PHYSICAL REVIEW A 74, 042512 (2006)
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The determination of the elements of the S matrix within the framework of time-dependent density-
functional theory (TDDFT) has remained a widely open question. We explore two different methods to calcu-
late state-to-state transition probabilities. The first method closely follows the extraction of the S matrix from
the time-dependent Hartree-Fock approximation. This method suffers from cross-channel correlations resulting
in oscillating transition probabilities in the asymptotic channels. An alternative method is proposed, which
corresponds to an implicit functional of the time-dependent density. Evaluated with the exact time-dependent
density it gives rise to stable and accurate transition probabilities. However, the functional shows an extreme
sensitivity with respect to errors in the time-dependent density when evaluated using an approximate density
from an actual TDDFT calculation. Two exactly solvable two-electron systems serve as a benchmark for a

quantitative test.
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I. INTRODUCTION

As a matter of principle, time-dependent density-
functional theory (TDDFT) [1] provides a highly efficient
method to solve the time-dependent quantum many-body
problem. It yields directly the time-dependent one-particle
density n(r, ) of the many-body system. All physical observ-
ables of the quantum system can, in principle, be determined
from the density. In practice there are two essential ingredi-
ents to a TDDFT calculation. First, an approximation to the
time-dependent exchange-correlation potential V,[n](r,t)
has to be found, which via the noninteracting Kohn-Sham
system determines the evolution of the density. The second
ingredient are functionals that allow the extraction of physi-
cal observables from the density. For some of the observ-
ables, such as the ground-state energy, extraction is straight-
forward within ground-state density-functional theory [2].
The time-dependent dipole moment, which governs the
emission of high-harmonic radiation can be directly deter-
mined from n(r,t). Excited-state spectra have been obtained
from linear-response functionals [3,4]. Other read-out func-
tionals are only approximately, if at all, known. For example,
ionization probabilities have been approximately extracted
by identifying the integrated density beyond a certain critical
distance from the bound system with the flux of ionized par-
ticles [5,6]. However, in general, on the most fundamental
level, state-to-state transition probabilities contain the full
and most detailed information on the response of a many-
body system to an external perturbation within the
Schrodinger theory. One example is bound-bound transition
amplitudes required, e.g., in coherent control calculations of
laser-matter interactions within the TDDFT [7], currently a
hot topic since attosecond laser pulses influence the electron
dynamics.

The ultimate goal of the study of the (in general) nonlin-
ear response of the many-body system to a time-dependent

*Present address: Argonne National Laboratory, Argonne, IL
60439, USA. Electronic address: nrohringer @anl.gov

1050-2947/2006/74(4)/042512(7)

042512-1

PACS number(s): 31.15.Ew, 31.10.+z, 32.80.Wr, 34.50.Pi

perturbation within Schrodinger theory is the determination
of the state-to-state transition amplitude

S; = im{x|U(2,—= 1) x, (1)
f—s0

where |y; ;) are the initial (final) channel states of the system
prior to (i) and after (f) the perturbation, and U(z,,t,) is the
time-evolution operator of the system. This poses the funda-
mental question: How can equivalent information be ob-
tained by the TDDFT? Specifically, can we construct a func-
tional S; {n] that allows us to extract S; ; from the TDDFT?

The present paper addresses methods to extract transition
probabilities between discrete states of the many-body sys-
tem. As a point of reference, we investigate first the evalua-
tion of Eq. (1) employing Kohn-Sham orbitals in close anal-
ogy to the time-dependent Hartree-Fock (TDHF) method
(see Refs. [8—11] and references therein). This method would
be the equivalent of the time-dependent many-body pertur-
bation theory in which the time-dependent noninteracting
Kohn-Sham system is considered as the unperturbed system.
This method involves three steps of approximations: the ini-
tial state, the final state, and the many-body propagator are
approximated by their TDDFT equivalents. We encounter
similar conceptual problems (“cross-channel correlations”)
as the TDHF does. We then formulate a functional that, in
principle, allows the determination of S; {n], which is shown
to be free of these deficiencies. We test the method with the
help of two exactly solvable one-dimensional two-electron
systems, a harmonic oscillator, and a helium model. We
show that its accuracy is limited by the extreme sensitivity to
the error in the density n(r,1).

