�� is connected with the direction of
the vector kn with respect to the initial a� momentum k0
�see Fig. 2�. Substitution of Eq. �36� and the analogous for-
mula for the nucleus c into Eqs. �30� and �37� gives the
following cross section:

d�0n

d�
=

kn

k0
�

l

WK�lK	
M
�b

�2

�f if
�b��2D�l

2 �
bq�

+ �− 1�l2
M2

�b�c
Re�f if

�b�*f if
�c��D�l�
bq�D�l�
cq�

+ 
M
�c

�2

�f if
�c��2D�l

2 �
cq�� , �38�

where the angular-momentum factor WK�lK is defined as

WK�lK � �2K� + 1��2l + 1�
K� l K

0 0 0
�2

, WK0K = 1.

�39�

The reduced mass of the a�+c system is

�c
−1 = �m� + Ma�−1 + MC

−1

and


c = 1 − 
b = Mb/�Mb + Mc� .

FIG. 2. �Color online� Relations between the initial and final
momenta and between the scattering angles �b and � in the nuclear
and molecular c.m.s. �for k0��0�.
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When BC is symmetric �b=c, �b=�c=�, 
b=
c=
= 1
2 , and

f if
�b�= f if

�c�= f if�, Eq. �38� takes the simpler form

d�0n

d�
= 2
M

�
�2

�f if�2
kn

k0
�

l

��− 1�l + 1�WK�lKD�l
2 �
q� .

�40�

The molecular cross sections �38� and �40� directly include
the dependence of the “bare” nuclear amplitudes f if on the
collision energy b �c� and on the scattering angle �b ��c�.
They are derived for high collision energies k0��0. How-
ever, they can also be used at lower energies as a reasonable
approximation if the nuclear amplitudes f if

�b� �f if
�c�� are re-

placed by the amplitudes f if
�b� �f if

�c�� averaged over P0
�b� �P0

�c��.
In the case of the wave function �31�, the momentum distri-
bution �27� for the ground vibrational state �=0 of the mol-
ecule BC has the form

P0
�b���0� = 4


b
3R0

2

��
jK
2 �
b�0R0�exp
−


b
2�0

2

�2 ��YKMK
��̂0��2,

�41�

in which �̂0=�0 /�0. After averaging P0
�b� over orientations of

the molecule, one obtains

P0
�b���0� =


b
3R0

2

��3/2 jK
2 �
b�0R0�exp
−


b
2�0

2

�2 � . �42�

A distribution P0K of the internal kinetic energy bc of the
target molecule can be derived similarly. For �=0, one has

P0K�bc�dbc =
2R0

2�2

�
jK
2 �R0��bc�exp�− �bc��bcd�bc,

�43�

where �bc=2bc /�0. This distribution is widest for the light-
est H2 molecule. According to Eq. �16�, this leads to a broad
distribution of the collision energy b in the nuclear c.m.s.
for a fixed collision energy  in the molecular c.m.s. In Figs.
3 and 4, the calculated b spectrum for the ground-state H2
molecule at several values of  is presented. At the lowest
energies, the shape of this spectrum is mainly determined by
the motion of a bound proton. The mean value of b equals

0.036 eV for =0.001 eV. For =0.1 eV, a single broad
peak with a mean value of 0.11 eV is observed in the b
spectrum. Only at �1 eV does the average b approach the
asymptotic value of ��b /M� given by the first term of Eq.
�16�. However, the width of the b distribution, determined
by the last term of this equation, increases with rising . The
ratio of this width to the mean value of b decreases as −1/2.

B. Spin-dependent scattering

When at least one of the nuclei bound in BC �e.g., the
nucleus b� is identical with the nucleus a, it is necessary to
consider spin-dependent reactions �2a� and �2c�. Let us intro-
duce the following notation:

J � s� + sa + sb + sc,

F � s� + sa, I � sb + sc,

Sb � F + sb, Sc � F + sc,

J = F + I = Sb + sc = sb + Sc, �44�

where s�, sa, sb, and sc are the spins of the muon and of the
nuclei a, b, and c, respectively. Thus, J is the total spin of
a�+BC system and I is the total nuclear spin of the mol-
ecule. It is assumed that J is conserved in the scattering
since the spin-orbit interaction is very weak. Also, it is as-
sumed that the spin Sb �Sc� is conserved in local collisions of
a� with the nucleus b �c� bound in BC.

