PHYSICAL REVIEW A 74, 042515 (2006)

Three-particle nuclear reactions in the five-body bimuonic systems
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The energies and some other bound state properties of the ten five-body bimuonic ions pdtu,, pptu,, pddu,,

etc. are determined numerically with the use of our variational procedure. The bound state structure and
stability of these Coulomb five-body systems are also discussed. By using the computed expectation values of
the binary and three-particle & functions we make a few predictions about possible experimental observations
of the three-particle nuclear reactions in some of these five-body bimuonic systems.
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In this paper we present the results of variational calcula-
tions of a number of five-body bimuonic systems or ions
such as pdtu,(=p*d*t*u;), pptu,(=p*p*r*u;), etc. These
systems are of great interest, since in some of them one can
observe the direct three-particle nuclear reactions between
three hydrogenic nuclei. On the other hand, it is very inter-
esting to discuss the bound state properties of actual five-
body systems which, in general, differ significantly from the
analogous properties of well known four-electron beryllium-
like atoms and ions, i.e., one-center five-body systems. The
main difference between, e.g., the pdtu, ion and beryllium
atom can be found in their geometrical structure and single-
particle kinematical properties.

Our main computational goal in this study is to determine
the bound state solution of the five-body Schrodinger equa-
tion HVY=EW, where H is the Hamiltonian of the few-body
system, E<<0 is its eigenvalue, and the unknown wave func-
tion V¥ has the finite and/or unit norm. The nonrelativistic
Hamiltonian of the Coulomb five-body system takes the
form
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where m; (i=1,2,3,4,5) are the particle masses, while g; are
their (electric) charges expressed in the electron charge e. By
choosing the system of units in which 7i=1, |e|=1, and m
=min(m,, ...,ms)=1, we can simplify Eq. (1) and all formu-
las below. In fact, for all systems considered in this study

. and, therefore, our present system of units coincides
with the muon-atomic units 2=1, e| =1,m,=1. Also, in Eq.
(1) rj=|r;=r)=r; are the ten relative interparticle coordi-
nates. Note that in this study we shall always assume that
particles 4 and 5 designate the two negatively charged muons
u~, while the notations 1, 2, and 3 stand for the three hydro-
genic nuclei, i.e., p, d and/or t, where p is the protium
nucleus, d designates the deuterium nucleus, and ¢ stands for
the tritium nucleus. Also, by using the abcu, notation we
shall always assume that m,<m,<m,, i.e., the abcu, nota-
tion starts from the lightest nucleus.

m=m
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In this study, the five-body wave function W of the ground
S(L=0) state is approximated by the variational expansion
written in the five-body gaussoids of ten relative coordinates

(1]
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where C; are the linear (or variational) parameters, while a7,
are the corresponding nonlinear parameters. Also, in this
equation BS=B§“ )BiN) is the projector operator which pro-
duces the trial wave function of the correct permutation sym-
metry. In fact, the bimuonic part of this projector always
takes the “singlet” form Bﬁ" )= %(l +P,5). The nuclear part of
the total projector B [i.e., BiN) (1,2,3)] is the corresponding
projector for the three hydrogenic nuclei. The explicit form
of this projector depends upon the system considered. The
computation of matrix elements in the basis of five-body
gaussoids is a relatively simple procedure which has been
proposed 25 years ago [1] and extensively described in the
literature. Here we do not want to repeat the explicit formu-
las for all matrix elements needed in computations.

The particle masses used in this study have been chosen
from [2]: m,=1836.152 672 61m,, m,=3670.482 965 2m,,
m,=5496.921 58m,, and m,=206.768 264m,. With this
muonic mass we have 1 ma.u.=206.768264 a.u.
~5626.453 132 6 eV. Note that each of the systems consid-
ered in this study contains three hydrogenic nuclei p,d,t and
two negatively charged muons w~. Therefore, there are ten
such ions total (abcu,) with different combinations of the
hydrogenic nuclei p,d, and/or . The total variational ener-
gies of these ten ions are presented in Table I. The bound
state properties for two of these ions (the pdru, and ppru,
ions) can be found in Tables II and III. All energies and other
bound state properties are given in these three tables in
muon-atomic units.

