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Using He@C60 as an example, we demonstrate that the static potential of the fullerene core essentially alters
the cross section of the two-electron ionization differential in one-electron energy d�++��� /d�. We found that
at high photon energy prominent oscillations appear in it due to reflection of the second slow electron wave on
the C60 shell, which “dies out” at relatively high � values, of about 2–3 two-electron ionization potentials. The
results were presented for ratios RC60

�� ,���d�++�� ,�� /d�a++�� ,��, where d�a++�� ,�� /d� is the two-
electron differential photoionization cross section. We have calculated the ratio Ri,ful=�i

++��� /�i
a++���, that

accounts for reflection of both photoelectrons by the C60 shell. We have also calculated the value of two-
electron photoionization cross section �++��� and found that this value is close to that of an isolated He atom.
Results similar to He@C60 are presented for He@C70 and He@C76.
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I. INTRODUCTION

Elimination of two electrons by a single photon from an
atom or multiatomic formation, such as cluster or fullerene,
can take place only if the interelectron interaction is taken
into account. The desire to study the manifestation of this
interaction stimulates extensive experimental and theoretical
investigation of the process that has particularly intensified
over the last ten to fifteen years �see, e.g., Refs. �1,2��. Al-
though a number of atoms were studied, primary attention
was given to helium. At this moment theoretical and experi-
mental investigations cover the frequency region from the
near threshold region up to photon energy � much higher
than the two-electron ionization potential I++.

Very close to threshold the two-electron photoionization
cross section is determined by so-called Wannier regime �3�
with both electrons strongly repulsing each other that results
in acquiring almost the same energy and moving in opposite
directions.

With the increase of � for � considerably more than I++,
the so-called shake-off �SO� mechanism �4� became domi-
nant, in which one electron leaves the atom carrying away
almost all energy �, while the second is removed due to the
alteration of the field acting upon it after the first electron
emission. With energy growth the so-called quasifree �QF�
mechanism �5� becomes increasingly important. This mecha-
nism accounts for almost equal sharing of photon energy
between photoelectrons, where their interaction on the way
out of the ionized atom is inessential.

Obviously, the cross section of two-electron photoioniza-
tion �++��� is determined by initial and final state wave
function of the considered object-target atom at the begin-
ning and ion with two continuous spectrum electrons at the
end. The situation is simplified considerably at high enough
�, where cross sections and other characteristics of the two-
electron ionization are expressed via the initial state wave
function only.

In fact, one has to have in mind that two-electron ioniza-
tion is a pure three-body problem only for two-electron atom
and ions. This process for any other, more complicated ob-
jects is determined by more sophisticated wave functions.
This is why most of the attention is given usually to studies
of two-electron photoionization of H−, He, and heliumlike
atoms. At high � the �++ and �+ have similar � dependence
�6�. Therefore it is convenient to characterize the process by
the ratio R���=�++��� /�+���.

The SO leads for �� I++ to R���=RSO �see Ref. �7�, and
references therein�. Inclusion of QF increases R��� consid-
erably but at high enough � the ratio again reaches its
�-independent value RQF�RSO �8�.

A lot of attention was given to photoionization of not
isolated atoms, but atoms encapsulated into the fullerene,
mainly C60 shell �see, e.g. Refs. �9,10��. The research in this
area up to now has been purely theoretical. But we are posi-
tive that it will become an object of experimental studies in
the not too distant future. It is well known that C60 radius R
is much bigger than that of the atoms staffed inside the so-
called endohedral atom A@C60.

The inclusion of the C60 shell can affect the photoioniza-
tion atom in four directions. At first, and this is usually taken
into account, the photoelectron emitted by A is reflected by
the C60 shell that “works” as a static potential. Then, the C60
shell has its internal degrees of freedom �11� that can be
excited thus modifying the photoionization of the atomic
shells in A@C60 in a similar way that one shell affects the
photoionization of the other in isolated atoms �12�. Among
the C60 degrees of freedom the most prominent is the giant
resonance that persists not only in C60 �11�, but in its ions as
well �13�. Real or virtual excitations of the giant resonance
can modify the A atom photoionization cross section from
almost complete screening at �→0 to prominent enhance-
ment at � in the vicinity of the giant resonance maxima
�14,15�. Note that at high � this screening becomes mainly
inessential, but has to be taken into account at low �.
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The other two directions of C60 influence upon the A atom
photoionization is the direct knock out of C60 electrons by
the photoelectron from A and the participation of C60 elec-
trons in the decay, both radiative and nonradiative, of the
vacancy, created in A after photon absorption. Note that this
mechanism is similar to one of the frequently discussed
channels of the molecular vacancy decay. The corresponding
two possibilities in the application to C60 have not yet been
studied at all.