The article is organized as follows. In Sec. II we introduce
the approximation to calculate the S matrix within the TD-
DFT based on the time-dependent Kohn-Sham orbitals. Fur-
thermore, the new read-out functional is derived, which al-
lows us to calculate state-to-state transition probabilities
directly from the time-dependent density. In Sec. III we
present numerical tests on two different one-dimensional

©2006 The American Physical Society


http://dx.doi.org/10.1103/PhysRevA.74.042512

ROHRINGER, PETER, AND BURGDORFER

model systems. Orbital-based approaches to calculate the S
matrix are compared to the density-based approach. Atomic
units (|e| =% =m=1) are used throughout.

II. READ-OUT FUNCTIONALS FOR TRANSITION
PROBABILITIES

We consider an interacting N-electron system of Hamil-
tonian H, with stationary eigenstates x; s, which is subject to
a perturbation V(¢) which is switched on at time r=0 and
switched off at time #= 7. The initial state of the system |y;) is
assumed to be the ground state and evolves according to the
time-dependent many-body Schrodinger equation

l%“’(l» =[Hy+ V(t):”\If([)), |\P(0)> _ |Xi>- 2)

The state-to-state transition amplitude (or S matrix) from the
initial state |x;) to a final state |y;) is defined by the overlap
of the propagated state |W(r)) with eigenstates |x,) of the
unperturbed system

S.= im(y{¥ (0. G)

For later reference we note that the time evolution of the
transition amplitude for 7r>7 is given in terms of the
eigenenergies of the asymptotic final states &, by

XA (1) = expl - ieflt = D) O W(7). (4)

Since the perturbation vanishes for > 7, the state-to-state
transition probability is given by P, =[S; J*=[(x;| ¥ (7)|*
—tim, .| (x| W)

Within the TDDFT, the time-dependent density is repre-
sented through the time-dependent Kohn-Sham spin orbitals
O, (r,1) as

N(T
n(in= 2 nin= 2 2|0, 70, (5)

o=1,1 o=1,] j=1

where N, denotes the number of electrons of spin o. The
one-particle spin orbitals @U,j(f, t) evolve according to the
time-dependent Kohn-Sham equations governed by the
Hamiltonian

1~ - -
HIU(S[nT’nl] == EVZ + Vexr(;) + V(rat) + VH[”](r’t)

+ ch[nT’ni](th), (6)

which includes the external time-independent and time-
dependent one-particle potentials V,,,(r) and V(r,t), the Har-
tree potential Vy[n](7,7), and the exchange-correlation po-
tential V. [n;,n (F,7). The initial states |®, (0))=|D,, ;) are
the occupied Kohn-Sham orbitals of stationary ground-state
density-functional theory (DFT). Although Kohn-Sham or-
bitals have, a priori, no physical meaning as single-particle
quantum states, the Slater determinant of Kohn-Sham orbit-
als,

PHYSICAL REVIEW A 74, 042512 (2006)

|\I,TDDFT> = A|(I)T,l’ . ’(I)T,NT’(I)l’l’ ,(DL,N?, (7)

where A denotes the operator for antisymmetrization, may be
interpreted as a zeroth-order approximation to the many-
body wave function in terms of coupling-constant perturba-
tion theory [12,13]. It is therefore tempting to determine, in
analogy to the TDHF approximation [8—11], an approximate
S matrix as the transition amplitude

Si,f(f) = <Xf|\I'TDDFT(t)>- (8)

A delicate question arises at this point: Which are the appro-
priate channel states x;, to project on? For the initial state,
stationarity of the propagation of the system in the limit of a
vanishing external perturbation [V(7,7)=0] mandates that ;
is a Kohn-Sham Slater determinant of the occupied ground-
state orbitals. No such restriction is imposed on x; when the
evolution is calculated by forward propagation. The simplest
choice for channel states | Xy) are Kohn-Sham Slater determi-
nants built up from occupied and virtual Kohn-Sham orbitals
|CI>(,,J»> of the ground-state DFT problem, i.e.,

