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The energies and some other bound state properties of the ten five-body bimuonic ions pdt�2, ppt�2, pdd�2,
etc. are determined numerically with the use of our variational procedure. The bound state structure and
stability of these Coulomb five-body systems are also discussed. By using the computed expectation values of
the binary and three-particle � functions we make a few predictions about possible experimental observations
of the three-particle nuclear reactions in some of these five-body bimuonic systems.
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In this paper we present the results of variational calcula-
tions of a number of five-body bimuonic systems or ions
such as pdt�2�=p+d+t+�2

−�, ppt�2�=p+p+t+�2
−�, etc. These

systems are of great interest, since in some of them one can
observe the direct three-particle nuclear reactions between
three hydrogenic nuclei. On the other hand, it is very inter-
esting to discuss the bound state properties of actual five-
body systems which, in general, differ significantly from the
analogous properties of well known four-electron beryllium-
like atoms and ions, i.e., one-center five-body systems. The
main difference between, e.g., the pdt�2 ion and beryllium
atom can be found in their geometrical structure and single-
particle kinematical properties.

Our main computational goal in this study is to determine
the bound state solution of the five-body Schrödinger equa-
tion H�=E�, where H is the Hamiltonian of the few-body
system, E�0 is its eigenvalue, and the unknown wave func-
tion � has the finite and/or unit norm. The nonrelativistic
Hamiltonian of the Coulomb five-body system takes the
form
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where mi �i=1,2 ,3 ,4 ,5� are the particle masses, while qi are
their �electric� charges expressed in the electron charge e. By
choosing the system of units in which �=1, �e�=1, and m
=min�m1 , . . . ,m5�=1, we can simplify Eq. �1� and all formu-
las below. In fact, for all systems considered in this study
m=m� and, therefore, our present system of units coincides
with the muon-atomic units �=1, �e�=1, m�=1. Also, in Eq.
�1� rij = �ri−r j�=rji are the ten relative interparticle coordi-
nates. Note that in this study we shall always assume that
particles 4 and 5 designate the two negatively charged muons
�−, while the notations 1, 2, and 3 stand for the three hydro-
genic nuclei, i.e., p, d and/or t, where p is the protium
nucleus, d designates the deuterium nucleus, and t stands for
the tritium nucleus. Also, by using the abc�2 notation we
shall always assume that ma�mb�mc, i.e., the abc�2 nota-
tion starts from the lightest nucleus.

In this study, the five-body wave function � of the ground
S�L=0� state is approximated by the variational expansion
written in the five-body gaussoids of ten relative coordinates
�1�
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where Ci are the linear �or variational� parameters, while �kl
i

are the corresponding nonlinear parameters. Also, in this
equation Bs=Bs

���Bs
�N� is the projector operator which pro-

duces the trial wave function of the correct permutation sym-
metry. In fact, the bimuonic part of this projector always

takes the “singlet” form Bs
���= 1

�2
�1+ P̂45�. The nuclear part of

the total projector Bs �i.e., Bs
�N��1,2 ,3�� is the corresponding

projector for the three hydrogenic nuclei. The explicit form
of this projector depends upon the system considered. The
computation of matrix elements in the basis of five-body
gaussoids is a relatively simple procedure which has been
proposed 25 years ago �1� and extensively described in the
literature. Here we do not want to repeat the explicit formu-
las for all matrix elements needed in computations.

The particle masses used in this study have been chosen
from �2�: mp=1836.152 672 61me, md=3670.482 965 2me,
mt=5496.921 58me, and m�=206.768 264me. With this
muonic mass we have 1 ma.u.=206.768 264 a.u.
�5626.453 132 6 eV. Note that each of the systems consid-
ered in this study contains three hydrogenic nuclei p ,d , t and
two negatively charged muons �−. Therefore, there are ten
such ions total �abc�2� with different combinations of the
hydrogenic nuclei p ,d, and/or t. The total variational ener-
gies of these ten ions are presented in Table I. The bound
state properties for two of these ions �the pdt�2 and ppt�2
ions� can be found in Tables II and III. All energies and other
bound state properties are given in these three tables in
muon-atomic units.