In principle, the interelectron interaction in atom A that
causes its two-electron ionization as well as ionization with
excitation is modified due to its dynamical screening by vir-
tual excitations of the C60 shell. As we will estimate, this
contribution is very small, less than 1%, due to the smallness
of atom A as compared to the fullerene radius.

In this paper we consider a more complex process,
namely, the two-electron photoionization of He@C60. We
will concentrate on the high � region. Of course, to investi-
gate this process experimentally is more complicated than
one-electron photoionization. However, there are no indica-
tions whatsoever that such an investigation is either impos-
sible �or even extra-ordinarily difficult� or uninteresting.

The role of C60 shell in two-electron photoionization is
more complex than in the single electron, since outgoing
electrons can be either both from the inner atom A, or both
from the C60, or one from A and the other from C60. How-
ever, by measuring two outgoing electrons in coincidence we
can distinguish all the different processes. It is particularly
important, since the cross section of the two-electron photo-
ionization of C60 itself is much bigger than that of He@C60.

While, as far as we know, the two-electron photoioniza-
tion of endohedral atoms, e.g., He@C60, was not discussed in
the literature at all, two-electron photoionization was studied
to some extent both experimentally �16� and theoretically
�17�.

In this paper we consider He@C60 two-electron photoion-
ization, mainly, at high �. Having in mind that our aim is to
study the C60 influence upon double ionization, we have to
consider the SO mechanism only. Indeed, the QF leads to
two fast electrons, which are not affected by C60, while in
SO one of the electrons is slow. Its probability to leave
He@C60 can therefore be strongly affected.

Our attention in this paper will be given to the differential
in energy cross sections d�++��� /d�s, where �s is the “slow”
photoelectrons energy. It is implied that the “fast” electron
energy � f is given by the conservation law � f =�−�s− I++.
The atomic system of units is accepted in this paper e=me
=�=1, where e and m are electron charge and mass, respec-
tively.

We will assume that both electrons are removed from the
He atom, thus intensionally neglecting a process that one can
call “A@C60 shake off,” in which after “fast” electron leaves
A, the “slow” electron is emitted by the C60 shell instead of
located inside atom A. The A@C60 shake off is potentially
very important due to large number of C60 electrons, that can
be easily removed. . Therefore, it is possible that He@C60
shake off is much more probable than the ordinary one. It is
possible, that an important role can be played by multiple
A@C60 shake off, in which not one but several electrons can
be removed from C60 after instant creation of a vacancy in A.

One has to have in mind that for an isolated atom A the
photoionization with excitation cross section �+*��� can be
of the order or even bigger than �++���. It is essential to
have in mind that the �+*��� for A@C60 can be converted
into �++���, since the excitation energy of A+, particularly in
the case of He, is bigger than the ionization potential of C60.
We plan, however, to concentrate on A@C60 shake off in
another paper.

Let us note that the approach developed in this paper per-
mits one to make the problem of two-electron ionization of
He@C60 much simpler than the two-electron ionization of
C60 itself. In fact, the only assumptions that are made is that
the fullerene radius R is much bigger than the atomic radius
ra and that the thickness of the C60 shell �R is much smaller
than R, R�ra and R��R. In the frame of this approxima-
tions it is possible to reduce the influence of C60 upon two-
electron photoionization of A@C60 to easily calculative fac-
tors that depend only upon the fullerene radii R and their
electron affinities.

It is of interest to see how the size of the fullerene affects
all the picture of two-electron photoionization of endohedral
atoms. This is why we performed calculations not only for
He@C60 but for He@C70 and He@C76 also. Since C70 and
C76 are nonspherical, the approach presented below works
for them, perhaps worse, than for C60. However, in order to
obtain qualitative trends, we perform calculations for C70 and
C76 as for spherical objects with radii of an equiareal sphere
�27�. All three fullerens mentioned above we will denote as
CN.

