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Ionization of helium ions by low-energy antiproton collisions
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The cross section for ionization p+He* — p+He>* +e¢ at collision energies ranging from threshold to 1 MeV
is calculated using a quantum-classical hybrid (i.e., semiclassical) method. Due to the bending effect of p
+He* trajectories, the ionization cross section shows a local minimum at the center-of-mass energy of
~150 eV. Also reported is the excitation cross section, which is expected to remain finite at threshold for the
same reason as the Gailitis jump appears in excitation of ions by electron impacts.
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I. INTRODUCTION

Recently, it has become possible to carry out a complete
quantum mechanical (QM) calculation for ionization in low-
energy collisions between antiprotons p (or muons ) and
hydrogen atoms [1,2]. However, such a study still requires
time-consuming computation, and cannot be readily made.
As another approach appropriate for heavy-particle colli-
sions, we can consider a quantum-classical (QC) hybrid (i.e.,
semiclassical) approximation, in which electrons are de-
scribed by using quantum mechanics and heavy particles by
classical mechanics. Ordinarily, the QC approximation has
been applied for collisions at sufficiently high energies. If the
collision energy is low, the dynamics of heavy particles be-
come complicated. However, determining the classical tra-
jectory of heavy-particle motion without any ambiguity is
usually difficult in the QC approach. With regard to p+H
collisions, fortunately the adiabatic potential of this system
was found to be very useful for the evaluation of the heavy-
particle motion closely related to the electron emission pro-
cess [1-3]. Consequently, the QC method could be success-
fully applied to low-energy ionization [1,2] and additionally
even to the p capture occurring at energies below the ioniza-
tion threshold [3].

In the present paper, we calculate the cross section for
ionization in collisions between antiprotons and (hydrogenic)
helium ions,

p+He" — p+He* +e. (1)

The chief concern of the present calculation is the low-
energy region, i.e., center-of-mass (c.m.) collision energies
E. ., down to the vicinity of the threshold /=54.4 eV. The p
capture

p+Het — pHe* + e (2)

is an alternative reactive channel when E, , <I, and was
already investigated in detail by the present author using
both the QM and QC methods [4] (hereafter referred to as
paper I). Because the antiproton has negative charge, the
strong Coulomb attractive field, the range of which is longer
than the centrifugal one, works between p and He™", and has
a big influence on low-energy collisions: The cross section
for the p capture (2) diverges in the zero-energy limit, and
the resonances are very rich in the p+He" collisions. The
situation is just the same as exemplified in the e+ion system.
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In paper I, the QC approximation was shown to be very good
for the calculation of the nonresonant part of the capture
cross section. For a description of the resonance phenomena,
the complete QM treatment is necessary, and the QC ap-
proximation should normally be of no use. Nevertheless, it
was further found in paper I that the QC calculation was still
useful for the cross section averaged over resonances. If the
energy is above the ionization threshold, no resonance phe-
nomena occur, and hence the QC method becomes directly
applicable to the collision problem without any implication.
Thus, we can expect that the QC method is quite suitable for
the calculation of the ionization (1). The present paper car-
ries out the QC calculation, and investigates the influence of
the strong attraction working between p and He* on the ion-
ization process (1).

II. CALCULATION

The details of the QC method are reported elsewhere
[1-4]. Here, only a brief summary of the numerical method
is given. In the present QC method, the relative motion of p
and He" is assumed to be a classical trajectory determined by
using the adiabatic potential for the lowest (1o) state. As
mentioned in the Introduction, the use of the adiabatic poten-
tial is of critical importance [1-4]. In what follows, we refer
to this QC approximation as QC-A to emphasize this poten-
tial choice. For comparison, we also carried out the calcula-
tions by introducing two other versions of the QC approxi-
mation: (1) the Coulomb potential —1/R (R being the
distance between p and He") is used instead of the adiabatic
potential (QC-C); and (2) a linear trajectory (i.e., no poten-
tial) is assumed for the relative motion (QC-L).

