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The times taken by positive muons ��+� to slow down from initial energies in the range �3 to 1 MeV, to the
energy of the last muonium formation, �10 eV, at the end of cyclic charge exchange, have been measured in
the pure gases H2, N2, Ar, and in the gas mixtures Ar-He, Ar-Ne, Ar-CF4, H2-He, and H2-SF6, by the muon
spin rotation ��SR� technique. At 1 atm pressure, these slowing-down times, �SD, in Ar and N2, vary from
�14 ns at the highest initial energies of 2.8 MeV to 6.5 ns at 1.6 MeV, with much longer times, �34 ns, seen
at this energy in H2. Similar variations are seen in the gas mixtures, depending also on the total charge and
nature of the mixture and consistent with well-established �Bragg� additivity rules. The times �SD could also be
used to determine the stopping powers, dE /dx, of the positive muon in N2, Ar, and H2, at kinetic energies near
2 MeV. The results demonstrate that the �+ and proton have the same stopping power at the same projectile
velocity, as expected from the historic Bethe-Bloch formula, but not previously shown experimentally to our
knowledge for the muon in gases at these energies. The energy of the first neutralization collision forming
muonium �hydrogen�, which initiates a series of charge-exchanging collisions, is also calculated for He, Ne,
and Ar. The formalism necessary to describe the stopping power and moderation times, for either muon or
proton, in three energy regimes—the Bethe-Bloch, cyclic charge exchange, and thermalization regimes—is
developed and discussed in comparison with the experimental measurements reported here, and elsewhere. The
slowing-down times through the first two regimes are controlled by the relevant ionization and charge-
exchange cross sections, whereas the final thermalization regime is most sensitive to the forwardness of the
elastic scattering cross sections. In this regime the slowing-down times �to kT� at nominal pressures are
expected to be �100 ns.
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I. INTRODUCTION

The slowing down and thermalization of an energetic par-
ticle in matter is relevant to the fields of atomic, nuclear, and
particle physics, and to other related fields of science, includ-
ing radiation and hot-atom chemistry. It is often important to
know �i� how long it takes to slow down and stop energetic
particles in matter, �ii� what the final products are after this
thermalization, and �iii� the energies at which these final
products are formed. An understanding of slowing-down
times and energy-loss mechanisms at low energies is also
important in the production of slow muon beams �1,2� and
muonic hydrogen isotopes �3� in measurements of the Barkas
effect �4�, particularly comparing �+ and �− stopping powers
�5�, in linear energy transfer �LET� and radiation chemistry
studies �6–10�, as well as in a variety of muon spin rotation
��SR� studies in both gases �11–19� and in condensed phases
�7–10,20,21�. In all these environments, it is important to
distinguish between thermal and epithermal processes, man-
dating, therefore, an understanding of the relevant slowing-
down processes. Of fundamental interest as well is the

opportunity to test scaling laws in both charge exchange and
energy moderation cross sections, and hence in the stopping
power, dE /dx, by comparing positive muons and protons at
the same velocities �1,22�, as in previous comparisons of the
stopping powers for protons and deuterons where velocity
scaling has been established to better than 0.5% �23–25�. To
further investigate these issues, the �SR technique �9,14,15�
has been used to measure the slowing down times for posi-
tive muons in various gases—the time during which a muon
is slowed from its initial “MeV” kinetic energy down to
�10 eV by collisions with the gas.

During its slowing-down processes in matter, the positive
muon forms the muonium atom �Mu=�+e−�
�2,9–11,14–16,20,21,26–30�, its bound state with an elec-
tron. Since muonium has essentially the same size and ion-
ization potential as hydrogen, it is regarded as an ultralight
isotope of H �mH=8.88mMu� and has been used accordingly
to investigate isotope effects in chemical reactions, both ther-
mal rate constants �12,31–33� and hot atom “yields”
�13,14,34�, and in thermally averaged spin-exchange cross
sections for gas-phase collisions �15,19,35�. In studies of this
nature the assumption of a thermalized muon ensemble is
tacitly made, meaning that the total slowing-down time is
assumed to be much shorter than typical �s relaxation rates.
The present measurements provide convincing proof of the
validity of this assumption and support as well recent
rf-�SR measurements demonstrating prompt Mu formation
in gases �11�.
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The slowing-down time of muons in the gas phase is de-
termined by measuring the muonium precession phase in a
�SR experiment, first demonstrated in Ar �36�. The present
paper brings the method outlined in Ref. �36� to fruition with
much more extensive measurements of slowing-down times
in the pure gases H2, D2, N2, and Ar, and in the mixtures
Ar-He, Ar-Ne, Ar-CF4, and H2-He. These are the only direct
measurements of slowing-down times for positive muons in
any environment to the best of our knowledge. They also
provide a method for determining the stopping power of
�1-MeV �+ beams in gases.

In addition to these measurements, calculations are
also presented which describe the slowing-down process,
both in the energy regime studied experimentally
��1 MeV–10 eV� and in the final thermalization regime at
energies below �10 eV, thus fully bridging the gap between
high energies and thermal distributions. Calculations of this
nature allow a determination of the total slowing-down time
in the gas, providing an important perspective relevant to
discussions of muon interactions and thermalization times in
dense media �6–8,10,21,37� as well as providing a basis for
discriminating between hot and thermal reactive processes of
the Mu atom �13,34�.

II. SLOWING DOWN AND THERMALIZATION

The slowing down of positively charged pointlike par-
ticles in gases, over wide energy ranges, notably here for the
positive muon �10,11,14,16,26–30� and proton �8,38–42�,
can be divided roughly into the following three energy or
time stages or regimes: �i� Bethe-Bloch ionization, �ii� cyclic
charge exchange, and �iii� final thermalization, to 3/2kT. In
this work the measured slowing-down time �SD time� is de-
fined by the time the energetic particle spends in the Bethe-
Bloch plus cyclic charge exchange regimes, but not the final
thermalization regime. This latter time, though, is of consid-
erable importance to comparisons with �SR data in both
gases and condensed phase environments, and is addressed
here by specific calculations.

In the first �Bethe-Bloch �BB�� regime, kinetic energy loss
is primarily the result of ionization and electronic excitation
processes, in any environment �6,8,38,40,43–46�. In the sec-
ond �charge-exchange �CE�� regime, the positive particle
spends part of its time as a neutral atom, muonium or hydro-
gen, and emerges from this regime either as the atom or
remaining as a bare �+ �or p+�, prior to entering the third,
“thermalization,” regime. The distribution of muons �pro-
tons� among charge states at this stage depends crucially on
competition between electron capture and loss processes, as
well as energy-moderating cross sections, near the end of
cyclic charge exchange �2,14–16,26–28,30,38�, as outlined
in more detail below.

In molecular gases, these charge state fractions may be
changed further by reactive �hot atom� processes
�9,13,14,34� to give the measured �gas phase� Mu and dia-
magnetic fractions in gas-phase �SR experiments; i.e., at
observation times after thermalization �16–18,47,48�. In
dense gases or in condensed phases, the situation is further
complicated by “spur effects” �2,6,8–10,20,21,37,47� which

can take place over a range of times �10,21�, further mandat-
ing the importance of knowing SD times and stopping power
�LET� in low density environments. Noteworthy here is the
distinction between these �SR experiments, where the posi-
tive muon actually stops in its environment, and most studies
of the energy loss of protons �and other ions�, which is in-
variably measured at specific incident energies in particle
transmission experiments �38,41,42,45�.

A. Bethe-Bloch regime and dE /dx

During this regime, the electronic energy loss of a charged
particle is well described by the �historic� Bethe-Bloch
stopping-power formula �40,44–46,49,50� �which is embod-
ied as well in the much more recent Sigmund-Schinner bi-
nary collision theory for the stopping of both heavy ions �51�
and, more relevant here, light ions �43��,

−
dE

dx
=

4�e4zp
2ZTn

mev
2 L�v� , �1�

where n is the number density of the �target� moderator, zp is
the charge of the projectile, ZT is the atomic number of the
target, v is the projectile velocity �speed�, e and me are the
charge and mass of the electron, respectively, and L�v� is the
“stopping number” which includes shell corrections
�40,44,52� and additional corrections for the Bloch, Barkas,
and relativistic terms �5,40,44,45,50�. For nonrelativistic
point �heavy� particles at MeV energies, of interest here, and
ignoring the few percent contributions from the Bloch and
Barkas terms at such energies �44,45�, L�v� can be written as

L�v� = ln�2mev
2/I� − C�v�ZT, �2�

where the quantity I is the mean excitation energy of elec-
trons in the medium and C�v� /ZT is a sum of shell correc-
tions to account for a differing participation of inner and
outer shell electrons in the stopping process at different en-
ergies. These have been calculated by various assumptions
through the years, recently by Bichsel for protons and �
particles in solids �44�, complimenting earlier studies by
Bichsel and Porter in gases �40� and, as used here, by
Oddershede and Sabin, in the elements up to ZT=36 �52�.