Now, consider the stability of the five-body bimuonic sys-
tems abc�2. In contrast with the analogous three- and four-
body muonic systems this question is not trivial. From the
general point of view it is clear that the lowest-by-energy
dissociation channel must be one of the two-particle
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�	binary� channels in which one of the newly formed par-
ticles is a neutral particle and/or cluster. For instance, for the
pdt�2 ion there are six similar dissociation channels. The
three following binary dissociation channels for the pdt�2
ion include the formation of one three-body ion and one
two-body neutral system �	muonic atom�

pdt�2 = pd� + t�, pdt�2 = pt� + d�, pdt�2 = dt� + p� .

�3�

By using the known variational energies for the three-body
ions pd�, pt�, and dt� systems �5� and the total energies of
the three muonic atoms one finds that the lowest-by-energy
channel for the pdt�2 system is the first one, i.e., the system
pdt�2 must be stable against dissociation into the two frag-
ments pd�+ t�, i.e., one �lightest� muonic ion �pd��+one
�heaviest� neutral muonic atom �t��. The total energy
�	threshold energy� of this channel is Etot�
−0.994 585 9 ma.u.

Three other two-particle channels include formation of

the neutral four-body system and emission of one positively
charged hydrogenic nucleus, i.e.,

pdt�2 = pd�2 + t, pdt�2 = pt�2 + d, pdt�2 = dt�2 + p .

�4�

It is clear that the last channel has the lowest energy possible.
Indeed, the total energy of the dt�2 quasimolecule is
�−1.050 953 5 ma.u. �see the last line in Table I�, i.e., it is
much lower than the total energy in the pd�+ t� channel
mentioned above. This means that an arbitrary five-body
bimuonic system abc�2 must be stable against dissociation
into the heaviest four-body bimuonic system bc�2 and light-
est hydrogen nucleus a+. The energies of all ten possible
five-body bimuonic ions abc�2 and six four-body bimuonic
“molecules” ab�2 can be found in Table I. By using the total
energies of the four-body systems ab�2 one can evaluate the
binding energies for any of the five-body ions abc�2 from
Table I. This discussion also allows us to predict the approxi-
mate structure of an arbitrary five-body bimuonic system.
For instance, the structure of the dtp�2 system can be repre-

TABLE I. The energies E of the ground S�L=0� states of the five- and four-body bimuonic systems �in
muon-atomic units m�=1, �=1, e=1, where 1 ma.u.=206.768 264 a.u.�5626.453 1326 eV�. The total en-
ergies of four-body systems coincide with the stability thresholds for the corresponding five-body bimuonic
systems. Also, the total energy of the ground state in the tt�2 system is −1.066 1545 ma.u..

ppd�� ppt�� ppp�� pdd�� ddt��

E −1.0841437 −1.0956015 −1.0563781 −1.1128005 −1.1531423

ptt�� dtt�� ttt�� pdt�� ddd��

E −1.1362505 −1.1651523 −1.1777431 −1.1240695 −1.1412544

pd�� pt�� dt�� pp�� dd��

E −0.9995703 −1.0124221 −1.0509535 −0.9654742 −1.0366033

TABLE II. The expectation values in muon-atomic units of basic properties for the ground S�L=0� state
of the ppt���=ppt�2� ion. The notations 1, 2, and 3 stand for the hydogenic p, p and t nuclei, respectively.
The notations 4 and 5 designate the two negatively charged muons.

	r12
 2.94712 	r12
−1
 0.395711 	r12

−2
 0.19111

	r13
 2.54691 	r13
−1
 0.450822 	r13

−2
 0.24070

	r14
 2.34358 	r14
−1
 0.629975 	r14

−2
 0.83554

	r34
 2.05183 	r34
−1
 0.723554 	r34

−2
 1.09452

	r45
 2.67774 	r45
−1
 0.476797 	r45

−2
 0.34309
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 8.56802 	r24
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 31.578 	r24
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	− 1
2�1

2
 0.440811 	�12
 1.4070
10−4 	�123
 1.6758
10−7

	− 1
2�3

2
 0.636571 	�13
 1.4158
10−4

	− 1
2�4

2
 0.487026 	�14
 0.09678
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sented as the motion of the lightest hydrogenic nucleus �p+�
in the field of stable four-body bimuonic quasimolecule dt�2
which is neutral.