Sip = lim(x;" [WTPPF(p)). )
t—0o0

Reliable transition probabilities can only be expected if both,
time-dependent and stationary Kohn-Sham Slater determi-
nants are good approximations to the time-dependent and
stationary many-body wave functions, respectively. There-
fore, different choices of | Xy need to be explored. For ex-
ample, excited states often show a higher degree of correla-
tion than ground states and a single Kohn-Sham Slater
determinant is obviously no longer a satisfactory approxima-
tion. In such cases, more elaborate final-state channel func-
tions are needed. Alternatively, configuration-interaction (CI)
or multiconfiguration Hartree-Fock (MCHF) can be em-
ployed [14,15]. Within the TDDFT, linear-response theory
allows the calculation of the excitation spectrum by includ-
ing particle-hole excitations [3,4]. As a byproduct, improved
excited states, i.e., the particle-hole reduced-density matrix,
are generated in terms of an expansion in single-particle ex-
citations of Kohn-Sham orbitals. The applications we are
studying in Sec. III are restricted to two-electron systems. In
this case the linear-response approach should give an im-
proved wave function compared to the initial single Kohn-
Sham Slater determinant [16]. As discussed below, this and
other approaches to | Xy) suffer from similar shortcomings, as
does Eq. (9).

We therefore introduce a new functional which depends
only on the time-dependent density n(r,t), thus adhering to
the spirit of the TDDFT. For simplicity and in line with the
model systems studied in Sec. III, the derivation is presented
for two-electron systems. Generalizations to arbitrary many-
electron systems are straightforward.

The starting point is the expansion of the exact time-
dependent wave function in terms of a complete set of final-
state wave functions

\I,(;lsfbl) = 2 <Xf|q,(t)>xf(;l’;2) (10)
f

Using the stationary one-particle reduced-density matrix
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pn=2 [ GaER ()

and the time-dependent transition-density matrix defined by
Typr(6) = W (OXP ()| xp0), (12)

the exact time-dependent density is given by

n(F,1) = ETfffa)p A =TTOpV(P]. (13)
ff!

The transition-density matrix can be directly determined by
the inversion of Eq. (13). Our primary interest lies in the
transition probabilities |S , i.e., the diagonal elements (f’
=f) of the transition- densny matrix Ty (1) = S; f(t)Sl f,(t) at
times after the switch off of the external perturbation > 7. In
this case the inversion problem of dimension Ny XN; (N
dimension of truncated final-state space considered) can be
drastically simplified. Using Eq. (4), for nondegenerate final
states (g,# &), the transition probabilities Ty, can be ex-
tracted from a time average over an interval (t—T)|8fr
—gf| >2m,

A(F.0) ==f 0, }‘?f(*)f ”( D,
T 1S

leading to the implicit read-out functional
lim 71(7,1) = 25 pj (P8 . (15)
t—® f

Unlike Eq. (13), Eq. (15) requires only an Nf—dimensional
inversion. In practice, the apphcatlon of Eq. (15) requires
evaluatlng the final-state densities p (7) at Nf distinct points
r, j=1,...,Ny, so that the matrix ij p}lf(r) does not be-
come near singular and remains invertible. The state-to-state
transition probabilities then become
Ny
NS —hmz (7 OR; .

[HOO

f=1,...N,. (16)

The necessary information to calculate state-to-state transi-
tion amplitudes are therefore the time-dependent density
n(r,t) and the stationary densities of the final states p( )(F)
(densities of the exc1ted eigenstates of the many- electron sys—
tem). The densities p : f(F) (except for the ground-state den-
sity) are not readily accessible within the TDDFT or ground-
state. DFT. TDDFT linear-response theory in principle
provides exact excitation energies of the many-electron sys-
tem and may also provide a recipe to determine excited-state
densities [28]. Since the TDDFT, in principle, determines the
exact time-dependent density, uncertainties in p}}}(?) repre-
sent therefore one major limitation to the applicability and
accuracy of Eq. (16), not directly related to the TDDFT it-
self.