It is noted that the electronic stopping-power formula of
Eq. �1� has no explicit projectile mass dependence and, for a
given target molecule, depends only on velocity �speed� v, a
feature that can be described as “velocity scaling” in com-
paring stopping powers for charged particles of different
masses �1,14–16,22–25�. Shiomi-Tsuda et al. �23� con-
cluded, to a high degree of accuracy �0.35%�, that there was
no difference in stopping powers for equivalent-velocity pro-
ton and deuteron energies in several metal targets, consistent
with earlier comparisons by Andersen et al. �24� and Ander-
sen and Ziegler down to 100 keV �39�. This was subse-
quently confirmed by Bichsel and Inokuti �25�, who also
investigated specific nuclear mass contributions to the stop-
ping power �these are enhanced for the muon but at far too
low a level to be seen in the present experiments�. Earlier,
Bichsel and Porter �40� and Reiter et al. �42� had examined
stopping powers for protons and � particles in gases, at pro-
ton energies �400 keV, and found little or no mass depen-
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dence outside experimental ��2% � error, consistent with
earlier and more accurate experiments by Andersen et al.
�24� and more recent comparisons by Bichsel in Si and Al
�44�. Larger deviations were seen, though, in a separate study
by Reiter et al. in halogenetated gases �53�, which may be
partly due to deviations from “Bragg’s rule” �see below�. At
lower energies, charge exchange, an important aspect of the
present experiment, begins to play a role, reducing the effec-
tive charge of the projectile �24,40,43,49,51�, such that � and
proton stopping powers can deviate significantly from the
expected ratio �ZHe/ZH�2=4 at the same velocity �40,53�,
seen as well for low-energy �8 keV� deuterons �54�.

The above comparisons involve changing the projectile
mass by factors of 2 or 4. In principle, a more stringent test
of the mass independence of the �electronic� stopping power
can be made by comparing the positive muon with the pro-
ton, which differ by a factor of 9 in mass, and particularly at
low energies, where any specific mass effects would be most
pronounced �1,2,22,25�. Though studies with energy-
degraded muon beams in the range �8–80 keV in metal
targets �55� indicated that velocity scaling holds well in com-
parison with the equivalent proton data, both theory �22� and
more recent experimental results to even lower muon ener-
gies �0.5 to 30 keV� �1� show that at these energies proton
stopping powers could be enhanced, at least in metals, by a
few percent. Since density effects can be significant in stop-
ping powers �56–58�, it is important to also be able to com-
pare muon and proton stopping powers in low density gases,
providing partial motivation for the present study, which, to
our knowledge, is the first of its kind.

The classic stopping-power formula of Eq. �1� is for a
single element or homopolar diatomic, but needs to be modi-
fied for a molecular compound or mixture of k different
kinds of atoms i=1,2 ,3 , . . . ,k, and given by

− �dE

dx
� =

4�e4zp
2

mev
2 	

i=1

k

ln�2mev
2

Ii
�zini

=
4�e4zp

2ZTn

mev
2 ln�2mev

2

IT
�

�3�

with excitation parameters Ii and atomic numbers Zi, and
where nj is the number density of atoms of type i, n is the
density of target molecules, and ZT represents the total
charge defined by

ZTn = Z1n1 + Z2n2 + ¯ + Zknk = 	
i=1

k

Zini, �4�

giving the average number of electrons per molecule. The
average excitation energy is correspondingly defined by

ln IT =
Z1n1

ZTn
ln I1 +

Z2n2

ZTn
ln I2 + ¯ +

Zknk

ZTn
ln Ik

= 	
i=1

k
Zini

ZTn
ln Ii. �5�

The extensions of the Bethe-Bloch formula to a molecule
or mixture, shown in Eqs. �4� and �5�, are known historically
as “Bragg’s additivity rules” �50,53,54,59,60� and which

have been applied recently in polymers �45,61�. Their prin-
cipal assumption is that physical state and chemical bonding
are irrelevant, so each atom in a mixture or molecule can be
treated independently. Deviations from Bragg’s rule can be
appreciable though, �20% �54,60,61�, particularly at low
energies, not only due to its neglect of shell corrections but
also near the Bragg peak in the stopping power, where
charge exchange becomes important �54,62�.

An important and unique aspect of the present study is the
time spent in the Bethe-Bloch regime, denoted by tBB

+ , during
which the particle slows from an initial energy Ei �velocity
vi� down to some final energy Ef �velocity vf�, at which the
first Mu or H formation takes place. For a continuous energy
loss, dE /dt= �dE /dx��dx /dt�, and hence this time, for a posi-
tive muon �or proton�, can be expressed in terms of the
stopping power of Eq. �1� in the BB regime, �dE /dx�+, by

tBB
+ �Ei,Ef� = m


vi

vf dv
�dE/dx�+

= 

Ei

Ef dE

v�dE/dx�+
, �6�

where Ef is later interpreted as �ECE�, the average energy at
which Mu �H� first forms.

B. Cyclic charge exchange

In the Bethe-Bloch regime, the velocity of the projectile
�v� is much larger than that of electrons �ve� in the moderator
atoms. At some energy ECE, v and ve become roughly com-
parable, and the muon �proton� captures an electron from the
moderator, staying in this neutral charge state for some time,
until its bound electron is lost in a subsequent collision,
forming again a positive species at some lower energy and
thus initiating a series of CE cycles. An early discussion of
the charge exchange of protons in gases was the work of
Allison �38� and this treatment was utilized in the first de-
tailed experimental work on �+ charge exchange in low pres-
sure gases by Fleming et al. �16,17�, with additional data of
this nature since obtained over a range of pressures and
conditions �10,11,18,47,48,63�.

Once a Mu atom is formed at some energy Ej �velocity
v j�, the probability that it does not undergo any electron loss
collision down to energy E �velocity v� is given by the
survival probability function �13,26–28�

SL�Ej,E� = exp�− NL�Ej,E�� , �7�

where the collision number NL�Ej ,E� is expressed in terms
of the electron loss cross section �L�E� by

NL�Ej,E� = 

0

t

nv�Ldt = 

Ej

E nv�L�E�
�dE/dx�0

dE = m

vj

v nv�L�v�
�dE/dx�0

dv .

�8�

Here, the quantity �dE /dx�0 is the stopping power for the
neutral atom �Mu or H�, which can be expressed in terms of
the cross sections of the atomic processes contributing to its
slowing down �13,26�,
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�dE

dx
�

0
= n ln f0�E�E +

I0�E�
1 − f0�E���0�E� . �9�

The quantities f0�E� and I0�E� are elastic and inelastic
�ionization, excitation, . . .� energy-loss parameters, averaged
over the collisional scattering-angle dependences and �0�E�
is the total collision cross section of the neutral particle but
excluding the electron-loss process, since this produces the
positive particle and changes the species identity �26�; i.e.,
�0�E�=�0E�E�+�0I�E�+�0X�E�+¯.

The residence time in the charge state s, during the jth
charge exchange cycle, is denoted tj

s, while Ej
s is the energy

at which the species s is formed. Thus, if Mu is produced at
Ej

0 during the jth cycle, the mean energy for the next
electron-loss collision �E� can be obtained from the condi-
tion NL�Ei

0 , �E��=1 in accordance with the usual definition of
the mean free path and time �26�. Using this �E�, the mean
residence time in muonium during the jth charge-exchange
cycle can be written in a form similar to Eq. �6�, as

tj
0�Ej

0,�E�� = 

Ej

0

�E� dE

v�dE/dx�0
= 


Ej
0

Ej
0−�ej

0� dE

v�dE/dx�0
,

�10�

where �ej
0� is the energy loss during tj

0.
Similarly, the survival function of the charged species

�muon or proton� to electron capture can be denoted by a
change in subscripts, L→C and 0→+, in Eq. �8�, giving
accordingly, the mean residence time in the positive muon
charge state during the jth charge-exchange cycle as

tj
+�Ej

+,�E�� = 

Ej

+

�E� dE

v�dE/dx�+
= 


Ej
+

Ej
+−�ej

+� dE

v�dE/dx�+
,

�11�

which has the same form as Eq. �10� for the neutral species.

C. Final thermalization and muonium observation

After many cycles of charge exchange collisions, the in-
cident ��+� particle emerges from the CE regime either as a
neutral Mu atom or a positive muon, depending on the
threshold energies EC

TH and EL
th for electron capture and loss

processes at the end of the cyclic charge exchange regime
�26�. The threshold for electron loss is EL

th�13.6 eV, the
same as the ionization energy �Eion� of Mu �or H� itself, but
EC

th depends also on this energy for the moderator �EC
th

�Eion−13.6�2 eV for Mu-H in Ar�. The fraction of muons
thermalized as muonium and observed experimentally �Mu
fraction� depends on the competition between charge ex-
change and moderation processes: how fast Mu, produced
above EL

th, reaches EL
th before an electron-loss collision takes

place, and how slowly a positive muon slows down so that
one more electron capture is possible before EC

th is reached.
Both of these effects determine the energy at which the last
Mu atom is produced, first estimated to be about 30 eV in Ar
�16� and later calculated more accurately, giving �10 eV
�28�. As introduced above and discussed below in some de-

tail, the SD time reported herein is from an initial energy Ei
down to the energy at which Mu is formed for the last time,
ending the last charge-exchange cycle.

Once formed, and after cyclic CE, at energies �10 eV,
the Mu atom thermalizes in the gas �to kT� by elastic and
inelastic collisions, but the bare �+ can still form Mu in
moderators with low enough threshold energies, EC

th �the case
in most gases�. Thus, the Mu fractions measured at low pres-
sures of the inert gases He, Ne, Ar, Kr, Xe, and N2 are 0.0,
0.0, 0.75, 1.0, 1.0, and 0.85, respectively �11,16,48,63�, with
uncertainties typically ±0.04. �There is no Mu seen in He or
Ne because EC

th is too high.� The diamagnetic muon fraction
seen in these gases is exclusively in the form of molecular
ions �e.g., HeMu+�, formed promptly �11� by muon addition
at energies �1 eV, well below that of the last Mu formation
�17,18�.