Figure 1 shows the adiabatic potential as a function of the
relative distance R. The adiabatic potential approximates
closely to the pure Coulomb potential —1/R at large dis-
tances, and makes the transition to —2/R as R— (0. Because
the adiabatic potential is much more attractive than the Cou-
lomb potential —1/R at R<<1 a.u., the assumption of a
simple Coulomb trajectory for the relative motion would be
unrealistic for the calculation of the low-energy collisions. If
the probabilities of nonadiabatic transition were large, the
adiabatic potential might be of no use. Fortunately, paper I
shows that these probabilities are small in the p+He" system.
(It should be mentioned nevertheless that the adiabatic po-
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FIG. 1. Adiabatic potential curve of the p+He" system for the
lowest (1) state as a function of the relative distance R. For com-
parison, the Coulomb potentials —1/R and —2/R are also plotted.

tential is still useful even if the nonadiabatic transition prob-
abilities are close to unity [1-3].)

The time-dependent Schrodinger equation for the electron
motion was directly solved on a grid of points in the con-
figuration space [1-4]. The discrete-variable-representation
(DVR) technique [5-7] was employed for the direct solution.
The present set of the numbers of grid points is exactly the
same as used in the QC calculation of paper I, and gives a
relative error of the calculated transition probability less than
1%. The DVR method was critically examined first in the
chemical reaction problem [5,6,8—10], and has been accepted
in a variety of fields [1-4,7,11-17]. The mathematical foun-
dation was summarized by Calogero [18]. In the DVR, the
property of orthogonal polynomials is fully utilized. The in-
teraction matrix involves only diagonal elements, which are
values of the interaction at grid points, and the nondiagonal
matrix, coming from the kinetic energy operators (thus tak-
ing a sparse and typically banded structure), can be evaluated
in an algebraic form. Owing to this simplicity, the DVR is
very efficient for accurate numerical calculations.

In the low-energy calculation of paper I, the boundary of
the relative distance could be set to a small value R,
=2 a.u., where, using the adiabatic states, the initial condi-
tion was given and the final transition probabilities were cal-
culated. However, a larger boundary is needed for the colli-
sions occurring at higher energies: we chose Ry=6 a.u. for
E..<1keV, and Ry=40a.u. for E., =1 keV in the
present calculation.

III. RESULTS AND DISCUSSION

Several types of solution for QC approximation have been
applied to the ionization process (1) in the high-energy re-
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FIG. 2. Ionization cross sections in the high-energy region as a
function of the laboratory incident energy E,,, obtained by using
the QC-A (adiabatic potential) and QC-L (no potential) methods.
Also shown are the results of Wherman ez al. [19] using the atomic
orbital close-coupling (AOCC) method, and the results of Schultz et
al. [22] using the lattice time-dependent Schrodinger equation
(LTDSE) method.

gion of E, , =1 keV [19-25]. To make a comparison with
previous results, first we calculated the ionization cross sec-
tions in the high-energy region, and show the results in Fig.
2 as a function of the laboratory incident energy Elab=[(mﬁ
+Myer) / Mye+)E; 1 » With mj being the p mass and my+ the
He* mass. Also included in the figure are the results obtained
by Wehrman er al. [19] using the atomic orbital close-
coupling (AOCC) solution and by Schultz er al. [22] using
the lattice time-dependent Schrédinger equation (LTDSE)
solution. (The results of the other groups [23-25] are not so
much different from these two.) The discrepancy among the
present and previous results are within 10% except for the
LTDSE calculation at E,;,=500 keV. The present calculation
agrees better with the AOCC one. The agreement with the
previous results guarantees the accuracy of the present com-
putation for high energies as well as for low energies.