III. NUMERICAL TESTS

We have tested the two functionals of Egs. (9) and (16)
for two exactly solvable one-dimensional two-electron sys-
tems.
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A. Harmonic two-electron quantum dot

The first system consists of two electrons confined to a
harmonic quantum dot [17,18]. In its present one-
dimensional (1D) version, the electron-electron interaction
must be replaced by a screened Coulomb potential [19] to
allow the electrons to bypass each other. The Hamiltonian of
the system is given by

) * Vb + (x; = x))?
(17)

2 2
A pi w
Hypt) = 2 (; + ?x,z - F(1)x;
i=1,2

where x; and p; are the coordinates and momenta of electron
i (i=1,2). The softening parameter b is set to b=0.55. The
laser field

3t/T t= 173,
. T3 <t<217/3,
F(0) = Fy sin(e1) X 3(r=0lr  273<t<m,
0 t=1,

(18)

with driving frequency w;=0.1839 is treated in dipole ap-
proximation. The pulse length is chosen as 7=168 and the
field amplitude is Fy=0.07. Introducing center-of-mass
(c.m.) coordinates R=x;+x, and relative coordinates r=x,
—X,, the Schrodinger equation (2) can be separated, since the
Hamiltonian of Eq. (17) splits into H=H,,+H, , (). The
eigenstates of the unperturbed system are characterized by
the set of quantum numbers (N, ,, ,7,.;), the number of nodes
of the c.m. and relative wave function. The initial state is the
spin-singlet ground state |N,,, =0,n,,,=0). The time depen-
dence of the total Hamiltonian is confined to the c.m. Hamil-
tonian. The exact time-dependent wave function therefore
separates into a time-dependent c.m. and a time-independent
relative part, W(r,R, 1)=g(r)h(R,1). Since the system starts
out from the ground state, (R, ) represents a coherent state
of the 1D harmonic oscillator driven by an external electric
field. The dynamics of the density of this model system is
subject to the harmonic potential theorem [20,21], i.e., the
density is rigidly shifted without any distortion. For the
present system, exact excited final states can be easily calcu-
lated.

In the case of a two-electron spin-singlet system evolving
from the ground state, the time-dependent Kohn-Sham
scheme consists in solving the Kohn-Sham equation for one
doubly occupied Kohn-Sham orbital ®(x,r). For spin-
unpolarized two-particle systems the exact V,.(¢) can be con-
structed using the exact density derived from the
Schrddinger equation and inverting the Kohn-Sham equation
[22,23,29,30]. Since the harmonic two-electron quantum dot
satisfies the harmonic potential theorem, the time depen-
dence of the exchange-correlation potential is a rigid shift
and the exact V,(7) is easily constructed. We also employed
the adiabatic local spin-density approximation (ALSDA)
with the self-interaction correction (SIC) [24]. Since no reli-
able correlation potential is available for a 1D electron sys-
tem we only consider exchange. The L, norm &n(r) of the
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FIG. 1. Ground- and excited-state transition probabilities for the
laser-driven harmonic 1D two-electron quantum dot of a confining
frequency w=0.25 in the dependence of time: Comparison of occu-
pation probabilities of the ground state (a), first excited state
INem.=1,7,,=0) (b), and second excited state | N, , =2,7,,,=0) (c)
of the exact calculation (full line) and the TDDFT calculation
(dashed line). The TDDFT occupation probabilities are obtained
using the approximate S matrix Eq. (9); final channel states are

Slater determinants of Kohn-Sham orbitals |0,0), |0,1), and |0,2).
Parameters of the laser pulse: Fy=0.07, w;=0.1839, 7=168.
deviation between the exact and TDDFT density