In contrast to noble or inert molecular gases, in most mo-
lecular gases, energetic hydrogen atoms �Mu*, H*, or T*�
emerging from the CE regime may undergo epithermal or
“hot atom” chemical reactions in the energy range �10 eV
to 0.5 eV, reducing the amount of Mu observed
�13,14,34,48�. The probability that Mu survives from some
initial energy Ei, in the thermalization regime, down to ther-
mal energy ET= 3

2kT, i.e., that Mu does not undergo a reac-
tive �hot atom� collision, can be expressed by a form analo-
gous to Eq. �7�, but in terms of the reaction cross section,
�R�E�, for forming a stable diamagnetic product. This in turn
can be utilized to express the hot atom reaction “yield” as
YR�Ei ,ET�=1−SR�Ei ,ET�, which has been calculated explic-
itly for the Mu*+H2 and T*+H2 reactions, in which both
elastic and inelastic moderation was explicitly accounted for
by quasiclassical trajectory �QCT� calculations �13�, giving
good agreement with experiment �13,64�. Since similar
H-abstraction reactions can also give rise to thermal reaction
rates �31,32,65�, knowledge of the final thermalization time
is crucial for clarifying this distinction, and is an important
part of the present paper �Sec. VII�.

III. PRINCIPLE OF THE MEASUREMENT

An external magnetic field �z direction� is applied trans-
verse to the muon spin. The muon polarization is then con-
veniently represented as a complex quantity, where the real
and imaginary parts correspond to the x and y components,
respectively, and the initial muon polarization is taken along
the x axis. The time evolution of the spin of the bare positive
muon is given by

G+�t� = exp�− i��t� , �12�

where ��=2�	�=
�B, from which it follows that the muon
Larmor precession frequency is 	�=0.01355 MHz/G�B,
where B is the field in gauss. Here, the muon spin precesses
clockwise in the x-y plane, when viewed from the positive z
direction.

When the positive muon captures an electron to form
muonium, the system is described by the well-known �Breit-
Rabi� Hamiltonian, consisting of two Zeeman terms for the
muon and the electron and a hyperfine coupling term
	0S� ·Se, where 	0=�0 /2�=4463 MHz is the isotropic
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�−e hyperfine coupling constant �35,66�. The eigenenergies
vs magnetic field strength are shown in Fig. 1. The muon
spin polarization in a transverse field �TF� is shared among
the four distinct precessing components indicated in the fig-
ure, so its time evolution is more complicated than for the
bare muon �14,15,28�

G0�t� = 1
2c2�ei�12t + e−i�34t� + 1

2s2�ei�23t + e−i�14t� , �13�

where ��ik= � ��i−�k� is the energy difference between the
ith and kth states of the Breit-Rabi diagram �Fig. 1� and c2

and s2 relate to the applied field, expressed in terms of
B /B0�B0=1585 G for Mu� by

c2 = 1
2�1 + �B/B0�/��B/B0�2 + 1� , �14�

s2 = 1
2�1 − �B/B0�/��B/B0�2 + 1� . �15�

Now, let �tj
s�= t1

0t1
+t2

0t2
+ . . . tN

0 tN
+ be a sequence of residence

times in the charge state s, during the jth charge-exchange
cycle, up to the last muonium �Mu� formation. Thus the
combined SD time introduced above, through the BB and CE
regimes, from Eqs. �6�, �10�, and �11�, has the form

tSD = tBB
+ + 	

j=1

N

�tj
0 + tj

+� = tBB
+ + tCE, �16�

where tCE is the time spent in the CE regime alone. The
complex polarization of the muon spin in muonium after the

final muonium formation, i.e., at time t later than tSD, is
given by �28,36�

P�t� = G0�t − tSD�P�tSD� = G0�t − tSD�exp�− i��t+��
j=1

N

G0�tj
0� ,

�17�

where t+= tBB
+ +	 j=1

N tj
+ is the total time in the positive muon

state.
It is instructive to investigate G0�t� more closely in two

different time domains, t�0.224 ns and t�0.224 ns, where
1/	0=0.224 ns is the Mu hyperfine period. The quantity t in
G0�t− tSD� is the observation time, which is on the order of
microseconds, the time regime of the first domain. In this
domain, since the conventional TF-�SR technique employed
here has a typical time resolution of a few ns, ei�14t and
e−i�34t in Eq. �13�, both of which oscillate at a frequency
comparable to �0, are not observed. Furthermore, in the low
fields of interest �B10 G�, where c2=s2=1/2, the angular
frequencies �12 and �23 are equal �	12=	23 in Fig. 1�, giving,
accordingly, the Larmor precession frequency of “triplet”
muonium, 	Mu=�Mu/2�=1.39 MHz/G�B, largely deter-
mined by the dominant magnetic moment of the electron. It
follows then that the quantity G0�t− tSD� detected in a
weak-TF �SR experiment can be simplified to

G0�t − tSD� = 1
2 exp�i�Mu�t − tSD�� , �18�

where the factor 1/2 accounts for the fact that only the triplet
ensemble is observable in such fields. Because of the sign of
the electron gyromagnetic ratio, the muon spin in Mu pre-
cesses in the opposite direction to the free muon spin preces-
sion given by Eq. �12�.

Substituting Eq. �18� into Eq. �17�, gives, for the weak-
field muon polarization in muonium,

P�t� = 1
2 exp�i�Mu�t − tSD��exp�− i��t+��

j=1

N

G0�tj
0� , �19�

where G0�tj
0� represents the time evolution of the muon spin

during the jth muonium residence time of the charge ex-
change regime. Residence times tj

0 in the Mu charge state in
gases like Ar and N2 at �1 atm pressure are much shorter
than the hyperfine period, 0.224 ns �see also Ref. �16��, i.e.,
�tj

0�1, for all �ik in Eq. �13�. Thus G0�t� can be simplified
to

G0�t� � 1 +
c2

2
i��12 − �34�t +

s2

2
i��23 + �14�t

= 1 − i��t � exp�− i��t� . �20�

It is worth noting that if tj
0 were actually comparable to

0.224 ns, this would completely depolarize the muon spin,
resulting in P�t�=0. Thus, as long as Mu precession, P�t�,
can be observed, the condition tj

0�0.224 ns is satisfied.
Equation �20� expresses the important result that, for very

short Mu residence times, the muon spin in Mu precesses as
if the muon were completely free. In other words, before the
muon spin in Mu starts precessing counterclockwise with
frequency �Mu, the muon spin always moves momentarily

FIG. 1. Breit-Rabi energy level diagram of muonium. At B=0
the triplet and singlet states are separated by 	0=4463 MHz. Equa-
tion �13� gives the energy differences manifest as the precession
frequencies indicated in the figure, �12, �23, �14, and �34 defined
by � jk=2��	 j −	k�. In the weak-field region of interest �B10 G�,
�12 and �23 are degenerate, giving rise to the coherent precession of
triplet muonium.
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clockwise �quantum backswing� �28,29,66�. If each muo-
nium residence time during charge exchange is much shorter
than the hyperfine period, the product � j=1

N G0�tj
0� in Eq. �19�

can be simplified to exp�−��t0�, where t0=	 j=1
N tj

0 is the total
time in the muonium charge state. Therefore, the muon po-
larization after the last muonium formation can be expressed
by

P�t� = 1
2 exp�− i��Mu + ���tSD� exp�i�Mut� . �21�

It can be seen from Eq. �21� that the precession of triplet
muonium acquires an initial phase proportional to the
slowing-down time in the BB and CE regimes �Eq. �16��.
This is the essence of the present technique.

Figure 2 illustrates these phases generically. The dashed
sinusoid is the expected weak-field precession of Mu with
zero slowing-down time �tSD=0� and initial phase ��, which
depends on the initial muon spin direction but not on the type
of target gas �though the hypothetical gas would be infinitely
dense�. The solid curve is the precession signal for Mu at
some nominal pressure, having a slowing-down time tSD, and
during this time, the �reverse� muon precession is too slow to
be visible in the diagram. After the final formation of muo-
nium, when normal muonium precession sets in, the signal
has acquired a phase offset of �Mu−��= ��Mu+���tSD, pro-
portional to the slowing down time.

At the low �few atm� pressures of interest, slowing down
times are expected to be inversely proportional to the gas
density �n�, so, from Eq. �21�, it follows that the phase at a
given n can be expressed as

�Mu�n� = �� − ��Mu + ����SD n0/n �22�

where �SD is a normalized or “characteristic” slowing-down
time, defined as the value of tSD at the density, n0, of the
gas at standard conditions of 1 atm and 300 K; i.e.,
�SD� tSDn /n0. By measuring the initial phases of Mu preces-
sion at several gas pressures, one can determine this SD time,
�SD. It is important to emphasize that this is the �+ slowing-

down time from an initial energy �2 MeV, entering the BB
regime, to the end of the last Mu-formation cycle, which is
about 10 eV in the case of Ar �28�. It is a completely sepa-
rate question what the time is for the Mu atom �or �+� to
thermalize further, in its final regime, during which there is
no further cyclic charge exchange. This regime is addressed
further below.