It is interesting to note that the five-body bimuonic sys-
tems can be used to observe and study some three-particle
nuclear reactions between three light �hydrogenic� nuclei. In
general, direct three-particle nuclear reactions are hard to
observe, since in many cases one of the binary channels sub-
stantially dominates. For light nuclei the experimental situa-
tion is even worse and any observation of the three-particle
nuclear reactions between such nuclei seems to be almost
impossible. However, it is shown below that such reactions
may proceed and can be observed in the five-body bimuonic
systems. Furthermore, as follows from the results of this
study some five-body bimuonic systems, e.g., the ppd�2 and
ptt�2 ions, can be considered as ideal bound systems for
observing various three-particle nuclear reactions. It is clear,
however, that competition between three- and two-particle
�	binary� nuclear reactions will take place in these ions also.
Nevertheless, by selecting the three hydrogenic nuclei which
form such five-body bimuonic systems one may shift the
balance between the binary and three-particle nuclear reac-
tions. Finally, the probability of the three-particle nuclear
reaction can be quite comparable and even larger than the
corresponding probability of the binary reaction.

Consider, e.g., all possible nuclear reactions in the ppt�2
system. In fact, only the two following nuclear reactions can
be observed in this system

p + t = 4He + � + 19.814 MeV, �5�

p + p + t = 4He + p . �6�

The proton which forms in the second �	three-particle� re-
action is the fast particle Ep�15.85 MeV. The reaction, Eq.
�6�, is an example of the three-particle reaction in the
bimuonic system. The first reaction is the binary �or two-
particle� reaction between the proton and tritium nuclei. For
the rates of the binary �	nuclear-nuclear� and three-nuclear
reactions in any one- and/or bimuonic system one can write
the two following expressions �3,4�:

R2
�ij� = 	�ijvij
 = A2

�ij�	�ij
, R3
�123� = A3

�123�	�123
 , �7�

where A2
�ij� is the reaction constant �in cm3 sec−1� of the

nuclear reaction between nucleus i and nucleus j �in our
present notation i� j= �1,2 ,3��. The A3

�123� value is the
analogous reaction constant of the nuclear reaction between
the three hydrogenic nuclei which are designated by the in-
dexes 1, 2, and 3. Also, in this equation the 	�ij
 and 	�123

values are the expectation values of the nuclear-nuclear and
three-nuclear � functions.

The binary reaction constants A2
�ij� can be taken either

from the tables of astrophysical data, or approximately com-
puted and/or evaluated directly. The reaction constants of
three-nuclear reactions A3 are currently unknown values. The
general theory of three-particle nuclear reactions is ex-
tremely complicated and currently does not exist. In the first
approximation, however, it is possible to make some predic-
tions about the A3

�123� reaction constants for the five-body
bimuonic systems discussed in this study. In particular, for
the abc�2 systems in which one binary nuclear reaction sub-
stantially dominates we may assume that the A3

�123� reaction

TABLE III. The expectation values in muon-atomic units of basic properties for the ground S�L=0� state
of the pdt�� ion. The notations 1, 2, and 3 stand for the hydogenic p, d, and t nuclei, respectively. The
notations 4 and 5 designate the two negatively charged muons.

	r12
 2.73294 	r12
−1
 0.42155 	r12

−2
 0.21222

	r13
 2.62233 	r13
−1
 0.43748 	r13

−2
 0.22667

	r14
 2.35765 	r14
−1
 0.61929 	r14

−2
 0.80202

	r23
 2.28545 	r23
−1
 0.49110 	r23

−2
 0.27629

	r24
 2.09081 	r24
−1
 0.70127 	r24

−2
 1.01849

	r34
 2.01920 	r34
−1
 0.72695 	r34

−2
 1.09289

	r45
 2.58165 	r45
−1
 0.49301 	r45

−2
 0.36605

	r12
2 
 8.40594 	r12

3 
 28.6035 	r12
4 
 106.257

	r13
2 
 7.72491 	r13

3 
 25.1650 	r13
4 
 89.537

	r14
2 
 7.00868 	r14

3 
 24.4812 	r23
4 
 96.705

	r23
2 
 5.77902 	r23

3 
 15.9889 	r14
4 
 47.964

	r24
2 
 5.55427 	r24

3 
 17.4665 	r24
4 
 62.524

	r34
2 
 5.18933 	r34

3 
 15.8116 	r34
4 
 54.906

	r45
2 
 7.93976 	r45

3 
 28.0450 	r45
4 
 111.129

	− 1
2�1

2
 0.42919 	�12
 7.093
10−7

	− 1
2�2

2
 0.61052 	�13
 6.320
10−5

	− 1
2�3

2
 0.67305 	�23
 3.675
10−5

	− 1
2�4

2
 0.50990 	�123
 2.118
10−7
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constant must be approximately equal to the reaction con-
stant of the most fast binary nuclear reaction, i.e., A3