5”0) = J |nexact(x’t) - nTDDFT(x’t)|dx (1 9)

is about 0.2 for the highly correlated system of w=0.25. The
ground-state Kohn-Sham equation generates a set of excited
virtual Kohn-Sham orbitals |n). Figure 1 shows a comparison
of exact occupation probabilities and those obtained from the
approximate S matrix [Eq. (9)] by projecting WTPPFI(y)
=®(x,,1)P(x,,r) onto Kohn-Sham Slater determinants.
Shown are the occupation of the ground state [Fig. 1(a), pro-
jection onto the Kohn-Sham determinant |0,0)], the first ex-
cited state [Fig. 1(b), projection onto |0, 1)], and the second
excited state [Fig. 1(c), projection onto |0,2)]. The second
excited state [N, =2,n,,=0) involves a configuration mix-
ture of at least two Kohn-Sham Slater determinants to be
well represented (configurations |0,2) and |1,1)). Neither the
projection onto a single Kohn-Sham configuration state |0,2)
[Fig. 1(c)] nor the projection onto the exact excited state (not
shown) yields satisfactory transition probabilities. After the
switchoff of the laser, the density undergoes oscillations re-
sulting in time-dependent Hartree and exchange-correlation
potentials, which give rise to oscillations in the occupation
probabilities. These are the signatures of the “spurious cross-
channel correlations” well known from the TDHF [9,10]. We
have checked that cross-channel correlations persist when we
project onto exact exit-channel states rather than Kohn-Sham
determinants, i.e., replacing | X})FT) by |x;) in Eq. (9). More-
over, we have also tested channel states obtained from a
TDDFT linear-response (DFT-LR) equation. In this equation
the exchange-correlation kernel of the TDDFT was approxi-
mated by the exchange-only time-dependent optimized effec-
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FIG. 2. Ground- and excited-state transition probabilities for the
laser-driven harmonic 1D two-electron quantum dot for a confining
frequency w=0.25 in the dependence of time: Comparison of occu-
pation probabilities of the ground state (a), first excited state
INe i =1,n,,,=0) (b), and second excited state |N, ,, =2,7,,=0) (c)
of exact calculation (full line) and the TDDFT calculation (dashed
line). The TDDFT transition probabilities are obtained by the inver-
sion of Eq. (16). Parameters of the laser pulse: Fy=0.07, o,
=0.1839, r=168.

tive potential [4,25] and the exact Kohn-Sham orbitals ob-
tained by the exact ground-state exchange-correlation
potential have been used. The obtained excited-state wave
functions | X]]?FT'LR>, however, do not significantly differ from
the single Kohn-Sham Slater determinants although the ex-
citation energies are considerably improved compared to the
Kohn-Sham energy differences. With presently available ap-
proximations to the exchange-correlation kernel, the TDDFT
linear-response theory does not provide substantially im-
proved excited-state wave functions. We thus conclude that
the projection approach of Eq. (9) is not well suited to accu-
rately determine the S matrix within the TDDFT, irrespective
of the particular choice of [x,).

To test the newly proposed read-out functional, which de-
pends only on the density, we use the exact time-dependent
density n(x,7). In this way, errors due to the approximate
exchange-correlation potential can be ruled out and the qual-
ity of the proposed functional for state-to-state transition
probabilities can be directly assessed. Figure 2 shows a com-
parison of transition probabilities obtained by projecting the
wave function according to Eq. (3) (solid line) and by the
new density functional of Eq. (16) (dashed line) for the three
lowest-lying states. The sum in Egs. (14)—(16) is truncated
after the second excited state. In the limit of r— 0, i.e., as the
averaging interval in Eq. (14) increases, the transition prob-
ability converges within the numerical accuracy toward the
exact result, marked by arrows. Numerical errors are due to
the truncation of the sum over final states in Eq. (16). Note
that simply averaging over the cross-channel correlation in
Eq. (9) (see Fig. 1) would lead, in general, to incorrect re-
sults.

B. 1D helium

As a second test system, which allows also for transitions
to the continuum and therefore exhibits more complex dy-
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namics, we study a 1D helium model. This model served

already in the past to benchmark different approximation re-

gimes [5,15,19,23]. The Hamiltonian of the system is given

by

S S

Vb + (x; —xy)?
(20)

2

A Di 2

Hy= 2 {;— ﬁ—F(t)xi]+
=12 Vb +x;

The electric-field amplitude F(z) is given by Eq. (18) with
the parameters w;=0.0615, F(y=0.16, and 7=361.