IV. EXPERIMENT

The �SR technique relies on the fact that positive muons
are produced 100% spin polarized from pion ��+� decay, and
then in turn they themselves decay ��+→e++ 	̄e+ 	̄�� to emit
positrons preferentially along the muon spin direction, inde-
pendent of environment, as a consequence of parity violation
in the weak interaction �14,15�. Detection of these decay
positrons allows the time evolution of the muon spin to be
monitored, in a given environment. The SD-time measure-
ments reported here involved measuring the initial phase of
Mu spin precession in various gases, utilizing the principle
described above.

An aluminum target vessel 50 cm in diameter and 100 cm
long was placed in the middle of a set of large Helmholtz
coils �150 cm diameter�, which provided a homogeneous
field set at low B values in the range �5–10 G, parallel to
the muon beam direction. Additional pairs of correction coils
were used to eliminate any transverse component of the
fringe cyclotron field. Pressures of the different gases and
gas mixtures used were in the range �0.2 to 3.5 atm and
measured with a Baratron capacitance manometer. This
range is limited by the strength of the muon-entrance win-
dow �0.13 mm Kapton� of the target vessel at high pressure
and loss of measurable signal amplitude at low pressure. Gas
densities were calculated from the measured pressures and
ambient temperatures using the ideal gas law. Incoming
muons were detected by a plastic scintillator counter of
0.25 mm thickness placed in front of the beam entrance win-
dow. Decay positrons were detected by two sets of positron
detectors, each consisting of two 30 cm�30 cm plastic scin-
tillators, placed above and below the target vessel, 50 cm and
60 cm from the center of the coils, respectively.

Our experiment utilized “surface muons,” arising from the
decay of pions at rest, on the M15 and M20 beamlines at the
TRIUMF cyclotron �67�. Surface muons have a nominal en-
ergy of 4.1 MeV, but there is a distribution of particle ener-
gies produced, and some of the initial energy is also lost in
traversing beam line windows and the muon scintillator. The
resultant muon energy was then measured by a surface bar-
rier detector of 2 mm thickness �enough to stop 4 MeV
muons� positioned inside the evacuated target vessel �and
later removed�. This detector was calibrated by � decay from
146Gd and 241Am at kinetic energies of 3.18 and 5.48 MeV,
respectively. Different beam tunes were used to deliver
muons with initial energies measured in the target vessel of
Ei=1.1±0.3, 1.6±0.3, 1.8±0.4, 2.2±0.3, 2.4±0.4, and
2.8±0.3 MeV, where the quoted uncertainties are half the
width of the measured energy distribution. It can be noted
that the present technique is not amenable to measurements
in dense media at all, or in gases at initial energies much

FIG. 2. Simulated precession signal �dashed curve� for Mu with
zero slowing down time and initial phase ��, and a more normal
signal for Mu �solid� with slowing down time tSD, during which the
Mu nuclear spin precesses slowly backwards, giving an apparent
initial phase �Mu���.
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lower than �1 MeV, the latter due to constraints on both
muon flux and penetrating power �through thin windows and
the muon counter�.

A Wien filter �67� installed on the beamline rotated the
muon spin by 90° from its natural longitudinal orientation to
point upwards, transverse to both the beam and the applied
magnetic field. Transverse muon polarizations were impor-
tant in this experiment for avoiding a type of systematic
error: with the muon ��+� spin pointing vertically and
the field applied along the beam direction, the spin precesses
in a plane perpendicular to the beam, ensuring that the initial
muonium phase is insensitive to the changing stopping
location of muons as the target pressure is varied.

V. DATA ANALYSIS AND RESULTS

In the basic �SR experiment, an incoming muon is de-
tected by the muon counter, starting a time-to-digital con-
verter �“clock”�, which is subsequently stopped by the detec-
tion of a decay positron, and such decay events are sorted by
time to form a histogram, N�t�. These time histograms, from
each separate pairs of detectors, were fit to a standard �SR
fitting function �9,14,15�

N�t� = Nb + N exp�− t/����1 + A�t�� , �23�

where Nb is a time-independent background, N is a normal-
ization factor, �� is the muon life time �2.2 �s�, and A�t� is
the �SR signal of interest. For a weak transverse field
�B�10 G�, this is given by

A�t� = AMu exp�− �Mut� cos��Mut + �Mu� + AD cos��Dt − �D� .

�24�

The quantities �Mu and �D are the initial phases of the muo-
nium and diamagnetic muon signals, respectively, AMu and
AD are the corresponding initial amplitudes, and �Mu is the
relaxation rate of muonium. The first term of Eq. �24� has its
origin in Eq. �18�, for observation times t� tSD, while the
second term comes from Eq. �12�. For all practical purposes,
�D=��, for muons in any diamagnetic environment, since
small chemical shifts cannot be resolved. In the absence of
chemical and spin exchange reactions, as in the present
study, �Mu is determined primarily by the inhomogeneity of
the applied field over the muon stopping distribution. The
quantity of primary interest in this work is �Mu, which varies
linearly with the slowing-down time, as defined by Eq. �22�.
The beginning of the time histogram �so-called time zero, t0�
is determined from the inflection point of the signal’s initial
rise, from Nb to approximately N+Nb, within �2 ns.
This uncertainty in t0, which introduces an uncertainty in the
initial phase, will not affect the slope of a �Mu vs 1/n plot.

At the highest gas pressure used in this experiment
�3.5 atm�, muons stopped near the upstream edge of the pos-
itron detectors, depending on Ei. As the target pressure was
decreased, the muon range increased and the stopping region
moved downstream, but if the gas pressure were to get too
low, muons would stop far downstream from the positron
counters, leading to an artificially long slowing-down time,
due to delay of the signal by the long transit time of decay

positrons to the detectors. Such variations would cause a
deviation from the expected linearity between the phase and
1/n in Eq. �22�, so an experimental requirement was that the
muons must stop between the positron detectors, which is the
central region of the magnet. Knowing the field distribution
of the Helmholtz coils, one can use �Mu and �Mu as indica-
tors of where muons are stopping in the target vessel. Note
that constant transit times within the central volume will con-
tribute to �� of Eq. �22� but not to the slope of a �Mu vs 1/n
plot.

For a given gas, base measurements were done in a de-
creasing order of pressure until AMu became too low, or a
deviation from the desired linearity of �Mu vs 1/n given by
Eq. �22� was observed, or until �Mu or �Mu indicated the
stopping region of muons was far from the center of the
coils. The initial phases in two opposing directions �up and
down� were determined for a range of pressures of pure Ar,
N2, and H2, and mixtures of He-Ar, Ne-Ar, He-H2, CF4-Ar,
and SF6-H2. Figure 3 shows a plot of �Mu recorded by the
downward detector �opposite to the initial muon spin direc-
tion� vs 1/n for N2 and H2, and initial muon energies of 1.6
and 1.1 MeV. Similarly, Fig. 4 shows the linear variation of
�Mu with 1/n of pure Ar and Ar mixtures, for an initial muon
energy Ei=1.8 MeV, but as recorded in the upward detector.
The slopes are of prime importance since these give the
characteristic �1 atm� slowing-down times of interest, �SD.

The initial phases for all pressures of all gases measured
at a particular initial energy were simultaneously �globally�
fit to Eq. �22�, to give separate values of �SD for each gas or
gas mixture, along with two shared values of ��—one for
each detector direction, up or down. Noteworthy in Fig. 3 is
that the fits for 1.6 MeV muons converge to the same inter-
cept ���� for N2 and H2, but 1.1 MeV muons in H2 give a
different intercept. At both energies, the H2 lines are steeper

FIG. 3. Muonium phase in the downward direction plotted vs
reciprocal density for N2, with an initial muon energy of 1.6 MeV
�solid circles�, and for H2 with muon energies of 1.1 and 1.6 MeV
�squares and solid triangles, respectively�. The straight lines are fits
to Eq. �22�, constrained to have the same intercept �� for the same
energy, whose slopes give the characteristic muon slowing time �SD.
It is clear that the �+ has a much longer slowing time in H2 than in
N2, and that the slowing down time is longer for higher-energy
muons.
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than for N2, indicating a greater �SD for H2. The 1.6 MeV H2
line is also steeper than for 1.1 MeV, since it takes a longer
time to slow down from a higher energy, seen also from the
entries in Tables I and II below.

The gas mixtures studied were He-H2 �50% H2�, SF6-H2
�97% H2�, He-Ar �25% Ar�, Ne-Ar �37% Ar�, and CF4-Ar
�67% Ar�, with the intent in part of testing the �Bragg� addi-
tivity rule of Eqs. �4� and �5�, as well as to examine energy
moderation effects in the SD process. More specifically, elas-
tic moderation efficiencies were compared by mixing
different-massed inert gases with Ar �the series Ar, He-Ar,
and Ne-Ar� and with H2 �H2 and He-H2�; the effects of
chemical binding and inelastic moderation on the slowing-
down time were examined by comparing H2 with He-H2,
CF4-H2, and SF6-H2, the molecular gases SF6 and CF4 hav-

ing many internal degrees of freedom. An additional, prag-
matic, motivation in the cases of He and Ne, was that a gas
with a lower ionization potential was needed for any Mu to
be formed �14,16�.