II. MAIN FORMULAS

The two-electron photoionization cross section of an atom
A in initial state i, �i

a++���, can be presented by the following
expressions:

�i
a++��� = �

0

�−I++ d�i
a++��,��

d�
d� , �1�

where at high �, �� I++, the differential in energy cross
section d�i

a++�� ,�� /d� is given by the expression �18�

d�i
a++��,��

d�
=

32�2Z2�

3c�7/2 �� 	i�0,r�
�0�r�dr�2

. �2�

Here 	i�0,r� is the r1=0 value of 	i�r1 ,r2�, which is in
our case the initial state wave function of atomic He. The
“slow” outgoing electron is described by a pure Coulomb
wave function, that describes an s-wave electron, that moves
in the field of a nucleus with charge Z.

Similar to Eq. �1� the cross section of ionization with
excitation �+*��� is given by the following expression:

d�i
a++��,��

d�
=

32�2Z2�

3c�7/2 	
n�0

�� 	i�0,r�
n0�r�dr�2

. �3�

Here n is the principal quantum number of the second elec-
tron excitation level.

Now let us consider He@CN two-electron photoioniza-
tion and take into account the C60 shell. It is clear that CN
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potential does not affect the “fast” electron, which remains to
be described by a plane wave. The CN shell generates poten-
tial field, that is almost uniform at atomic distances ra, where
the initial state of He is located. Therefore, for the initial
state the embedding of an atom A into CN can lead only to
the shift of the energy scale, i.e., to modification of the ion-
ization threshold. This feature is inessential for us, since �
� I++.

Thus, we have to take into account the action of CN upon
the slow outgoing electron. The fullerene is a very complex
structure. Therefore, to take into account its action upon pho-
toelectron essential simplifications are necessary. We will
follow here the approach developed in a number of papers
�see Refs. �19,20�, and references therein�, that substitutes
the complicated CN multiatomic structure by a very simple
so-called bubble potential V�r�=V0��r−R�, where V0 is cho-
sen to reproduce the affinity energy of the negative ion CN,
and ��r−R� is the Dirac delta function.

As it was demonstrated in Refs. �20,21� in connection to
the one-electron photoionization, the influence of the bubble
potential can be taken into account analytically, by construct-
ing the outgoing wave function as a superposition of regular

�l�r� and irregular ��l�r� �singular at r→0� solutions of the
Schrödinger equation for an electron with energy �. Inside
the potential bubble the photoelectron wave function �l�r�
differs from 
�l�r� only by a normalization factor
Dl��� :�l�r�=Dl���
�l�r�. The factor Dl��� depends upon
the photoelectron energy �, with l being its electron angular
momentum. Outside the � sphere the function �l�r� is a
linear combination of 
�l�r� and ��l�r�. The coefficients of
the linear combination are defined by the matching condi-
tions of the wave functions on the spherical shell, i.e., at r
=R.

In the �-potential approximation the differential two-
electron photoionization of He@CN is thus given by formula
similar to Eq. �1�, that includes, however, the factor Dl���

d�i
++��,��
d�

=
32�2Z2�

3c�7/2 
D0���
2�� 	i�0,r�
�0�r�dr�2

.

�4�

The expression for 
Dl���
2 is derived in Refs. �21,22� and
is presented as


Dl���
2 �
�k/�L�2

�ukl�R�vkl�R� − k/�L�2 + ukl
4 �R�

. �5�

Here ukl�R� and vkl�R� are functions connected to the radial
parts of regular 
�l�r� and irregular ��l�r� functions by rela-
tions ukl�r�=r
�l�r� and �kl�r�=r��l�r�; k=�2�, �L is the
discontinuity of the logarithmic derivative of the wave func-
tion at r=R, connected to the fullerene radius R and the
electron affinity If of the empty CN through the expression

�L = − ��1 + coth �R� , �6�

where �=�2If. The formula obtained are valid for low
enough energies of the slow photoelectron. Namely, its wave
length should be much bigger than the thickness of the
fullerene shell. The factor Dl���, as it is seen from its defi-

nition, takes into account the reflection and refraction of the
photoelectron’s l wave by the CN shell potential.

At first one should calculate the ratio of differential cross
sections �4�, �3�, and �2� RC��� that according to Eqs. �3� and
�4� is independent upon �

RC��� � d�i
++��,��/d�i

a++��,�� = 
D0���
2, �7�

and then turn to the ratio Ri,ful of cross sections �++��� and
�a++���, that are determined using Eq. �1� with
d�i

++�� ,�� /d� given by Eqs. �4� and �2�, respectively,

Ri,ful = �i
++���/�i

a++��� . �8�

In the formulas we replace CN by C, for simplicity.
It is evident from Eq. �7�, that determined in this way Ri,ful

is � independent at high �. Since 
�0�r� and ��l�r� are pure
Coulomb functions, the functions ukl and vkl �from Eqs. �6�
and �7�� are expressed via the regular Fl�� ,�� and irregular
Gl�� ,�� Coulomb wave function, respectively. Namely, one
has ukl�r�=Fl�− Z

k ,kr� and vkl�r�=Gl�− Z
k ,kr�, i.e., regular and

irregular Coulomb wave functions that can be found in Ref.
�22�.