Now, consider the stability of the five-body bimuonic sys-
tems abcu,. In contrast with the analogous three- and four-
body muonic systems this question is not trivial. From the
general point of view it is clear that the lowest-by-energy
dissociation channel must be one of the two-particle
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TABLE I. The energies E of the ground S(L=0) states of the five- and four-body bimuonic systems (in
muon-atomic units my= 1, =1, e=1, where 1 ma.u.=206.768 264 a.u.~5626.453 1326 eV). The total en-
ergies of four-body systems coincide with the stability thresholds for the corresponding five-body bimuonic
systems. Also, the total energy of the ground state in the 7#u, system is —1.066 1545 ma.u..

ppdup PP PPP MM pddup ddtppu

E —1.0841437 ~1.0956015 -1.0563781 —1.1128005 —1.1531423
prtpm dttpp s pdtppu dddpu

E -1.1362505 -1.1651523 —1.1777431 —1.1240695 —1.1412544
pdup Pl drpp PP ddpuu

E -0.9995703 -1.0124221 -1.0509535 -0.9654742 -1.0366033

(=binary) channels in which one of the newly formed par-
ticles is a neutral particle and/or cluster. For instance, for the
pdtu, ion there are six similar dissociation channels. The
three following binary dissociation channels for the pdru,
ion include the formation of one three-body ion and one
two-body neutral system (=muonic atom)

pdipy =dip+ppu.
(3)

pdtp, =pdu+tu,  pdtp,=ptu+du,

By using the known variational energies for the three-body
ions pdu, ptu, and dru systems [5] and the total energies of
the three muonic atoms one finds that the lowest-by-energy
channel for the pdtu, system is the first one, i.e., the system
pdtu, must be stable against dissociation into the two frag-
ments pdu+tu, i.e., one (lightest) muonic ion (pdu)+one
(heaviest) neutral muonic atom (zuw). The total energy
(=threshold  energy) of this channel is E,,~
—0.994 5859 ma.u.

Three other two-particle channels include formation of

the neutral four-body system and emission of one positively
charged hydrogenic nucleus, i.e.,

pdfM2=ptM2+d, pdt,LL2=dt,lL2+p.
4)

It is clear that the last channel has the lowest energy possible.
Indeed, the total energy of the dru, quasimolecule is
~-1.050 953 5 ma.u. (see the last line in Table 1), i.e., it is
much lower than the total energy in the pdu+tu channel
mentioned above. This means that an arbitrary five-body
bimuonic system abcu, must be stable against dissociation
into the heaviest four-body bimuonic system bcu, and light-
est hydrogen nucleus a*. The energies of all ten possible
five-body bimuonic ions abcu, and six four-body bimuonic
“molecules” abu, can be found in Table I. By using the total
energies of the four-body systems abu, one can evaluate the
binding energies for any of the five-body ions abcu, from
Table I. This discussion also allows us to predict the approxi-
mate structure of an arbitrary five-body bimuonic system.
For instance, the structure of the dtpu, system can be repre-

pdipy =pdu, +1,

TABLE II. The expectation values in muon-atomic units of basic properties for the ground S(L=0) state
of the pptuu(=pptu,) ion. The notations 1, 2, and 3 stand for the hydogenic p, p and ¢ nuclei, respectively.

The notations 4 and 5 designate the two negatively charged muons.

(ri2) 2.94712 (" 0.395711 (3 0.19111
(r13) 2.54691 (M 0.450822 (3 0.24070
(r14) 2.34358 (" 0.629975 ) 0.83554
(r3s) 2.05183 (" 0.723554 o) 1.09452
(ras) 2.67774 (s 0.476797 (r? 0.34309
() 9.85228 (riy 36.640 (rly 149.38
() 7.30084 (ri) 23.211 (rly 80.902
G, 6.99719 () 24.761 (r53) 99.827
(1) 5.40489 (133 16.982 GH) 61.069
(ris) 8.56802 (r3y) 31.578 (r39) 130.91
(-iv?) 0.440811 (812 14070X 1074 (853) 1.6758 X 1077
(-ivd) 0.636571 (813) 1.4158 X 107

(-1v®) 0.487026 (819) 0.09678
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TABLE III. The expectation values in muon-atomic units of basic properties for the ground S(L=0) state
of the pdtuu ion. The notations 1, 2, and 3 stand for the hydogenic p, d, and ¢ nuclei, respectively. The
notations 4 and 5 designate the two negatively charged muons.