Table I gives the muon slowing-down times, �SD �in ns�,
measured in pure H2, D2, N2, and Ar, at various initial ener-
gies, while Table II gives these times for the mixtures listed
above. The energy errors given in Tables I and II are the
measured widths given earlier, for the distribution of muon
energies, as measured by the surface barrier detector. The
errors in the values of the central �mean� energies, affecting
the values of �SD, are believed to be much less than the
widths, and are estimated to be uncertain by �0.1 MeV.
Though this is a comparable percent error to those quoted
from the determination of �SD from the least-squares
�“minuit”� fits of the slopes �Figs. 3 and 4�, it is also not well
determined, so only the latter errors are shown for the SD
times in Tables I and II. On the other hand, any uncertainty
in the energy measurement would apply to all gases mea-
sured at that energy, and so could generate some systematic
error in �SD. There is some evidence for this in a comparison
of N2 and Ar measured at 1.6 and 1.8 MeV where, for both
gases, the slowing times are perhaps closer than the energies
would suggest.

Figure 5 shows the pressure dependence of the muonium
phase in H2 and D2, from data taken in previous experiments
�31,64� using the same target vessel as in the current mea-
surements. In this case though the initial muon energy was
not measured directly, but rather an estimate of Ei was made
from a comparison of muon momenta from the recorded

FIG. 4. Muonium phases measured in the up-
per detector for pure Ar �solid circles� and Ar
mixtures: He-Ar �25% Ar, solid squares�, Ne-Ar
�37% Ar, triangles�, and CF4-Ar �67% Ar,
squares�; all with muon energy Ei=1.8 MeV. The
straight lines are fits constrained to give the same
�� �intercept� but individual slopes, which give
�SD directly.

TABLE I. Muon slowing down times ��SD �ns�� from the initial
muon energy �Ei� to that of the last muonium formation
��10 eV� in pure gases at 1 atm and 300 �K.

Ei �MeV� H2 D2 N2 Ara

2.8�0.3�b 14.3�0.6� 13.3�0.5�
2.4�0.4� 10.4�0.4� 10.4�0.6�
2.2�0.3� 9.3�0.6�
1.8�0.4� 7.0�0.2� 6.8�0.2�
1.6�0.3� 34.2�0.7� 6.5�0.2� 6.4�0.2�
1.1�0.3� 18.1�1.4�
�0.9c 10.9�0.8� 10.3�0.8�
aMost of the Ar entries were reported earlier, in a demonstration of
the technique �28�, with the exception of the entry at 2.2 MeV,
which was measured in the present study, along with all the other
entries in the table.
bInitial muon energies and widths of the energy distribution mea-
sured with a surface barrier detector. Uncertainties in the central
�mean� energy are expected to be less than the widths and are esti-
mated to be �0.1 MeV. Errors given for the SD times are only
from the least-squares fits �Figs. 3 and 4�.
cMuon energy was not measured but determined from beamline
magnet settings, with an uncertainty also estimated as �0.1 MeV.

TABLE II. Muon slowing down times ��SD/ns� for gas mixtures
at 1 atm and 300 K.

Ei�MeV�
He-H2

�50% H2�
SF6-H2

�97% H2�
He-Ar

�25% Ar�
Ne-Ar

�37% Ar�
CF4-Ar

�67% Ar�

1.8�0.4� 19.6�0.6� 9.3�0.3� 4.6�0.3�
1.6�0.3� 35.9�0.9� 20.2�1.3�
1.1�0.3� 18.4�1.9� 9.4�2.3�
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beam line settings, giving an energy in the target
Ei�0.9 MeV, which we also estimate as having an uncer-
tainty of 0.1 MeV. Though the energy could even be more
uncertain here, this does not affect the comparisons between
H2 and D2 shown, and hence their slopes, �SD, which is the
central point of the data plotted in Fig. 5.

VI. DISCUSSION

A. Qualitative aspects of measured SD times, �SD

The central experimental results of the present study are
the slowing-down times, �SD, reported in Tables I and II.
These are the times the muon spends in the Bethe-Bloch and
charge-exchange regimes, from �2 MeV to 10 eV, as de-
fined by tSD= tBB

+ + tCE �Eq. �16��. It will be shown below that
tCE is much less than tBB

+ , established earlier in Ref. �16� as
well, so that, effectively, tSD� tBB

+ . The measured SD times
show the expected dependence on initial energy mentioned
above, higher energies �Ei� giving longer times. Since N2 has
a smaller effective excitation energy, I, than Ar52 but a
smaller total charge, ZT, these two effects tend to be com-
pensating in Eq. �1�, leading to similar SD times. In contrast,
H2, with the smallest charge, has a significantly slower rate
of energy loss and correspondingly a longer SD time. Kine-
matics and energy-moderation cross sections also play a role
here. In this regard, it is interesting to note from Table I that
�SD in H2 and D2 are the same �within errors�, suggesting
that inelastic scattering, here between widely spaced rovibra-
tional levels in molecular gases, plays a more important role
than elastic scattering in the energy moderation processes, in
the BB and CE regimes. On the other hand, the similar SD
times for N2 and Ar, both much less than in H2 �D2�, also

shows that elastic energy moderation is still important in all
gases.

The role of total charge as well as elastic and inelastic
energy moderation effects is reflected as well in the SD times
for the mixtures shown in Table II. Thus for Ei=1.8 MeV,
the Ne-Ar and particularly He-Ar mixtures, with reduced
total charges, have longer SD times than Ar itself, whereas
that for CF4-Ar is significantly shorter due to both the inelas-
tic �rovibrational� contributions from the molecular compo-
nent, and a somewhat higher total charge. Similarly, while a
50% mixture of He-H2 has the same SD time �and the same
ZT� as pure H2, only 3% of SF6 in H2 cuts this time in half.
It is also worth noting here that, e.g., the addition of He to Ar
should raise the average energy for the last Mu formation
significantly, from about 10 eV in pure Ar �28� to possibly
tens of eV in He-Ar �26�, and yet this has little or no effect
on the measured SD time. In like manner, recent results
showing charge exchange cross sections for H+ being differ-
ent by as much as 50% between H2 and D2 �68� at sub-keV
proton energies, or at equivalent �20 eV �+ energies, near
the end of the CE regime, do not impact on the equal SD
times noted above. Both of these results are consistent with
the previous statement that this time is due almost exclu-
sively to energy loss in the BB regime.

B. The muon stopping powers, S„E…

It has been shown elsewhere that the time spent in the CE
regime, tCE does not depend on the initial energy �Ei� as long
as Ei�ECE, the energy of the first Mu formation �see below�
�28�, so that the muon stopping power at Ei can be found by
differentiating Eq. �6�, giving for the energy loss,

�dE

dx
�

Ei

= −
1

vi

dEi

dtSD
, �25�

leading to

S�E� = −
1

n

dE

dx
= �n0vi

d�SD

dEi
�−1

�26�

for the �+ stopping power per molecule, where n0 is again
the gas density at 300 K and 1 atm pressure.

Both N2 and Ar were studied over a sufficiently wide
range of initial energies �Ei=1.6 to 2.8 MeV, in Table I� to
determine the slope d�SD/dEi well, and hence their stopping
powers from Eq. �26�. Pure H2 and an H2-He mixture were
also studied at two �measured� energies, allowing a determi-
nation of their �+ stopping powers. We have used two meth-
ods to calculate d�SD/dEi from the data, as illustrated in Fig.
6, which plots �SD vs Ei for Ar �Fig. 6�a�� and N2 �Fig. 6�b��.
Figure 7 plots the stopping power, S�E�, derived from both
methods, compared with the corresponding proton stopping
�Fig. 6�a�� powers �39–41,69�.

The first method was to determine d�SD/dEi over the dis-
crete intervals between data points. However, there would be
too much uncertainty in the slope if taken between closely
spaced points, so some pairs of nearby points were averaged,
and the averages used for calculating intervals and slopes.
These averaged points are shown as open circles in Fig. 6

FIG. 5. A plot of Mu phase for H2 �squares and dashed lines�
and D2 �stars; solid� as in Figs. 3 and 4, but with the data from both
the upward and downward detectors plotted �lower and upper data,
respectively�. The initial �+ energy was approximately 0.9 MeV,
although it was not measured directly.
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while the measured points are smaller filled circles. After
averaging those pairs, there are three distinct Ei values for
both N2 and Ar, and thus two discrete, reasonably spaced,
energy intervals for calculating slopes. The stopping powers
calculated from Eq. �26� over these intervals, at their mid-
point energies �Ei�, are listed in Table III, along with those at
the equivalent proton energy, and are shown as solid circles
in Fig. 7. The error bars are determined from the uncertain-
ties in �SD in Table I. There are no horizontal �energy� errors
shown, because these were not determined, but, as com-
mented earlier, are estimated to be �0.1 MeV. The stopping
powers for H2 and 50% H2-He mixtures were determined
over a single interval, 1.1 to 1.6 MeV, with the results also
given in Table III. These are essentially the same values, in
agreement with the Bethe-Bloch formula, Eq. �1�. The cor-
responding stopping power for protons of the same velocity
�12 MeV� in H2 agrees with literature values, within errors
�40�.