If the isotope c is different from a and b, the molecule BC
is asymmetric and its parity is not definite. Thus, the direc-
tions of the nuclear spins sb and sc are independent of each
other, and a unique spin Sb of the subsystem a�+b is as-
signed to the initial �i and final � f spin states of the system
a�+BC �with fixed values of F and F��. These states can be
written down as follows:

�i�Sb,sc;F� = �a�−b�Sb;F��c�sc� ,

� f�Sb,sc;F�� = �a�−b�Sb;F���c�sc� , �45�

where �a�−b and �c are the eigenfunctions of the conserved
spins Sb and sc, respectively. In this case, the total wave
functions take the form
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FIG. 3. �Color online� Distribution of collision energy b in the
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�0 = �i�r���0�R�exp�ik0 · r��i�Sb,sc;F� ,

�n = � f�r���n�R�exp�ikn · r�� f�Sb,sc;F�� , �46�

at large distances r. In order to obtain the correct molecular-
scattering amplitudes, symmetrization of the functions �0 ,�n
over the two identical particles a and b should be performed.
As a result, we obtain the molecular amplitude F0n

�b� which is
expressed by Eq. �36� with f if

�b� replaced by the spin-
dependent nuclear amplitude fFF�

Sb for the process �2a� or
�2c�. The calculated amplitudes fFF�

Sb are already symmetrized
over the identical nuclei �3–6�. Similarly, the total molecular
cross section d�0n

Sb /d� for a=b�c is given by Eq. �38� with
f if

�b� replaced by fFF�
Sb . In the case of a spin-flip reaction, we

substitute f if
�c�=0 in Eq. �38�, because this process is very

weak when the isotope b is different from a �28�. The cross
section d�0n

Sb /d� can be averaged over the projections of
spin Sb, which gives the mean cross section d�0n /d�.

When all the hydrogen isotopes are identical, the mol-
ecule BC is symmetric and its initial and final parities PI and
PI� are definite. Therefore, the values I and I� of the molecu-
lar spin are definite. The total spin functions of a�+BC are
now eigenstates of J with fixed values of F and I �or F� and
I��. Thus, the total spin state is determined by four quantum
numbers: the absolute value J of the total spin J, its pro-
jection Jz, F, and I. The initial and final total wave functions
of the system with a=b=c are

�0 = �i�r���0�R�exp�ik0 · r��i�J;F,I� ,

�n = � f�r���n�R�exp�ikn · r�� f�J;F�,I�� , �47�

with the following condition to be satisfied:

F + I = F� + I� = J . �48�

The functions �i and � f contain contributions from different
states of the operator Sb. They can be expanded as follows:

�i�J;F,I� = �
Sb

Cb�Sb,sc;F,I��a�−b�Sb��c�sc� ,

� f�J;F�,I�� = �
Sb

Cb��Sb,sc;F�,I���a�−b�Sb��c�sc� , �49�

with sc subject to the condition Sb+sc=J. The factors
Cb�Sb ,sc ;F , I� and Cb��Sb ,sc ;F� , I�� are obtained by multiple
use of the Clebsch-Gordan coefficients. The expansions of
the total spin functions in terms of �a�−b�Sb� are necessary
since the presented method is based on knowledge of the
three-body scattering amplitudes fFF�

Sb evaluated for fixed val-
ues of Sb.