(r12) 2.73294 n 0.42155 (3 0.21222
(ri3) 2.62233 (ra) 0.43748 (13 0.22667
(ria) 2.35765 ("ia 0.61929 (ria 0.80202
(ra3) 2.28545 (153 0.49110 (53 0.27629
(raq) 2.09081 (o 0.70127 (51 1.01849
(r3a) 2.01920 (¥ 0.72695 (r32 1.09289
(ras) 2.58165 (rps 0.49301 (12 0.36605
() 8.40594 () 28.6035 1y 106.257
() 7.72491 G 25.1650 () 89.537
() 7.00868 (r) 24.4812 (33 96.705
(r33) 5.77902 (r33) 15.9889 GH) 47.964
(r39) 5.55427 (rg) 17.4665 (r39) 62.524
(r3y) 5.18933 (rig) 15.8116 (r3y) 54.906
(ris) 7.93976 (ras) 28.0450 (ris) 111.129
(-1v2) 0.42919 (812) 7.093 % 1077

(-1v2) 0.61052 (813) 6.320% 1075

(-1v2) 0.67305 (853) 3.675X 1075

(-1v2) 0.50990 (8123) 21181077

sented as the motion of the lightest hydrogenic nucleus (p*) p+p+t="He+p. (6)

in the field of stable four-body bimuonic quasimolecule dtu,
which is neutral.

It is interesting to note that the five-body bimuonic sys-
tems can be used to observe and study some three-particle
nuclear reactions between three light (hydrogenic) nuclei. In
general, direct three-particle nuclear reactions are hard to
observe, since in many cases one of the binary channels sub-
stantially dominates. For light nuclei the experimental situa-
tion is even worse and any observation of the three-particle
nuclear reactions between such nuclei seems to be almost
impossible. However, it is shown below that such reactions
may proceed and can be observed in the five-body bimuonic
systems. Furthermore, as follows from the results of this
study some five-body bimuonic systems, e.g., the ppdu, and
pttu, ions, can be considered as ideal bound systems for
observing various three-particle nuclear reactions. It is clear,
however, that competition between three- and two-particle
(=binary) nuclear reactions will take place in these ions also.
Nevertheless, by selecting the three hydrogenic nuclei which
form such five-body bimuonic systems one may shift the
balance between the binary and three-particle nuclear reac-
tions. Finally, the probability of the three-particle nuclear
reaction can be quite comparable and even larger than the
corresponding probability of the binary reaction.

Consider, e.g., all possible nuclear reactions in the pptu,
system. In fact, only the two following nuclear reactions can
be observed in this system

p+t="*He+ y+19.814 MeV, (5)

The proton which forms in the second (=three-particle) re-
action is the fast particle £,~ 15.85 MeV. The reaction, Eq.
(6), is an example of the three-particle reaction in the
bimuonic system. The first reaction is the binary (or two-
particle) reaction between the proton and tritium nuclei. For
the rates of the binary (=nuclear-nuclear) and three-nuclear
reactions in any one- and/or bimuonic system one can write
the two following expressions [3,4]:

RY =(ov)=AYNS), R{™ =Al(5,5. ()

where A(z”) is the reaction constant (in cm?sec™!) of the
nuclear reaction between nucleus i and nucleus j [in our
present notation i#j=(1,2,3)]. The Agm) value is the
analogous reaction constant of the nuclear reaction between
the three hydrogenic nuclei which are designated by the in-
dexes 1, 2, and 3. Also, in this equation the (5;;) and (&)»3)
values are the expectation values of the nuclear-nuclear and
three-nuclear & functions. B