The use of the adiabatic potential might be rather inappro-
priate in the high-energy collisions. However, the effect of
trajectory bending due to the attractive potential in itself be-
comes negligible as the energy increases. In fact, we can see
that the QC-A results are only slightly different from the
QC-L ones. As a consequence, the adiabatic potential is al-
ways usable in the collision calculation regardless of the en-
ergy. Figure 2 seems to suggest that the cross section is get-
ting smaller with decreasing E,, from ~100 keV. However,
as seen in Fig. 3, this is true only if the trajectory bending
effect is negligible.

Figure 3 shows the behavior of the ionization cross sec-
tions in the low-energy region of I<E, ,, <800 eV, obtained
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FIG. 3. Ionization cross sections in the low-energy region as a
function of the center-of-mass collision energy E. ,,, obtained by
using the QC-A (adiabatic potential), QC-C (Coulomb potential),
and QC-L (no potential) methods. Also shown are the results of
Schultz et al. [21,22] using the LTDSE, hidden crossing (HC), and
classical trajectory Monte Carlo (CTMC) methods.

by using the QC-A, QC-C, and QC-L methods. As the energy
decreases, we find more significant differences among the
three results: especially at E, ,, ~1, the QC-L cross section
becomes negligibly small while the QC-A and QC-C results
remain large. In the calculation for the p (or x”)+H system
[1,2], it was found that not only the QC-A but also the QC-L
methods gave large ionization cross sections near threshold.
We can see that the trajectory bending effect is of substantial
importance in the case of p+He™". A further noteworthy point
in Fig. 3 is that the QC-A cross section takes a local mini-
mum at E_,, =150 eV, which is much higher than the ion-
ization threshold /. Although the QC-C result has a local
minimum as well, the upturn behavior is not so obvious. As
could also be expected in Fig. 1, only the pure Coulomb
potential —1/R cannot sufficiently explain the major part of
the trajectory bending effect at low energies. In the p+H
collisions, the minimum and upturn behavior can be ob-
served only vaguely: the ionization cross section is nearly
constant (~5 a.u.) over a wide range of energies below
~10 keV [21,26].

For comparison, the results calculated by Schultz et al
[21,22] using the LTDSE, the hidden crossing (HS), and the
classical trajectory Monte Carlo (CTMC) methods are also
shown in Fig. 3. In the LTDSE and HC calculations, the pure
Coulomb potential —1/R was employed for the determina-
tion of the relative motion. The LTDSE result at E_
=800 eV is very close to the QC-C one. Unfortunately, the
LTDSE calculation was not carried out at the lower energies.
The HC cross section, monotonically decreasing with de-
creasing E, ,, shows no local minimum. Of these three cal-
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FIG. 4. Cross sections for p capture [4], ionization, and total
excitation as a function of the center-of-mass collision energy E. . ,
obtained by using the QC-A method.

culations done by Schultz et al., the CTMC method takes
account of the p+He™" attraction which can be much stronger
than the pure Coulomb potential —1/R. Accordingly, the
CTMC calculation can produce a clear upturn behavior at
low energies. (The local minimum locates at E,. ,, ~200 eV,
higher than that of the QC-A calculation.) Although the
CTMC cross sections are all very close to the QC-A results
at E_, <300 eV, the agreement should be considered to be
accidental. It should be remembered that the CTMC method
gives cross sections too large at high energies, where the
classical treatment is expected to be more satisfactory.

Figure 4 shows the p capture and ionization cross sections
obtained by the QC-A calculation in the range of E_ ,, from
1 eV to 1 MeV. The ionization cross section is slightly
bumpy around E_,, =1 keV. This is due to the different
boundary distances R, chosen in the present calculations be-
low and above the energy E_,, =1 keV. The capture cross
section is taken from paper 1. At E, , =10 eV, the capture
cross section is proportional to 1/E_,, in a very good ap-
proximation, because the transition probabilities become al-
most independent of E_ ,, [4]. However, such behavior can
no longer be expected at E_,, > 10 eV. In the p+He" sys-
tem, the resonance effect was very important for the capture
process [4]. The capture cross section shown in Fig. 4 is the
nonresonant one obtained by the elimination of the reso-
nance contribution.