�123�

�max�ij�A2
�ij�. This means that the ratio of actual and/or ob-

served reaction rates, e.g., in the pdt�2 systems, can be
evaluated as the ratio of the corresponding expectation value
of the binary �e.g., deuteron-triton� and three-nuclear � func-
tions, i.e., as the ratio of the 	�dt
 and 	�pdt
 values.

Since all hydrogenic nuclei are positively charged, then it
is easy to predict that the expectation value of any two-
nuclear � function is always much larger, than the expecta-
tion value of the three-nuclear � function computed for the
same system. In other words, even in the five-body bimuonic
molecules abc�2 the three-particle nuclear reactions are hard
to observe. For instance, in 99.9% of all cases one can see
the emission of the fast 14.1 MeV neutron from the pdt�2
system, and only in �0.1% of all cases it is possible to detect
the instantaneous emission of the fast proton and fast neu-
tron.

In some abc�2 systems, however, the reaction constant
for the binary nuclear reaction A2

�ij� can be very small in
comparison to the analogous reaction constant A3

�123� for the
three-particle reaction. For instance, A3

�123�
A2
�ij� in those

cases when the three-particle nuclear �a ,b ,c� reaction in the
abc�2 system shows a sharp resonance at relatively low en-
ergies, while any of three possible binary nuclear reactions
either does not have low-energy resonances, or these reso-
nances are very small. Another possibility is the binary
nuclear reaction in which only one nucleus is formed and
one high-energy � quantum is emitted. This process is slow
in comparison to analogous nuclear reactions in which the
two nuclear fragments are formed at the final stage. For-
mally, the reaction in which one high-energy � quantum is
emitted must be in �−2��137�2�18 769 times slower, than
the analogous reaction with the two final nuclear fragments
in the final stage. In reality, this factor often differs from �−2,
e.g, it can be 1000–20 000, rather than �137�2 exactly. The
idea to detect the three-nuclear reactions in the five-body
bimuonic abc�2 systems is based on the following fact. The
actual binary and three-particle nuclear reaction rates in
some abc�2 systems can be quite comparable with each
other. In other words, in some abc�2 systems one finds
A2

�ij�	�ij
�A3
�123�	�123
 and even A2

�ij�	�ij
�A3
�123�	�123
, de-

spite the fact that in all such systems 	�ij

 	�123
.
Briefly, we have to answer the following principal ques-

tion: what are the expectation values of the two-nuclear and
three-nuclear � functions in the five-body bimuonic systems?
It is clear a priori that for an arbitrary abc�2 system in our

present notations we must always have �=
	�ij


	�123


1 �see

above�, where i� j= �1,2 ,3�= �a ,b ,c�. But, if such a ratio �
is �100–1,000���−2�, then we can hope to find some five-
body bimuonic systems in which the overall rates of the two-
and three-particle reactions are very comparable to each
other. If, however, the ratio � is very large, e.g., ��15 000
���−2�, then the three-particle nuclear reactions cannot be
observed, in principle, in the five-body bimuonic systems
considered in this study. To answer this question one needs to
compute the expectation values of all binary nuclear-nuclear
and three-nuclear � functions for each of the ten abc�2 ions.

In this study all these � functions have been determined
numerically. Our main interest below is related to the ppd�2
and ppt�2 five-body systems in which all binary reactions
have relatively small probabilities. As follows from Tables II
and III in the ppd�2 and ppt�2 systems considered in this

study, the ratio �=
	�ij


	�123
 �200–1000 rather than 18 000. This

means that there are the abc�2 systems in which the actual
�	observed� rate of three-particle nuclear reaction equals
and even exceed the corresponding two-particle reaction rate.
A very good example of such a system is the ppt�2 ion �see
Table II�. Indeed, in this case the two-particle nuclear reac-
tion, Eq. �5�, is slow. The 	�pt
 and 	�ppt
 expectation values
computed for this ion differ from each other in �800 times.
The probabilities of the binary and three-particle nuclear re-
actions in the ppt�2 system are evaluated below.