The binary reaction constants A(z”) can be taken either
from the tables of astrophysical data, or approximately com-
puted and/or evaluated directly. The reaction constants of
three-nuclear reactions A are currently unknown values. The
general theory of three-particle nuclear reactions is ex-
tremely complicated and currently does not exist. In the first
approximation, however, it is possible to make some predic-
tions about the A(3123) reaction constants for the five-body
bimuonic systems discussed in this study. In particular, for
the abcu, systems in which one binary nuclear reaction sub-
stantially dominates we may assume that the Agm) reaction
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constant must be approximately equal to the reaction con-
stant of the most fast binary nuclear reaction, i.e., A (123)
~ max J)Az This means that the ratio of actual and/or ob—
served reaction rates, e.g., in the pdt,u2 systems, can be
evaluated as the ratio of the corresponding expectation value
of the binary (e.g., deuteron-triton) and three-nuclear & func-
tions, i.e., as the ratio of the () and (&) values.

Since all hydrogenic nuclei are positively charged, then it
is easy to predict that the expectation value of any two-
nuclear ¢ function is always much larger, than the expecta-
tion value of the three-nuclear & function computed for the
same system. In other words, even in the five-body bimuonic
molecules abcu, the three-particle nuclear reactions are hard
to observe. For instance, in 99.9% of all cases one can see
the emission of the fast 14.1 MeV neutron from the pdtu,
system, and only in =0.1% of all cases it is possible to detect
the instantaneous emission of the fast proton and fast neu-
tron.

In some abcu, systems, however the reaction constant
for the binary nuclear reaction A ) can be very small in
comparison to the analogous react1on constant Agm) for the
three-particle reaction. For instance, A§IZ3)>A(2”) in those
cases when the three-particle nuclear (a,b,c) reaction in the
abcp, system shows a sharp resonance at relatively low en-
ergies, while any of three possible binary nuclear reactions
either does not have low-energy resonances, or these reso-
nances are very small. Another possibility is the binary
nuclear reaction in which only one nucleus is formed and
one high-energy y quantum is emitted. This process is slow
in comparison to analogous nuclear reactions in which the
two nuclear fragments are formed at the final stage. For-
mally, the reaction in which one high-energy y quantum is
emitted must be in & 2= (137)>~18 769 times slower, than
the analogous reaction with the two final nuclear fragments
in the final stage. In reality, this factor often differs from a2,
e.g, it can be 1000-20 000, rather than (137)? exactly. The
idea to detect the three-nuclear reactions in the five-body
bimuonic abcu, systems is based on the following fact. The
actual binary and three-particle nuclear reaction rates in
some abcu, systems can be quite comparable with each
other. In other words, in some abcu, systems one finds
A;U)<5,~j>zA(3123)(5123> and even A(ZU)<5,~]-><A(3123)<6123>, de-
spite the fact that in all such systems (&) >(),3).

Briefly, we have to answer the following principal ques-
tion: what are the expectation values of the two-nuclear and
three-nuclear 6 functions in the five-body bimuonic systems?
It is clear a priori that for an arbitrary abcu, s?fstem in our

present notations we must always have 7= @ >>1 (see

above), where i # j=(1,2,3)=(a,b,c). But, if such a ratio 7
is =100—1,000(<a?), then we can hope to find some five-
body bimuonic systems in which the overall rates of the two-
and three-particle reactions are very comparable to each
other. If, however, the ratio 7 is very large, e.g., 7=15 000

~a?), then the three-particle nuclear reactions cannot be
observed, in principle, in the five-body bimuonic systems
considered in this study. To answer this question one needs to
compute the expectation values of all binary nuclear-nuclear
and three-nuclear & functions for each of the ten abcu, ions.

PHYSICAL REVIEW A 74, 042515 (2006)

In this study all these & functions have been determined
numerically. Our main interest below is related to the ppdu,
and pptu, five-body systems in which all binary reactions
have relatively small probabilities. As follows from Tables II
and III in the ppdu, and pptu, systems considered in this

(&)
study, the ratio 7= m ~200-1000 rather than 18 000. This

means that there are the abcu, systems in which the actual
(=observed) rate of three-particle nuclear reaction equals
and even exceed the corresponding two-particle reaction rate.
A very good example of such a system is the ppru, ion (see
Table II). Indeed, in this case the two-particle nuclear reac-
tion, Eq. (5), is slow. The (&, and (J,,,) expectation values
computed for this ion differ from each other in =800 times.
The probabilities of the binary and three-particle nuclear re-
actions in the ppru, system are evaluated below.