The second approach to calculating d�SD/dEi was to pa-
rametrize the �SD vs Ei dependence to the quadratic expres-
sion �SD=aEi+bEi

2, with phenomenological parameters a
and b determined by �2 minimization �36�. This parametri-
zation is shown in the smooth curves of Fig. 6, for Ar and
N2, which are the most complete data sets. The slope

d�SD/dEi=a+2bEi and corresponding stopping powers were
then calculated for both gases over the energy interval Ei
=1.6 to 2.8 MeV, as shown by the chains of small circles in
Fig. 7. Error bars are not shown but can be expected to be
similar to those plotted for the two data points shown.

Figure 7 also plots, as dashed lines, the known proton
stopping powers per molecule at the energies given on the
abscissa �40,41,69�. The solid lines are the proton data �from
energies that are off scale� after compressing the energy scale
by a factor of Ep /E�=mp /m�=8.88 �as in the last column of
Table III�, which then shows the expected S�E� for the posi-
tive muon based on the assumption of velocity scaling; i.e.,
the stopping power of the proton and muon in a given me-
dium should be the same at the same projectile velocity
�speed�, as described earlier. There is no further adjustment
to the solid lines in Fig. 7, other than the assumption of
velocity scaling. Though there is some scatter in the indi-
vidual comparisons shown in Table III, the agreement with
the experimental �SR points, both those determined from the
parametrized fits in Fig. 6 �open circles� and the results ob-
tained directly from the intervals, as described above, is
good. The apparent drift to fall below the velocity-scaled
solid line at the higher energies, occurring for both N2 and

FIG. 6. A plot of the experimental slowing down times at 1 atm,
�SD, vs the measured initial energy, Ei, for Ar �a� and N2 �b�. Error
bars on energy are not shown, but are expected to be less than the
widths given in Table I. The solid circles are data from Table I and
the open circles are the averages of nearby points; these average
values were used for calculating the stopping power per molecule,
S�E�, by finite differences. The solid curves are a quadratic param-
etrization whose slope was also used to calculate S�E�, as described
in the text.

FIG. 7. The stopping power per molecule for the positive muon
in Ar �a� and N2 �b� determined by the slope of �SD vs Ei. The solid
circles with error bars represent measured values obtained from
energy intervals while the chains of open circles were determined
from the smooth curves in Fig. 6. The dashed lines are the stopping
powers for the proton �40,69�, at the same energies, Ei. The solid
lines, which represent S�E�=−�1/n��dE /dx� for the positive muon,
are obtained by horizontally scaling the energies �mainly off scale�
of the proton stopping-power data by 0.11, the ratio of p+ to �+

velocities. There are no other adjustments. Such a simple scaling is
expected to be inaccurate at the lowest energies plotted, but the
agreement is excellent over the range of measured stopping powers.
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Ar, and visible in both the smoothed and discrete data, sug-
gests a small systematic uncertainty in energy, commented
on earlier. While the velocity scaling between the p+ and �+

seen in Fig. 7 is expected from the Bethe-Bloch equation,
Eq. �1� �1,25�, this is the first time, to our knowledge, that it
has actually been demonstrated for ��2 MeV� muons, in the
gas phase.

While, as remarked at the outset �Sec. II A�, the much
lighter muon mass could, in principle, provide a more strin-
gent test of velocity scaling �or, equivalently, mass indepen-
dence� in the BB slowing-down formula, this statement has
to be weighed against the errors found in a given measure-
ment; and, in particular, with those reported elsewhere in
comparisons of p and d stopping powers �in metals� at the
same velocities �23–25�, with errors at the 0.5% level, or
better. The measurements of Shiomi-Tsuda et al. are note-
worthy here, with �average� errors of 0.35% reported over a
wide range of elements, from Be to Au �23�. �It can be com-
mented that similar measurements in gases, by the same
group, report 0.8% errors �41�.� Though not an issue in the
present study, a relevant question to ask is “to what level of
error should measurements of muon stopping powers be
made in order to provide a better test of mass independence
than has been shown by comparative measurements of
proton and deuteron stopping powers?”

An answer to this question is provided by the calculations
of Bichsel and Inokuti, who have considered specific mass-
dependent corrections to the basic electronic stopping-power
formula �25�. There are two such corrections, one that is both
charge and energy dependent and one that is not, but both of
which vary linearly with inverse mass, serving to decrease
the stopping power for lighter mass particles. Though these
calculations are for metal targets �Al and Au�, we can as-
sume that the trends reported will be similarly correct in a
gas environment, and in particular their results for Al best
matches the total charge for our results for muon stopping
powers in N2 and Ar. From Ref. �25� specific mass correc-
tions to the BB formula for a 1 MeV proton �in Al� are
0.026%, and, for the equivalent velocity muon, at
0.113 MeV, 0.23%. �These corrections are both about ten
times higher in Au.� For a 1.13-MeV �+ and an equivalent
velocity 10-MeV p+, in the BB regime, and well above the

CE regime, these same corrections are 0.1% and 0.01%,
respectively.

Thus, not only would the proton-deuteron data have to be
measured to a level of better than �0.05% �roughly ten
times more precise than current data�, but the muon data,
though with an allowable error tenfold larger, would have to
measured at the 0.1% level, which is out of the question for
any experiments in the gas phase. The current measurements
are closer to the 20% level �Table III� due both to errors in
the measurement of the phase of the Mu precession �Figs. 3
and 4� and uncertainties in the energy of the incident surface
�+ beam, and as such fall far short of any test of mass inde-
pendence in the classic BB formula. On the other hand, it
may be possible, with current improvements in “slow” �+

beams �1,2� �at few “keV” energies� to begin to test such
specific mass dependences in muon stopping powers. Indeed,
Valdés et al. have shown for 0.25 keV muons in Al, that
differences with �2.2 keV� proton stopping powers begin to
approach the 5% level �22�.

Finally, it should be remarked that, although the solid
curves for the velocity-scaled stopping powers, S�E�, are dis-
played at quite low muon energies in Fig. 7, velocity scaling
is likely to be less valid there, as other mechanisms such as
nuclear stopping �22,25,51,70� charge exchange
�40,43,49,70�, and the Barkas effect �4,5,50� can all contrib-
ute to the stopping power at these energies. At the higher
energies, the velocity-scaled solid curves are relevant to the
4.1 MeV nominal energy of surface muons �67�.

C. Calculations of �SD in the BB and CE regimes

As outlined in Sec. II B, the survival probability that the
positive muon �proton� at initial energy Ei �time t=0 and
velocity vi� does not undergo an electron capture collision
down to some lower energy E �t and v� is expressed by an
equivalent form to Eq. �7�, SC=exp�−NC�Ei ,E��, but involv-
ing the ion stopping power �dE /dx�+ in Eq. �8�. Figure 8
shows this survival probability for the proton in He, Ne, and
Ar with Ei=100 MeV, calculated from electron capture cross
sections �30,71,72� and proton stopping powers �69� in He,
Ne, and Ar. The mean energy for the first neutral �Mu or H�
formation �ECE� �defining the beginning of the charge

TABLE III. Stopping powers for �+ determined at the midpoints �Ei� of discrete energy intervals, com-
pared with values for p+.

Gas Ei interval mid Ei
a S��Ei�

b Sp�8.88Ei�
c

Ar 1.70–2.28 2.00 1.24±0.22 1.31

Ar 2.28–2.75 2.51 0.86±0.22 1.10

N2 1.70–2.35 2.03 1.23±0.19 1.18

N2 2.35–2.75 2.55 0.65±0.16 0.98

H2 1.10-1.60 1.35 0.27±0.03 0.29

H2-He�1:1� 1.10–1.60 1.35 0.24±0.04 0.28d

aMidpoints of the energy intervals shown. Energies are in MeV. Uncertainties were not determined, but are
expected to be �0.1 MeV, whereas the measured energy widths at each nominal energy were �0.3 MeV.
bMuon stopping powers per molecule, S�E�=−�1/n��dE /dx�, in units of 10−15 eV cm2.
cVelocity-scaled proton stopping powers, in the same units �40,69� �for a given velocity, Ep=8.88E��.
dAverage of H2 and He stopping powers �40�.
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exchange regime� is obtained from the condition
NC�Ei , �ECE��=1, giving �ECE�=1.5, 2.5, and 3.7 MeV, re-
spectively, which are quite insensitive to the choice of Ei
as long as Ei�ECE. The trend to higher �ECE� with increas-
ing ZT is in accord with the trends seen from proton CE data
in the MeV regime �71,73–75�, and due, in part, to the
contributions from inner shell electrons to �C�E� at higher
energies.

In the case of the positive muon in He, Ne, and Ar, the
cross sections for muonium formation, �C�E�, and the stop-
ping power, �dE /dx�+, are obtained by velocity scaling from
the corresponding quantities for the proton �30�. The velocity
scalability of �C�E� for the muon is expected at high enough
energies �62�, and is well established �76�, as is that for
dE /dx �1,25,23�, and seen also in this work �Fig. 7�. Figure 9
shows the survival probability for the positive muon, with
Ei=4 MeV down to energy E in He, Ne, and Ar. The initial
energy of 4 MeV was chosen because it is the nominal sur-
face �+ beam energy and is again well above the energies of
significant Mu atom formation �Ei�ECE�. The mean ener-
gies of the first muonium formation calculated from the
velocity-scaled cross sections are �ECE�=60, 90, and
240 keV in He, Ne, and Ar, respectively. The trend to con-
siderably reduced value for �ECE� compared to those for the
proton above, partly reflects the mass dependence inherent to
the survival probability, from Eqs. �7� and �8�, though, in
fact, there is no simple mass relationship.