In general, in an arbitrary five-body abc�2 system the
three binary and one three-nuclear reactions are possible. In
addition to this, the �− muon is an unstable particle. This
means that all ground states of the abc�2 systems considered
in this study have nonzero widths, i.e., their lifetimes �= 1

�
are finite. The total width � equals to the sum of all partial
widths and, e.g., for the pdt�2 system one finds

� = �� + �pd + �pt + �dt + �pdt =
1

��

+
1

�pd
+

1

�pt
+

1

�dt
+

1

�pdt
,

�8�

where ���2.20
10−6 sec is the muon lifetime, while the �ij
and �pdt are the corresponding reaction times. Note that in the
pdt�2 ion we have for the total width ���dt, since in this
system the binary �d , t� reaction dominates substantially.

In fact, by considering all abc�2 systems mentioned in
this study one finds that the ppt�2 ion is, probably, the best
choice. Indeed, in any abc�2 system which contains at least
two deuterium and/or tritium nuclei �or one dt combination�
the rate of the most fast binary nuclear reaction is much
larger than the actual rate of the three-particle reaction. In
some such systems three-particle reactions may occur, but it
will be very hard to detect. In the ppp�2 system no nuclear
reaction can be observed at all. Indeed, the muon lifetime
�2.0
10−6 sec is much shorter than the corresponding
mean times ��1.4
1010 yr� for the nuclear p+ p=d+e+

+�e and p+ p+ p= 3He+e++�e+� reactions. The only sys-
tems in which the three-particle nuclear reactions can really
be observed are the five-body ppd�2 and ppt�2 ions. The
three-particle nuclear reaction in the ppd�2 ion is p+ p+d
= 3He+ p+5.494 MeV. In the competing binary �p ,d� reac-
tion, one high-energy � quantum is emitted, i.e., this reaction
is slow. In the case of three-particle reaction in the ppt�2
system the emitted fast proton has significantly larger energy
�Ep�14 MeV�, and this simplifies its registration. In gen-
eral, the direct observation of three-particle nuclear reactions
can be performed in the same way as described in Ref. �6�.
The overall probabilities of such reactions can be measured
quite accurately, if the liquid hydrogen �protium� with �1%
of added amount of tritium �or deuterium� is used �see dis-
cussion in Ref. �6��. Another possibility is to apply the
method from Ref. �7�. Note, however, that both these meth-
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ods have been developed to detect the repetitive formation of
the three-body muonic ions, e.g., the pd� and/or dd� ions.
The actual situation with the five-body bimuonic systems can
be much more complicated. It should be mentioned here that
our present idea has nothing in common with the notorious
muon-catalyzed fusion of nuclear reactions �see, e.g., Ref.
�8,9��. In particular, it is absolutely unrealistic to consider
any repetitive formation of the five-body, bimuonic systems
abc�2 in liquid hydrogen, since the overall probabilities of
such processes are quite small.

To illustrate the idea of detection of the three-particle
nuclear reactions in the abc�2 systems let us consider the
three following five-body bimuonic ions: pdt�2, ppd�2, and
ppt�2. The consideration of other five-body bimuonic sys-
tems can be performed in an analogous manner. The rate of
the nuclear �d , t� reaction in the dt� ions is 1.25

1012 sec−1 �3�. Therefore, the rate of the binary �d , t� reac-
tion in the four-body system dt�2 is �4.49
1013 sec−1,
while in the five-body system pdt�2 such a rate is �5.18

1013 sec−1. By assuming that A3

�pdt��A2
�dt� in the pdt�2 sys-

tem, one finds that the three-nuclear reaction rate in this ion
is �2.98
1011 sec−1. This value is much smaller than the
rate of the �d , t� reaction 5.18
1013 sec−1. In other words, it
is very difficult to detect the three-particle �p ,d , t� reaction in
the pdt�2 ion.