In general, in an arbitrary five-body abcu, system the
three binary and one three-nuclear reactions are possible. In
addition to this, the u~ muon is an unstable particle. This
means that all ground states of the abcu, systems considered
in this study have nonzero widths, i.e., their lifetimes ’TZ%
are finite. The total width I' equals to the sum of all partial
widths and, e.g., for the pdtu, system one finds

1 1 1 1 1
=+ —+—+—+—,
TM 7-pd Tpl Tdr 7—pdt

(8)

where 7,~2.20X 1076 sec is the muon lifetime, while the T
and 7, are the corresponding reaction times. Note that in the
pdt,u2 ion we have for the total width I'=T",, since in this
system the binary (d,?) reaction dominates substantially.

In fact, by considering all abcu, systems mentioned in
this study one finds that the pptu, ion is, probably, the best
choice. Indeed, in any abcu, system which contains at least
two deuterium and/or tritium nuclei (or one df combination)
the rate of the most fast binary nuclear reaction is much
larger than the actual rate of the three-particle reaction. In
some such systems three-particle reactions may occur, but it
will be very hard to detect. In the pppu, system no nuclear
reaction can be observed at all. Indeed, the muon lifetime
~2.0X 107 sec is much shorter than the corresponding
mean times (=1.4X 10 yr) for the nuclear p+p=d+e*
+v, and p+p+p=3He+e++ v,+ 7y reactions. The only sys-
tems in which the three-particle nuclear reactions can really
be observed are the five-body ppdu, and pptu, ions. The
three-particle nuclear reaction in the ppdu, ion is p+p+d
=3He+p+5.494 MeV. In the competing binary (p,d) reac-
tion, one high-energy y quantum is emitted, i.e., this reaction
is slow. In the case of three-particle reaction in the pptu,
system the emitted fast proton has significantly larger energy
(E,~14 MeV), and this simplifies its registration. In gen-
eral, the direct observation of three-particle nuclear reactions
can be performed in the same way as described in Ref. [6].
The overall probabilities of such reactions can be measured
quite accurately, if the liquid hydrogen (protium) with =1%
of added amount of tritium (or deuterium) is used (see dis-
cussion in Ref. [6]). Another possibility is to apply the
method from Ref. [7]. Note, however, that both these meth-

F=T,+T,;+,+T;+T,,
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ods have been developed to detect the repetitive formation of
the three-body muonic ions, e.g., the pdu and/or ddu ions.
The actual situation with the five-body bimuonic systems can
be much more complicated. It should be mentioned here that
our present idea has nothing in common with the notorious
muon-catalyzed fusion of nuclear reactions (see, e.g., Ref.
[8,9]). In particular, it is absolutely unrealistic to consider
any repetitive formation of the five-body, bimuonic systems
abcp, in liquid hydrogen, since the overall probabilities of
such processes are quite small.

To illustrate the idea of detection of the three-particle
nuclear reactions in the abcu, systems let us consider the
three following five-body bimuonic ions: pdtu,, ppdu,, and
ppti,. The consideration of other five-body bimuonic sys-
tems can be performed in an analogous manner. The rate of
the nuclear (d,r) reaction in the dru ions is 1.25
X 10'% sec™! [3]. Therefore, the rate of the binary (d,7) reac-
tion in the four-body system dtu, is ~4.49X10'3 sec™!,
while in the five-body system pdt,u,z such a rate is =5.18
X 10'3 sec™!. By assuming that Aj (pd) ~A, “ in the pdtu, Sys-
tem, one finds that the three- nuclear reactlon rate in this ion
is =2.98 X 10! sec™!. This value is much smaller than the
rate of the (d,7) reaction 5.18 X 10'3 sec™!. In other words, it
is very difficult to detect the three-particle (p,d, ) reaction in
the pdtu, ion.