Let us note that the formula �7� can be extended to lower
�. Indeed, the interaction between two ionized electrons is
particularly essential near ionization threshold �� I++, where
the Wannier regime prevails. It is known that already several
eV above threshold the Wannier expressions are no more
valid. Therefore, it is reasonable to assume that at about
10 eV the interaction between outgoing electrons is inessen-
tial. One of them is represented by an s wave, while the other
by a p wave, in order to preserve the total initial state angular
momentum that is zero for He@CN and l=1 for the photon.
Due to action of the CN shell the second electrons wave
function is modified in the same way as 
�0�r� in Eq. �2�.
Thus, it is reasonable to expect that to take this action into
account one has to introduce the factor 
D1��̄�
2 into Eq. �7�.
As a result, one obtains instead of Eq. �7� the following
expression:

RC��,�� � d�i
++��,��/d�i

a++��,��

= 
D0���
2
D1�� − I++ − ��
2. �9�

Since for low and medium energies the cross section
d�i

a++�� ,�� /d� cannot be calculated using Eq. �2�, we have
to use other sources of absolute values of it in order to obtain
RC���.

As such, either experimental data or results of existing
calculations of differential in energy � cross section can be
used to substitute into

RC��� � �
0

�−I++


D0���
2
D1�� − I++ − ��
2

�d�i
a++��,��/�

0

�−I++

d�i
a++��,�� . �10�

In order to have a crude estimation of the role of both
factors in Eq. �9�, we have calculated in Eq. �10� the factor
RC��� using Eq. �1� well outside its range of validity �

� I++, which gives us RC
�h����.
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Since at � close to I++, d�i
a++�� ,�� /d� is almost � inde-

pendent, as an estimation for RC��� at �� I++ can serve an
approximate relation

RC
�l���� � �

0

�−I++


D0���
2
D1�� − I++ − ��
2d�/�� − I++� .

�11�

Note, that in the approximation presented above for
single-electron photoionization cross section �i

+��� of
He@CN one has

�i
+��� = 
D1���
2�i

a+��� , �12�

since for He the outgoing electron is a p wave. Using Eqs.
�10� and �1�, one can obtain a relation for the ratio
R++/+�����i

++��� /�i
+���

R++/+��� = RC���R++/+
a ���/
D1�� − I++�
2, �13�

where R++/+
a �����i

a++��� /�i
a+���.

Up to now we have neglected the virtual excitation of CN
by the incoming photon with the frequency �. It was dem-
onstrated in Refs. �14,15� that this influence presents a factor
F���= 
1−���� /R3
2, where ���� is the dynamic dipole po-
larizability of CN. Using ���� obtained in Ref. �15� and hav-
ing in mind that �� I++, one obtains for F��� an upper value
of 1.4. Note that starting from about 60–70 eV the polariz-
ability ���� can be substituted accurately enough for its

asymptotic high � value �����−Ñ /�2, where Ñ is the num-

ber of collectivized electrons in CN, namely, Ñ=4N. Here N
is a number of carbon atoms in fullerene, as before. Thus,
F��� can be presented as a monotonically decreasing with �

growth function �C���= �1+2Ñ / ��2R3��, that leads to the

ratios R̃C�� ,�� and R̃C
�l,h���� for the endohedral and isolated

atoms photoionization cross sections

R̃C��,�� � �C���RC��,�� . �14�

Instead of Eqs. �10� and �11� one has

R̃C
�l,h���� � �C���RC

�l,h���� . �15�

At �= I++ the correcting factor �C is close to 1.2 and de-
creases approaching unit, as it is seen from the definition of
�C��� with further growth of �, at �� I++.

Since we plan to extend the ratio Ri,ful as a function of �
up to values close to I++, we plot upon the corresponding

figure R̃i,ful=�C���Ri,ful. Note, that virtual excitation of CN

that are reduced to the factor F��� depending only upon �
are not altering the ratio R++/+���.