The time in the Bethe-Bloch regime, tBB
+ , can be found

from the stopping power for this regime by Eq. �6�, with
Ef = �ECE�, the average energy at which the first muonium
�hydrogen� formation collision takes place. As an example
calculation, consider argon. The slowing-down time of the
�+ through the BB regime, from an initial energy of
Ei=2.8 MeV, the highest value in the present study �Table I�,
to 240 keV, the beginning of the charge exchange regime

��ECE�, as above�, was calculated from the corresponding
velocity-scaled proton stopping powers of Ref. �69� �very
similar, where comparable, to those reported earlier by
Andersen and Ziegler �39�, by Bichsel and Porter �40�, and
more recently by Shiomi-Tsuda et al. �41��, giving tBB

+

�Mu�=12.3 ns at 1 atm pressure. This compares favorably
with an earlier, more simplistic estimate in the range 3 MeV
to 35 keV of 14 ns �16� and more importantly with the mea-
sured slowing-down time to �10 eV, �SD=13.3±0.5 ns
�Table I�, indicating that the �+ spends 1.0±0.5 ns in the
cyclic CE regime, spanning energies from about 240 keV to
10 eV �in Ar�.

Specific calculations of muon SD times in the CE regime
�28�, using velocity scaling of the �proton� CE cross sections
and energy scaling for the elastic moderation cross sections,
showed that it takes �0.2 ns to slow muons in �1 atm� Ar
from 2 keV to 10 eV, the energy region in the CE regime
where most muon depolarization takes place. Extending the
upper energy of these calculations to 240 keV can be
expected to lengthen this time, consistent with the 1.0 ns
above. It is worth commenting that, even though the
total time in the cyclic charge exchange regime ��1.0 ns�
is much longer than the muonium hyperfine period
2� /�0=0.224 ns, each individual Mu residence time is
much shorter. This allows most of the muon spin polarization
to be preserved at observation times, after thermalization, at
pressures �1 atm, in all but the heaviest gases
�11,16,28,48,63�.

D. �SD in gas mixtures: Bragg’s rule

In the Bethe-Bloch formula of Eqs. �1� and �3�, the stop-
ping power dE /dx is linearly proportional to nZT, which is
the total electron density of the target. Furthermore, as just
shown, tBB

+ � tCE, justifying the earlier approximation that
tSD� tBB. Thus the quantity �SDZT is a measure of the
slowing-down time per electron in the moderator �at 1 atm

FIG. 8. The survival probability of the proton to the electron
capture process �H atom formation� in He, Ne, and Ar with
Ei=100 MeV, SC�Ei ,E�=exp�−NC�Ei ,E��. The mean energy for the
first H formation, �ECE�, can be obtained from the condition
NC�Ei , �ECE��=1, i.e., SC�Ei , �ECE��=0.368, to be �ECE�=1.5, 2.5,
and 3.7 MeV in He, Ne, and Ar, respectively.

FIG. 9. The survival probability of the positive muon to electron
capture �muonium formation� in He, Ne, and Ar with Ei=4 MeV,
the energy of a surface muon beam. The mean energies of the first
Mu formation are �ECE�=60, 90, and 240 keV in He, Ne, and Ar,
respectively. The calculated values are insensitive to initial energies
�4 MeV.
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and 300 K� through the BB regime. This is plotted in Fig. 10
as a function of IT in pure gases and in gas mixtures, for
initial muon energies Ei=1.6 MeV �solid circles� and
1.8 MeV �open circles�, where the times �SD are taken from
Tables I and II. The curves are calculated from the Bethe-
Bloch formula, as described next.

In the approximation tSD� tBB
+ , one can express tSDZT us-

ing Eqs. �3� and �6� as

tSDZT =
mem

4�e4zp
2n



vf

vi v2dv
ln�2mcv

2/IT�
, �27�

where vf is the velocity at which the first electron capture
takes place, corresponding to �ECE�, as defined above,
and the quantities ZT and IT for mixtures are calculated from
Eqs. �4� and �5�, respectively. The values determined for IT
are found from those given in Ref. �52� as shown by the
entries along the abscissa of Fig. 10, and which are in
reasonable agreement with other literature values �40,41�.
The expression for tSDZT given by Eq. �27� can be cast in the
form

tSDZT =
mem

8�e4zp
2n
� IT

2me
�3/2

�H�vi� − H�vf�� , �28�

where

H�v� = Li��2mev
2/IT�3/2�

is a convenient notation, and where Li�x� is the integral
logarithm defined by �77�

Li�x� = 

0

x dt

ln t
= ln ln x + 	

j=1

�
�ln x� j

j j!
.

Calculations of �SDZT from Eq. �28�, for muon energies
Ei=1.6 and 1.8 MeV and Ef � 0.4 MeV, are shown by the
dashed curves in Fig. 10. Though some differences may be

expected for a different choice of IT values, which can show
�10% variation in the literature �40,41,52�, the calculated
curves do nicely follow the trend of the measured points,
with an average deviation of about 20%, typical of other
reported tests of Bragg’s rule �53,59�. Notable exceptions are
the 50% deviations reported in H2-He mixtures at keV ener-
gies, due to charge-changing collisions �54� and a 5% level
recently reported in polymers using the Sigmund-Schinner
binary collision theory �45�. The generally good agreement
seen in Fig. 10 does indeed indicate that each electron in a
molecule or mixture has essentially the same contribution to
the slowing-down time as an electron in a pure atomic gas, in
accord with the validity of Bragg’s additivity rules of Eqs.
�4� and �5�, but not previously shown experimentally for the
�+ in gases.

VII. THERMALIZATION REGIME AND TOTAL
SLOWING-DOWN TIME

After emerging from charge exchange, the muon �proton�
enters a final thermalization regime, from the energy of the
last Mu �H� formation, at �10 eV, to kT. In a noble gas, this
energy loss is almost exclusively due to elastic scattering, but
in molecular gases, inelastic scattering via rovibrational ex-
citation also plays an important role, in competition with
reactive scattering in the form of hot atom reactions of muo-
nium, Mu* �13�. The formalism developed in Ref. �13� is
also relevant to the slowing-down time in the thermalization
regime here, and is outlined below.

A. Energy moderation and the final thermalization time, �TH

When the kinetic energy of the projectile in the thermali-
zation regime is well above thermal, the elastic energy-loss
parameter f0�E� in Eq. �9� can be expressed by �13,26�

f0�E� =
1

��E� 
 �d��E,��
d�

�1 −
2Mm

�M + m�2 �1 − cos ���d� ,

�29�

where d��E ,�� /d� and ��E� are the angular-differential and
angular-integrated elastic cross sections, respectively. The
normalized angular distribution can be expressed in terms of
a sum over Legendre polynomials, with expansion coeffi-
cients sn�E�. Because of the orthogonality of these polyno-
mials, the stopping power contains no terms with n�2 �13�.
The “monopole” coefficient s0�E� is identically unity, while
the “dipole” coefficient, s1�E�, is a measure of the forward-
ness in the angular distribution for elastic scattering, and can
be represented as the average of the center-of-mass �CM�
scattering angle, s1�E�= �cos ��.

Thus, the stopping power of the elastic energy-mod-
eration process of Eq. �9� can be expressed by

�dE

dx
�

Elastic
= ln�1 −

2Mm

�M + m�2 �1 − s1�E���En��E� ,

�30�

since the quantity I0�E� vanishes for elastic collisions. If the
scattering is isotropic in the CM system, the dipole coeffi-

FIG. 10. The product of the slowing-down time and the total
charge of the moderator, �SDZT, which is a measure of the slowing-
down time per electron in the gas, for all the gases and mixtures in
Tables I and II with initial muon energies Ei=1.6 �solid circles� and
1.8 MeV �empty�. The corresponding dot-dashed and dashed lines
are not fits, but were calculated from Eq. �28�, as described in the
text.
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cient s1�E� vanishes as well, and gives the familiar result for
hard spheres; whereas s1�E�=1�−1� represents, classically,
completely forward �backward� scattering. Note that
dE /dx in this regime can be drastically reduced from that for
hard spheres, by the factor 1−s1�E�, depending on how
forward peaked the elastic differential cross sections are. Re-
lated effects for heavy ions have also been considered by
Sørensen �78�. As noted, in the case of molecular gases, in-
elastic �rovibrational� excitation may also be important in the
energy moderation process �including in the BB regime,
pointed out earlier in comparing the similar times �SD in H2
and D2� and a form similar to Eq. �30� can also be defined by
its forwardness scattering parameter �13�.

The stopping-power expression of Eq. �30� assumes that
the target gas atoms are at rest, which is a good approxima-
tion for E much greater than thermal energy, ET=3/2kT, but
at lower energies the thermal motion of the target must be
taken into consideration �79�. In this case, the stopping
power due to elastic collisions is modified to

�dE

dx
�

Elastic
= ln1 −

2Mm

�M + m�2�1 −
ET

E
��1 − s1�E���nE��E� .

�31�

This expression is valid as long as ��E+����E−�, where
E±= 1

2m�vp±vT�2 are the maximum and minimum relative
kinetic energies in terms of the projectile and target veloci-
ties. The stopping power given by Eq. �31� is negative for
E�ET �“cooling”� and vice versa �“heating”�, indicating that
the final average energy of the projectile is 3kT /2, regardless
of the initial energy.