After performing a symmetrization of the total potential
V�b�+V�c� and of the wave functions �47� over the three iden-
tical nuclei and proceeding as in Sec. II for the spinless case,
one obtains

F0n
�b� =

M
�

�
Sb

Cb�Sb,sc;F,I�Cb��Sb,sc;F�,I��fFF�
Sb

	� d3R �n
*�R�exp�i
q · R��0�R� . �50�

In the derivation of Eq. �50�, it has been assumed that the
three nuclei are never close together, i.e., the nucleus c is
only a distant spectator when a� collides with the nucleus b.
As a result, the molecular amplitude �50� is expressed in
terms of the three-body amplitudes fFF�

Sb . By employing Eq.
�50�, the total molecular amplitude takes the form

F0n =
M
�

FFF��K,K�� � d3R �n
*�R��exp�i
q · R�

+ PIPI�exp�− i
q · R��0�R�� , �51�

where FFF��I , I�� is given as

FFF��I,I�� � �
Sb

Cb�Sb,sc;F,I�Cb��Sb,sc;F�,I��fFF�
Sb .

�52�

This result is independent of the choice of nucleus b because
of the symmetry b↔c, Sb↔Sc, and sc↔sb. Using the ex-
pansion of the plane wave in terms of the spherical harmon-
ics in Eq. �51� and taking into account that �1+ PIPI��−1�l�
=2 for every allowed rotational transition, we obtain

d�0n

d�
= 4
M

�
�2

�FFF��K,K���2
kn

k0
�

l

WK�lKD�l
2 �
q� ,

�53�

in the case a=b=c. Since, in experiments, both the muonic
atoms and the target molecules are not polarized, the cross
section is averaged over J and I and summed over I� �for
fixed K and K��, which is denoted by the horizontal bar over
the squared amplitude �FFF��

2.

C. Electron-screening corrections to molecular cross sections

The differential molecular cross sections derived in the
previous section include only the muonic-atom interaction
with nuclei. It is necessary, however, to include the electron-
screening effects in a� scattering from molecules. At 
�1 eV, the relative velocity of a� and BC is smaller by
several orders of magnitude than the muon velocity in a�
and is also smaller than the electron velocity in the molecule.
Therefore, it is possible to introduce an effective electron-
screening potential, which is obtained by averaging the Cou-
lomb interaction between a� and the electrons over the
muon and the electron coordinates. The range of a dominant
fraction of the a�-b potential is smaller than about 20a� �1�.
On the other hand, the a� interaction with the electrons is
important at distances on the order of the Bohr radius ae
�207a� of the electronic hydrogen atom. Thus, a� collision
with an ordinary molecule can be described as scattering on
the two potentials with very different ranges.

The effective screening potential Vel for a� scattering
from hydrogenic molecules has the following form �22,29�:
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Vel = −
C�3

ae
3�1 + S�

2�
	exp
−

2�

ae
�r + 
bR��

+ 2S� exp
−
�

ae
��r + 
bR� + �r − 
cR���

+ exp
−
2�

ae
�r − 
cR��� , �54�

in which

C = 2�� + 8.4me, �� = �Ma − m��/�Ma + m�� ,

and

S� = �1 + w� + 1
3w�

2�exp�− w��, w� =
�R0

ae
, � = 1.2.

The electronic correction to the process �1a� is calculated
using the first Born approximation. The total molecular am-
plitude F0n

mol is now equal to the sum of the nuclear ampli-
tudes and the screening amplitude F0n

el ,

F0n
mol�k0,q� = F0n

�b��k0,q� + F0n
�c��k0,q� + F0n

el �q� , �55�

where

F0n
el �q� = −

M
2�

� d3r d3R exp�− iq · r�

	 �n
*�R�Vel�r,R��0�R� . �56�

The calculated amplitude F0n
el falls rapidly when qae�1,

which occurs even for the lowest rotational excitations of a
hydrogenic molecule. Therefore, it is sufficient to take this
amplitude into account only for the strictly elastic scattering.
The isotopic exchange �2b� and the strong spin-flip �2c� re-
actions are due to the exchange of the muon between two
nuclei taking part in direct collision. Therefore, a� scattering
from electrons cannot cause these reactions. The first nonva-
nishing screening corrections to the spin-flip or isotopic-
exchange cross sections appear only in the distorted wave
Born approximation.