Now let us estimate how the virtual excitation of CN
modifies the Coulomb interelectron V between two electrons
in He by transforming it into Veff. Taking into account that
the He radius ra is much smaller than R, one can estimate the
ratio Veff /V

Veff

V
� �1 −  ra

R
�3 Ñ

�2R3�2

� 1.007 �16�

at �� I++. Therefore, this correction can be neglected.

III. DETAILS OF CALCULATIONS

First of all, one should notice that the term k /�L in de-
nominator of Eq. �5� was taken with the minus sign, whereas
there was a plus sign in Refs. �20,21�. This is because the
authors of the latter references used the irregular Coulomb
functions v̄kl�r�=−vkl�r�, while we used the Coulomb func-
tions vkl�r� presented in the Ref. �22�.

Equations �9�–�11� include the function D1��̄� at �̄=0, for
�=�− I++. It is clear that the Coulomb functions Fl�− Z

k ,kr�
and Gl�− Z

k ,kr�, presented in expression �5� for Dl
2, have sin-

gularities at zero energy, i.e., at k=0 that corresponds to �̄
=0. However, the presentations of Coulomb functions given
in Ref. �22� enable us to obtain the following limit relations:

lim
k→0

ukl�r�
�k

� f l�Z,r� = ��rJ2l+1��8Zr� , �17�

lim
k→0

vk0�r�
�k

� g0�Z,r� =
p�2Zr�
�2�Z

−� r

�
�2� − 1

+ ln�2Zr��J1��8Zr� . �18�

Here � is Euler’s constant J��x� is a usual Bessel function of
the first kind and p��� is the following sum, which is infinite
but rapidly convergent: p���=	 j=0

� Pj���, where Pj��� could
be obtained by the recurrence relations

Pj = −
�

j�j − 1���− 1� j �2j − 1�j� j−1

�j!�2 + Pj−1� �19�

with the initial values P0=1, P1=0. Functions gl�Z ,r� for l
�0 could be then obtained by using Eqs. �17�–�19� and the
following recurrence relation:

gl�Z,r�f l−1�Z,r� = gl−1�Z,r�f l�Z,r� +
l

Z
. �20�

The latter is a consequence of the Wronskian relation �see
Eq. �14.2.5� in Ref. �22�� for the regular and irregular Cou-
lomb functions. Note that Eq. �17� for the regular Coulomb
functions could be found in numerous handbooks on nonrel-
ativistic quantum mechanics �see, e.g., Ref. �23��, within the
accuracy of a normalization factor. However, we did not find
in scientific literature the corresponding relations �18�–�20�
for irregular Coulomb functions.

Using the limit relations �17�–�20�, one could present Eq.
�5� for the zero energy in the form

Dl
2�0� =

1

���L�gl�Z,R�f l�Z,R� − 1�2 + ��L�2f l
4�Z,R�

.

�21�

In particular, the helium atom expression �21� yields D0
2�0�

=1.38590 and D1
2�0�=3.09129.

The function 	i can be obtained using the variational
principle that minimizes the initial state energy. One has to
have in mind that, generally speaking, this procedure is able
to reproduce an absolutely accurate initial state energy, lead-
ing to a wave function that satisfies the precise Schrödinger
equation for two electrons in the field of a nucleus with the
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charge Z. In practical implementation, however, the variation
wave functions reproduces the initial energy approximately
and therefore is good on average.

As to photoionization, since one of the outgoing electrons
is fast, its wave function is a plane wave with a short wave-
length in the atomic scale. Therefore, the photoeffect is able
to test the short range behavior of 	i�r1 ,r2�, namely, as is
seen from Eq. �1�, 	i�0,r�.

This is why instead of a variational, we use a locally
correct wave function �24–26�, that describes with high ac-
curacy the two-electron photoionization �18� and some aver-
age characteristics of the initial state.

IV. RESULTS OF CALCULATIONS

Here we present the results of our calculations for the
two-electron photoionization of He@C60, He@C70, and
He@C76. For the C60 fullerene, the radius R is equal to
6.64 a.u. and the electron affinity of the empty fullerene If

=2.65 eV �20�. Although C60 is already nonspherical, we
simplify the real shape substituting it for an equiareal sphere
�27�. The same was done for C70 and C76. Thus, we obtained
R=7.21 a.u. and R=7.53 a.u. for C70 and C76, respectively.
Corresponding values of electron affinity If�C70�=2.72 eV
and If�C76�=2.88 eV could be found in Refs. �28,29�. The
initial state of He considered in this paper is i=1 s, i.e., l
=0. The two-electron ionization potential I++=2.9037 a.u. is
the ground state energy of the helium atom.