In order to estimate the rate of energy loss in the thermal-
ization regime, i.e., after the last CE cycle, the quantities
��E� and s1�E� considered in Eq. �31� are replaced by aver-
age values ��� and �s1�, respectively. The slowing-down time
from Emax=�ET, the initial energy immediately following
CE �about 10 eV� to Emin=�ET is then given by

t��ET,�ET� =
�0

2 ln��� + 1
�� − 1

� − ln��� + 1
�� − 1

�� , �32�

where � and � are dimensionless scale factors for energy
�����1�, and �0 is a characteristic thermalization time
defined by

�0 =
�M + m�2

Mm

1

n����1 − �s1��
� m

2ET
, �33�

where n is again the molecular number density. Figure 11
plots results from Eq. �32�, showing energy losses as a func-
tion of time relative to �0 �solid lines� for initial energies
�ET=2ET, 5ET, and 258ET �10 eV�. Note the correct
asymptotic result at long times �E→ET�, which is in contrast
to the dotted line, for an initial energy of 10 eV, calculated
from Eq. �30�, which ignores the thermal motion of the
target.

To calculate specific times, knowledge of both the average
cross sections and dipole parameters are required. As a
simple estimate, assuming a cross section of ���
=10−15 cm2, and �s1�=0, the case for �classical� isotropic

hard spheres, the thermalization time of Mu in Ar at 1 atm
pressure and 300 K, from 10 eV down to 2ET=3kT
�0.1 eV, would be �TH�20 ns, consistent with earlier cal-
culations of the same quantity �16�. �Similar considerations
also apply to electron and positron scattering, where the
quantity s1�E� for the elastic process vanishes �in Ar� at ap-
proximately 1 eV and below �80��. For H2, assuming the
same cross section and energy regime, the large reduction in
mass of the target molecule, compared to Ar, would naturally
mean a much faster Mu thermalization, with �TH�1 ns for
isotropic scattering, at pressures near 1 atm.

However, as mentioned above, the actual slowing down
time can be much longer, depending on the scale factor for
the forwardness in the elastic differential cross sections,
1 / �1− �s1��. A detailed scattering calculation is required to
determine this which has been done to date only for Mu*

reactions with H2, from calculated QCT differential cross
sections �13�. Choosing an average value for ��� of 2
�10−15 cm2 from these calculations, again from 10 eV down
to 2ET, as above, and an average value for �s1�=0.95 in this
energy range, gives a time �0�10 ns and hence, from Fig.
11, a thermalization time to �0.1 eV, �TH�9 ns, an order of
magnitude longer than the hard-sphere estimate above. Ex-
tending this calculation even nearer to thermal energies ��
→1 in Eq. �32��, would mean �TH�30 ns in H2 at 1 atm
pressure. In Ar, with its much higher mass, and assuming the
same parameters, the time to reach thermal energies could be
an order of magnitude longer, but the actual scattering cal-
culations for the Mu atom have not been performed. Still, the
trend is noteworthy and could extend to much longer times
in the heavy noble gases, Kr and Xe �63�. On the other
hand, in these cases the �H atom� elastic scattering cross
sections are some twofold to threefold larger �81�, and in-
elastic �electronic� excitation would likely be more pro-
nounced, arguing for shorter slowing times than those based
on elastic scattering alone.

B. Total slowing-down times and �SR measurements

Knowledge of the slowing-down times for positive muons
and muonium is important in two major aspects pertaining to

FIG. 11. Thermalization towards ET= 3
2kT, plotting the energy

ratio E /ET=� vs t /�0, where �0 is the characteristic time defined in
Eq. �33�. The three solid lines are for initial energies 2ET, 5ET, and
258ET �10 eV�. The dotted line, also for 10 eV, is based by Eq.
�30�, which ignores thermal motion of the target.
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�SR studies: the time scale for radiolysis effects and radia-
tion chemistry in dense media �6,8–10,20,21,37�, and the
time scale for prompt vs thermal reactions in the gas phase.
In the first instance it is the total time, �TOT, that is most
relevant; in the second it is primarily the final thermalization
time, �TH.

Since �TOT=�SD+�TH, where �SD is the measured slowing-
down time of the �+ through the BB �mainly� and CE re-
gimes ��10 ns at 1 atm pressure for muon energies Ei

�2 MeV, Tables I and II�, �TOT can be expected to be domi-
nated by �TH, the time in the final thermalization regime, as
3 /2kT is approached. As previewed above, for the noble
gases He, Ne, and Ar, where only elastic scattering would be
important in the energy regime of interest, one could expect
this time to vary from tens of ns to perhaps hundreds of ns
near 1 atm, depending on target mass and both the magni-
tude and forwardness of the differential cross sections, which
are not known for the Mu atom. For molecular gases like H2,
inelastic �rovibrational� scattering will serve to shorten ther-
malization times due to elastic scattering alone, where �TT

is �30 ns in 1 atm H2. Higher pressures will also naturally
give rise to shorter slowing-down times, so it is reasonable to
expect a total stopping time to thermal energies �ET� of
�TOT��TH�100 ns in most gases at pressures near 1 atm.
Times of this order are consistent with recent pulsed-beam rf
measurements in the gases Ne, Ar, N2, and Kr, where no
formation of either Mu or of diamagnetic species �MMu+

molecular ions� was observed beyond the 80 ns width of the
beam pulse �11�.

Knowledge of Mu thermalization times, �TH, is most im-
portant for the proper interpretation of thermal reaction rates
in the study of gas-phase Mu chemistry and reaction kinetic
�12,31,32,65�. Incomplete thermalization would be of par-
ticular concern in the study of endothermic reactions such as
Mu+H2�D2� �31� and Mu+CH4 �33,65� where the reaction
rate varies strongly with temperature, and, by implication,
with any contributions from nonthermal reactions. Since
moderators utilized in Mu chemistry studies, necessary to
produce Mu by the CE processes discussed above, are typi-
cally Ar or N2 at pressures �1 atm, or other molecular gases
where rovibrational �inelastic� scattering will be more impor-
tant, we can expect thermalization times consistent with the
�100 ns estimate above. The Mu+H2 reaction is the best
test case of this, since, in addition to being endoergic, com-
parisons of reaction rates with essentially exact theoretical
calculations �on the Liu-Siegbahn-Truhlar-Horowitz poten-
tial energy surface� �82� show exemplary agreement between
theory and experiment �31�. Were �TH to be appreciably
longer, this would not be the case.

VIII. SUMMARY

The slowing-down times of energetic positive muons,
from initial energy Ei �0.9 to 2.8 MeV�, through the Bethe-
Bloch and charge-exchange regimes �down to �10 eV, in
Ar�, have been determined from measurements of the initial
phase, �Mu, of the Mu precession signal, in �SR experi-
ments. These times, �SD, fall in the range �5–35 ns �at
1 atm and 300 K� and are typically faster at lower incident
energies and in molecules �and mixtures� of higher charge
densities. Comparisons of slowing-down times for molecules
and mixtures indicate that Bragg’s additivity rule is also
quite well obeyed for stopping muons, at the 20% level of
accuracy that the present experiments allow.

The technique also allows a determination of the �+ stop-
ping power per molecule, S�E�=−�1/n��dE /dx�, described
by the historic Bethe-Bloch equation. In Ar, N2, H2, and in a
H2-He mixture, S�E� for the positive muons agrees, within
errors, with those known for the proton at the same speed, as
expected from “velocity scaling” of the Bethe-Bloch formula
in the MeV energy regime. Though this is not a surprising
result, the present measurements of �+ stopping powers in
gases, are, in fact, the first of their kind to our knowledge.

However, the ��20% � errors in the measurement of S�E�
for the muon, arising from uncertainties both in the Mu pre-
cession phase, �Mu, and in the energies of the incident muon
beam, preclude any test of a specific mass dependence in the
classic stopping power formula. In principle, this can be
more sensitively tested by the muon than the proton �25�, but
the level of precision required is at the 0.1% level, which
simply cannot be obtained in a gas phase measurement. Even
very precise earlier measurements of proton and deuteron
stopping powers in metals, at the 0.5% level �23,24� are still
too imprecise for such a test, by an order of magnitude �25�.

In addition to the experimental results, calculations of the
average energy for the onset of charge exchange, �ECE�, and
the separate times spent in the Bethe-Bloch ��10 ns� and
charge-exchange ��1 ns� regimes are also presented. This
formalism has also been extended to calculations of the final
thermalization time, �TH, i.e., after the charge-exchange re-
gime, from the energy of the last muonium formation
��10 eV� down to thermal energy. This final thermalization
time depends critically on the dipole �forwardness� param-
eter, s1�E�, for elastic scattering, which can markedly in-
crease the thermalization time of �+ /Mu in the few-eV re-
gime, beyond hard sphere expectations. Total slowing-down
times of energetic �MeV� muons in most gases are domi-
nated by �TH and are expected to be �100 ns at nominal
pressures. This time is important to the proper interpretation
of thermal rate constants for Mu reactivity, and, along with
�SD measured in the Bethe-Bloch and charge-exchange re-
gimes, is important also to an estimation of time scales for
prompt processes in muon radiolysis studies.
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