In the QC calculation, we have no way of distinguishing
between the ionization (1) and the capture (2) channels at
E, ., >1[1,2]. The present ionization cross section is actually
the total electron emission cross section summed over the
two channels, and hence smoothly connects to the capture
cross section at the ionization threshold. It is very interesting
to investigate the competing behavior of the capture and ion-
ization processes at energies above the ionization threshold.
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A complete QM treatment is inevitable for this purpose, and
remains in future work. However, the cross section for rear-
rangement reactions like (2) rapidly drops to zero with in-
creasing energy beyond the breakup threshold if the captured
and ejected particles have huge mass difference. The capture
process (2) is essentially negligible above the ionization
threshold except probably in the case of E-I< a few eV
[21]. It is hence certain that the local minimum and upturn
behavior remain in existence indeed in the ionization process
(D).

In collisions between protons and helium ions (p+He"),
the ionization cross section has a maximum at E_
~ 150 keV [27], and becomes negligibly small when E_
<30 keV [28]. In this case, of more importance is the charge
transfer process, which has the maximum (~0.9 a.u.) of the
cross section at E, ;, ~40 keV, and then becomes negligible
at E,, =1 keV [28]. No notable reactive channels are to be
found for p+He* at E.,, =1 keV. In contrast, the p+He"
system, having strong attraction, shows reactivity at low en-
ergies. Because the electron has negative charge (and further-
more very light mass), we can expect that the e+He* system
is active at low energies as well. In fact, the ionization is
significant throughout at energies ranging from threshold to
10 keV [29]. The ionization cross section in e+He" takes a
maximum at an energy (~200 eV) comparatively close to
threshold, and accordingly the local minimum and upturn
behavior cannot be observed [29,30]. In the e+He" system,
the process corresponding to the capture (2) is not a reactive
channel distinguishable from the elastic (or inelastic) one,
and is rather considered as the electron exchange effect origi-
nating from the Pauli principle.

In Fig. 4, we further show the total excitation cross sec-
tion summed over all the final excited bound states. The total
excitation cross section is always larger than the ionization
cross section. This contrasts with the situation in the low-
energy p+H collisions that the ionization is the dominant
inelastic channel [31]. The excitation cross section in p
+He* also seems to be getting larger as the energy decreases.
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In the QC-A calculation, we find that the excitation cross
section is nonvanishing even at threshold though not shown
in the figure. This might be considered to be unphysical be-
cause the QC approximation could never take account of the
threshold effect. However, a nonzero value of the excitation
cross section at threshold can be justified by the Coulomb
peculiarity that its range is longer than the centrifugal one
[32]. The same situation arises in e+ion scattering, and the
stepwise discontinuity of the excitation cross section at
threshold is known as the Gailitis jump [33,34]. A further
study of the threshold behavior is interesting for the excita-
tion of ions by p impact. In contrast to the case of p+He",
the excitation cross section in e+He* shows a monotonic
decrease throughout at energies beyond the ionization thresh-
old [30,35,36], exactly due to the very light mass of the
incident electron.

IV. SUMMARY

The long-range strong attraction working between p and
He* causes a significant effect on the low-energy collisions.
Consequently, the ionization cross section remains large even
near threshold, and shows a distinctive (minimum and up-
turn) behavior. For the quantitative evaluation of this effect,
the assumption of merely a pure Coulomb attraction is insuf-
ficient. Knowledge of e+ion scattering is helpful to a certain
degree for the understanding of the p+He™ collision dynam-
ics. However, we should rather say that the collision features
in p+He* are quite dissimilar from those in the e+ion colli-
sion because of the very large mass difference between p and
e. Low-energy p+ion collisions offer a new and intriguing
topic in atomic physics.
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