The results for RC60
��� from Eq. �7� are presented in Fig.

1 together with the function D1
2��� from Eqs. �17�–�21�. As

was expected and similar to the case of one-electron photo-
ionization, the ratio RC60

��� is a strongly oscillating function
of �.

Figure 2 depicts R̃C60
�� ,��, given by Eq. �14� for several

� as functions of �. It is not incidental that the curves be-
havior at �=0 and �=�− I++ are different. This is because
one of the electrons is represented by an s wave, while the

other by a p wave. Note that R̃C60
�� ,�� becomes a promi-

FIG. 1. The reflection and refraction factors DL
2 �L=0,1� as a

function of photoelectron energy � for He@C60.

FIG. 2. The cross sections ratio R̃C60
�� ,�� as a function of pho-

toelectron energy � for different values of photon energy �.

FIG. 3. The cross sections ratios R̃C60

�h� , R̃C60

�l� , and �C60
���

=RC60
��� /D1

2��− I++� as functions of � for He@C60.

FIG. 4. The reflection and refraction factors D1
2 as a function of

photoelectron energy � for He@CN with N=60,70,76.
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nently variating curve already for �− I++�20 eV. For �
− I++�60 eV it has many oscillations.

Figure 3 presents the relations R̃C60
��� given by Eqs. �10�,

�11�, and �15� for the both � distributions, that are valid,
respectively, at high and low �. It is seen that both curves

R̃C60

�h� ��� and R̃C60

�l� ��� prominently oscillate up to �

�150 eV and are close to each other. This permits us to

suggest that the curves R̃C60

�h,l���� are almost valid for correct �

distribution instead of only their limiting cases for high and
low �. The strongest is the role of the fullerene shell at �
�110 eV.

The results of the calculations using Eq. �13� for He@C60,
namely, the ratio

���� � R++/+���/R++/+
a ��� = RC���/
D1�� − I++�
2 �22�

are also presented in Fig. 3. It is seen that at low �, i.e., near
the I++ threshold, the ratio ���� reaches its biggest value.
Note, however, that with � growth it is still a prominently

oscillating curve, while the ratios R̃C60
��� very rapidly be-

come almost � independent. This signals that the ratio R++/+
can be modified as compared to its pure He atom values up
to high �.

In Fig. 4 we present factors 
D1���
2, given by Eq. �5�, for
C60, C70, and C76. The results for different fullerenes look
like almost a single curve shifted in phase, although there are
some differences in amplitudes, as well.

Figure 5 presents the results for the ratio R̃i,ful���
=�C���Ri,ful���, where Ri,ful is determined by Eq. �8� for
C60, C70, and C76. As one could see, with � growth these

ratios rapidly approaches the asymptotic value R̃i,ful→1.
Note, that in Eq. �8� we assumed that slow electron wave

function is modified by the CN shell. In fact, this is incorrect
already for ��160 eV. While at low � the differences be-

tween R̃i,ful for C60, C70, and C76 are large, it almost disap-
pear for higher �, with values for C60 slightly bigger, than
for C70 and C76.

Figure 6 presents R̃C
�h����, given by Eqs. �15� for He@C60,

He@C70, and He@C76. Note, that according to our calcula-
tions for C70 and C76 the difference between high �h� and
low �l� photon energy limits is inessential. These ratios are
again different for C60, C70, and C76 only at low �. With the
� increase all the ratios tend to one.

In Figs. 4–6 we compare the results for C70 and C76 with
that of C60. Therefore, we repeat on them the curves for C60
presented in Figs. 1–3.

Qualitatively, the picture of the fullerene shell effects are
similar in all considered objects. Indeed, as is evident from
pure qualitative physical considerations the shell results in
prominent oscillatory effects. The zero-range potential model
overestimates to some extent the sharpness of oscillations
but without any doubt preserves their existence. It is seen
that the fullerene radius and the value of electron affinity
affects the considered ratios prominently but only in the two-
electron photoionization threshold region. As is clear from
qualitative consideration the effect of the fullerene shell dies
out already at ��180 eV.
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FIG. 5. The cross sections ratio R̃i,ful as a function of photon
energy � for He@C60, He@C70, and He@C76.

FIG. 6. The cross sections ratios R̃C
�h� as a function of � for

He@C60, He@C70, and He@C76.
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