Consider now the ppdu, five-body system and/or ion. For
this ion we have found in computations that (5,5)=~1.4158
X 107* and (8),3)=4.5119X 107", The rate of the (p,d) re-
action in the three-body pdu ion is =~2.35X 10° sec™! (see,
e.g, Ref. [3]). Therefore, the rate of the same reaction in the
four-body pdu, system is =3.67 X 10 sec™! (the & function
expectation values is taken from Ref. [10]), while in the five-
body ppdu, ion the rate of this reaction equals =~1.69
X 10° sec™!. Now, let us evaluate the rate of the three-
particle reaction p+p+d = He+ p. We can evaluate the cor-
responding reaction constant by using the numerical value
for the reaction constant for the analogous binary reaction
d+d=>He+n. However, to make our approximation more
realistic we introduce a small factor X (A <<1) in the follow-
ing formula: A;ppd) ~ )\A(Qdd) ~N\X0.922 X 10" cm? sec.
The three different values of this factor N are considered
below A=0.1, 0.02(= 5q) and 0.005(=555). For A=0.1, one
finds ~4.16 X 108 sec™', while for A=0.02 we have ~8.31
X 107 sec™! and =2.08 X 107. Thus, in all such cases we
have Rgpp d)>R(2p ) in the ppdpu, five-body ion.

The five-body ion pptu, can be discussed analogously.
The rate of the (p,f) reaction in the three-body ion pru is
~1.33 X 107 sec”!. From here, one finds the corresponding
reaction constant A(z” ) ~148x%10"2 cm?®sec™!, i.e., for the
reaction rate of (p,7) reaction in the four-body bimuonic sys-
tem ptu, we obtain R¥”=2.23% 108 sec™’. For the five-

PHYSICAL REVIEW A 74, 042515 (2006)
body system pptu, the rate of this nuclear reaction is R(zp )
~1.10X 108 sec™! (the {8,5) expectation value is taken from
Table II). The rate of the three-particle nuclear reaction p
+p+1="He+p can be evaluated by using the following ap-
proximate expression Rgpp 0~ §A(2dt)(5123), where £ is a small

factor (in this case é=~1) and A(zd’) ~1.409 X 10'8 is the reac-
tion constant of the (d,7) reaction. By using this expression
and £€=0.5 one finds R(pp')~6 75 % 10" se
for £=0.2 we have Rpp’)~270>< 10'0 se ‘1 and for £=0.1
we have R¥"”~135X 10" sec™". In any of these cases we
have R("’” >R(’”) i.e., the three-particle nuclear (p,p,?) re-
action can be detected in the five-body bimuonic pptu, sys-
tem.

Thus, in this work we have considered the bound state
properties of the five-body bimuonic systems. This is a de-
tailed study of the bound states in real five-body systems in
which all particle masses are finite. Note that these systems
are quite different from one-center atoms and/or two-center
molecular-type ions. The ground state energies for all these
systems have been determined to relatively high numerical
accuracy. However, such an accuracy can be improved in the
future studies. Note also that some of the ten bimuonic
abcu, ions may have a few excited states. Currently, nothing
is known about such states in the abcu, systems. It is shown
that some of the five-body bimuonic ions, e.g., the pdtu,,

¢! Analogously

pptu,, and others ions, can be used to observe the three-body

nuclear reactions with three light (hydrogenic) nuclei. In
fact, analogous bimuonic systems can be formed by many
other light nuclei, e.g., by the helium and lithium nuclei.
Therefore, various three-particle nuclear reactions, which in-
clude such nuclei, can be studied also. In general, a possible
experimental detection of the three-particle nuclear reactions
from the bound states of some bimuonic systems will be a
great step forward in the physics of nuclear fusion, few-body
physics, and nuclear physics.

In our earlier work [10] we have shown that the nuclear
reaction rates in the four-body bimuonic systems, e.g., in the
ddp, and dtu, systems, are in =40-50 times larger than in
corresponding three-body ions ddu and dru. This idea still is
waiting for its experimental confirmation. Note that in an-
other of our work [11] it was shown that bimuon atomic
systems, e.g, the *Heu, and *Heu, atoms, are almost perfect
objects to study the effects of vacuum polarization. The
lowest-order correction (=Uehling correction) in such sys-
tems can be seen and measured directly from their optical
spectra. This study emphasizes another interesting aspect of
bimuonic systems. The main problem now is to start theoret-
ical and experimental research on bimuonic systems. The
first goal is to understand how such systems can be created
and studied in actual experiments.
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