Consider now the ppd�2 five-body system and/or ion. For
this ion we have found in computations that 	�13
�1.4158

10−4 and 	�123
�4.5119
10−7. The rate of the �p ,d� re-
action in the three-body pd� ion is �2.35
105 sec−1 �see,
e.g, Ref. �3��. Therefore, the rate of the same reaction in the
four-body pd�2 system is �3.67
106 sec−1 �the � function
expectation values is taken from Ref. �10��, while in the five-
body ppd�2 ion the rate of this reaction equals �1.69

106 sec−1. Now, let us evaluate the rate of the three-
particle reaction p+ p+d= 3He+ p. We can evaluate the cor-
responding reaction constant by using the numerical value
for the reaction constant for the analogous binary reaction
d+d= 3He+n. However, to make our approximation more
realistic we introduce a small factor � ���1� in the follow-
ing formula: A3

�ppd���A2
�dd���
0.922
1016 cm3 sec−1.

The three different values of this factor � are considered
below �=0.1, 0.02�= 1

50
�, and 0.005�= 1

200
�. For �=0.1, one

finds �4.16
108 sec−1, while for �=0.02 we have �8.31

107 sec−1 and �2.08
107. Thus, in all such cases we
have R3

�ppd�
R2
�pd� in the ppd�2 five-body ion.

The five-body ion ppt�2 can be discussed analogously.
The rate of the �p , t� reaction in the three-body ion pt� is
�1.33
107 sec−1. From here, one finds the corresponding
reaction constant A2

�pt��1.48
1012 cm3 sec−1, i.e., for the
reaction rate of �p , t� reaction in the four-body bimuonic sys-
tem pt�2 we obtain R2

�pt��2.23
108 sec−1. For the five-

body system ppt�2 the rate of this nuclear reaction is R2
�pt�

�1.10
108 sec−1 �the 	�13
 expectation value is taken from
Table II�. The rate of the three-particle nuclear reaction p
+ p+ t= 4He+ p can be evaluated by using the following ap-
proximate expression R3

�ppt���A2
�dt�	�123
, where � is a small

factor �in this case ��1� and A2
�dt��1.409
1018 is the reac-

tion constant of the �d , t� reaction. By using this expression
and �=0.5 one finds R3

�ppt��6.75
1010 sec−1. Analogously
for �=0.2 we have R3

�ppt��2.70
1010 sec−1 and for �=0.1
we have R3

�ppt��1.35
1010 sec−1. In any of these cases we
have R3

�ppt�
R2
�pt�, i.e., the three-particle nuclear �p , p , t� re-

action can be detected in the five-body bimuonic ppt�2 sys-
tem.

Thus, in this work we have considered the bound state
properties of the five-body bimuonic systems. This is a de-
tailed study of the bound states in real five-body systems in
which all particle masses are finite. Note that these systems
are quite different from one-center atoms and/or two-center
molecular-type ions. The ground state energies for all these
systems have been determined to relatively high numerical
accuracy. However, such an accuracy can be improved in the
future studies. Note also that some of the ten bimuonic
abc�2 ions may have a few excited states. Currently, nothing
is known about such states in the abc�2 systems. It is shown
that some of the five-body bimuonic ions, e.g., the pdt�2,
ppt�2, and others ions, can be used to observe the three-body
nuclear reactions with three light �hydrogenic� nuclei. In
fact, analogous bimuonic systems can be formed by many
other light nuclei, e.g., by the helium and lithium nuclei.
Therefore, various three-particle nuclear reactions, which in-
clude such nuclei, can be studied also. In general, a possible
experimental detection of the three-particle nuclear reactions
from the bound states of some bimuonic systems will be a
great step forward in the physics of nuclear fusion, few-body
physics, and nuclear physics.

In our earlier work �10� we have shown that the nuclear
reaction rates in the four-body bimuonic systems, e.g., in the
dd�2 and dt�2 systems, are in �40–50 times larger than in
corresponding three-body ions dd� and dt�. This idea still is
waiting for its experimental confirmation. Note that in an-
other of our work �11� it was shown that bimuon atomic
systems, e.g, the 3He�2 and 4He�2 atoms, are almost perfect
objects to study the effects of vacuum polarization. The
lowest-order correction �	Uehling correction� in such sys-
tems can be seen and measured directly from their optical
spectra. This study emphasizes another interesting aspect of
bimuonic systems. The main problem now is to start theoret-
ical and experimental research on bimuonic systems. The
first goal is to understand how such systems can be created
and studied in actual experiments.
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