A further evaluation of the screening corrections to the
scattering amplitudes should be performed numerically. With
regard to the elastic processes, these corrections are very

significant. For example, at →0, the screening amplitude
F0n

el for p�+H2 elastic scattering is comparable to the corre-
sponding p�+ p scattering amplitude. In this limit, the rela-
tive screening corrections to the spin-flip or isotopic-
exchange amplitudes are on the order of 10%. At �1 eV,
screening effects practically vanish for all processes.

IV. EXAMPLES OF MOLECULAR CROSS SECTIONS

In this section some typical examples of the molecular
cross sections are shown. The nuclear scattering amplitudes
given in Refs. �3–8� are used as the input for computation of
the molecular differential cross sections. These amplitudes
are first averaged over the internal motion of nuclei inside
the target molecules, according to Eq. �29�. In Figs. 5 and 6,
the averaged nuclear amplitudes f11

1/2 for the elastic scattering
p��F=0�+H2 and t��F=0�+T2 are shown. The input
nuclear amplitudes f11

1/2 are plotted versus collision energy 
in the molecular c.m.s., using the high-energy asymptotic
relation = �M /�b�b. The cusp in the elastic cross section
p�+ p, located at the spin-flip threshold, is smeared out after
the averaging over proton motion in H2. Although the vibra-
tional quantum for T2 is smaller than that for H2, smoothing
of the amplitude for t�+ t elastic scattering is also important,
owing to strong changes of its value within the energy inter-
val of 0.1 eV. This is particularly visible in the cusp region
and at →0. This smearing strongly affects the molecular
cross sections, which are expressed by the squared ampli-
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tudes. The elastic cross sections for d�+d scattering are
quite flat at the lowest energies �3,5,6�. As a result, differ-
ences between the amplitudes f if

S and f if
S are much smaller

than in the protium or tritium case. The role of smearing
effects was investigated during a final analysis of the Abbott
et al. diffusion data �16�. A spectacular improvement of the
fits to the data, especially for p� diffusion in H2, was
achieved when the averaged nuclear amplitudes f if

S were used
for the calculations of the molecular cross sections. This
mainly concerns the elastic cross sections, as smoothing ef-
fects are generally much smaller in the case of spin-flip or
isotopic-exchange amplitudes, which weakly depend on the
energy below 1 eV �3–5,7,8�.

Electron-screening and molecular-binding effects are
clearly seen in the molecular differential cross sections. The
range of the screening potential �54� is on the order of ae, so
that the condition k0ae�1 is satisfied already at 
�0.001 eV. Many partial waves begin to contribute signifi-
cantly to the screening amplitude �56� above 0.001 eV. As a
result, the molecular cross sections are anisotropic even at
very low energies. Moreover, scattering from a molecule is
connected with different rotational transitions, which addi-
tionally leads to a complicated angular distribution of the
scattered atoms. This is in contrast to a� scattering from a
bare hydrogen nucleus, where few partial waves contribute
significantly to the nuclear cross sections below 100 eV. In
all of the three-body cases, the s-wave cross section de-
scribes scattering below 0.1–1 eV well, which is therefore
isotropic in the nuclear c.m.s. The cross section d�0n /d� for
p� scattering from a ground-state H2 molecule is presented
in Fig. 7, for =0.25 and 0.5 eV. Scattering at the angle �
�30° is dominated by p� scattering from the electron cloud.
The peaks at greater angles are due to the rotational transi-
tions K=0→K�=2 and K=0→K�=4. The angular positions
of the scattering peaks change with the variation of p� en-
ergy.

The differential cross sections for p� scattering from a
free proton and from a H2 molecule are plotted in Figs. 8 and
9 as functions of the collision energy  and the scattering
angle � in the molecular c.m.s. Figure 8 illustrates the cross
section for the elastic p�+ p scattering, multiplied by 2. The
mass of the target particle is, however, set to the H2 mass, for

the sake of comparison with this molecular target. Only the s
wave contributes to the p�+ p cross section in the considered
energy interval. However, the scattering is not isotropic in
the molecular c.m.s. A cusp is apparent at the energy of the
spin-flip threshold. The surface in Fig. 9 describes the corre-
sponding cross section d�0n /d� �cut above a value of 3.5
	10−20 cm2/sr� for the ground-state H2 molecule. The
electron-screening contribution to the differential cross sec-
tion is clearly seen at all angles for �0.05 eV and only as
a forward peak at higher energies. The lowest rotational tran-
sitions can be distinguished in this plot. Also a smearing of
the molecular cross section due to the proton internal motion
in H2 is visible, especially in the spin-flip threshold region.
The sections of the surfaces shown in Figs. 8 and 9 with the
plane =1 eV are already quite similar, apart from the for-
ward scattering. Thus, the molecular scattering at larger en-
ergies and angles, which contains contributions from many
rotational-vibrational transitions, approaches the “doubled”
nuclear scattering. For a better comparison, the angular de-
pendence of the doubled nuclear and the molecular cross
sections are shown in Figs. 10 and 11, at a fixed collision
energy. For =0.1 eV, the two cross sections are very differ-
ent at all angles. For =1 eV, these cross sections are al-
ready quite similar at larger angles ��20°. One sees that
there are only small rotational oscillations of the molecular
curve around the doubled nuclear curve.
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The differential cross sections for the downwards spin-flip
reaction in p��F=1� scattering from a proton and from a H2
molecule are shown in Figs. 12 and 13. Electron-screening
and molecular-binding effects in the spin-flip reactions are
not so important as in the case of spin-conserving scattering
�cf. Figs. 9 and 13�, owing to higher momentum transfers.
Larger differences between the nuclear and the molecular
spin-flip cross sections appear mainly at small collision en-
ergies and small angles.

Simulations of experiments performed in gaseous hydro-
genic targets require knowledge of the differential cross sec-
tions for the molecular processes �1�. These molecular cross
sections have been computed and stored as computer files.
They have been applied for planning and interpreting many
experiments in H-D gaseous targets. For example, optimal
conditions for studies of �− nuclear capture in p� �11,12�
and for the measurement of the Lamb shift in p� atoms
�13–15� created in H2 targets have been determined using the
calculated molecular cross sections. These experiments are
now under way.

V. CONCLUSIONS

A method of calculating the differential cross sections for
low-energy muonic-atom scattering from hydrogenic mol-
ecules has been developed. This method directly uses the
corresponding amplitudes for muonic-atom scattering from
hydrogen-isotope nuclei, calculated within the framework of
the adiabatic method for the three-body problem with the
Coulomb interaction. Thus, the presented method naturally
includes the angular and energy dependence of the three-
body amplitudes in the scattering from hydrogenic mol-
ecules. Since, in many cases, the considered three-body scat-
tering amplitudes depend strongly on the collision energy
within the interval �0.1 eV, a broad distribution of the
nucleus kinetic energy in a hydrogenic molecule is taken into
account. The molecular vibrations are described in the har-
monic approximation. Therefore, the evaluated cross sections
are valid below a few eV.

For a fixed energy  of a muonic atom collision with a
hydrogenic molecule, the calculated collision energy b in
the system consisting of the atom and a single hydrogen-
isotope nucleus has a wide spectrum. At →0, this spectrum
reveals the shape of the kinetic energy distribution of the
nucleus in a given rotational-vibrational state of the mol-
ecule. This effect is very significant, even for the molecular
ground state, as the energy of zero-point vibration in hydro-
genic molecules is quite large. The width of the b spectrum
for the lightest H2 molecule is on the order of 0.1 eV. At
higher , this width is even larger. As a result, the three-body
amplitudes are strongly smoothed when calculating the mo-
lecular cross sections. This effect and the energy and angular
dependence of the three-body amplitudes are included in the
calculated set of differential cross sections for low-energy
scattering of 1S muonic hydrogen atoms from hydrogenic
molecules. These theoretical cross sections give good agree-
ment with many experiments involving p� and d� scattering
in gaseous H-D targets. The presented method can also be
applied for scattering of other ground-state exotic atoms or
neutrons from hydrogenic targets.
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FIG. 11. �Color online� The same as in Fig. 10, at =1 eV.
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