In the case of the laser-driven helium an additional chal-
lenge is to find an accurate approximation to the exchange-
correlation potential, even when the exact density is known.
A numerically stable exact exchange-correlation potential
has, so far, not been constructed [23]. The cause of the nu-
merical instabilities is similar to those encountered in solving
the Schrodinger equation via the hydrodynamic approach to
quantum mechanics. The time-dependent doubly occupied
orbital is recovered as the ground state of an effective poten-
tial (including the exchange-correlation potential). Conse-
quently, this effective potential diverges at the nodes of the
density, which makes it numerically difficult to determine the
exact exchange-correlation potential by inversion. Exchange-
only ALSDA-SIC binds the electrons too strongly and the
dynamics of the exact two-electron system is not correctly
described. In recent studies, the derivative discontinuity of
the time-dependent exchange-correlation potential, with re-
spect to the particle number, was emphasized [23,26] and a
new approximate correlation functional mimicking this dis-
continuity was introduced [23]. The correlation potential in
this approximation reads

_ N0(0)> ) }
V. (x,1) = {c( No(t) 1| Vy(x,1), (21)

where c(z)=z/(1+¢°°“?) and V(x,1) is the Hartree poten-
tial. Ny(7) denotes the number of bound states at time 7 and is
approximated by twice the DFT ground-state occupation
probability of the time-dependent Kohn-Sham orbital N(z)
=2[(®,| P(¢))|*. At this point it should be mentioned that the
exchange-only time-dependent optimized effective potential
(TDOEP) [25], within the frame of the KLI approximation
[27], also exhibits a derivative discontinuity in the particle
number, as was recently pointed out in Ref. [26]. This is,
however, only true for systems with at least two electrons of
the same spin projection and does not apply to the systems
we are studying. In the considered case of a two-electron
spin-singlet system the TDOEP-KLI reduces to the
exchange-only ALSDA-SIC approach.

In order to assess the quality of the approximate V,. of Eq.
(21), independent from the read-out functional, we calculate
the time-dependent dipole moment. V. of Eq. (21) gives
slightly better results than the exchange-only ALSDA-SIC.
This can be seen in Fig. 3, which compares the time-
dependent dipole moment of the exact solution with the di-
pole moments of the TDDFT calculation based on the
ALSDA-SIC and the functional of Eq. (21). The inset of Fig.
3 shows an enlargement of the dipole moment after the turn-
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FIG. 3. Comparison of the time-dependent dipole moment of the
laser-driven 1D helium of the exact solution (solid line) vs the
TDDFT with V,. of Eq. (21) (dotted line) and the ALSDA-SIC
exchange only (dashed line). The figure inset is an enlargement of
the region after the turnoff of the laser pulse. Parameters of the laser
pulse: driving frequency w;=0.0615, field amplitude A,=0.16,
pulse duration of 7=361.

off of the laser pulse. In this region the dipole moments of
the exact and the different TDDFT solutions show a dis-
tinctly different oscillatory behavior, i.e., different frequen-
cies are involved. This demonstrates that the dynamics of the
exact density cannot be fully recovered by the approximate
TDDFT solutions, even though the differences appear to be
small. As will be shown in the following, this causes serious
problems for the read-out functional, which directly involves
the time-dependent density after the turnoff of the external
field.

To show that the read-out functional of Eq. (16) also gives
accurate results for the system allowing for a more complex
dynamics including ionization, we first evaluate the func-
tional with the exact time-dependent density and the exact
final-state densities. Figure 4 compares the result of Eq. (16)
with the time-dependent ground-state occupation probability
of the exact many-body wave function. Both curves coincide
within the numerical accuracy, demonstrating the validity of
the read-out functional.

We now turn to the case of an actual TDDFT calculation.
In the case of helium, the ground-state occupation of the
TDDFT determinant obtained by the projection approach of
Eq. (8) evaluated with either the exact many-body ground
state or the DFT ground-state determinant gives rise to stable
transition probabilities, i.e., the spurious cross-channel corre-
lations are suppressed. Unlike in the case of the harmonic
quantum dot, the ground state is the only bound state occu-
pied after the turnoff of the field. The excitation probability
is distributed among the continuous spectrum. A consider-
able amount of flux reached the absorbing boundary. The
density hardly undergoes any oscillations or deformations
and therefore the exchange-correlation potential is quasista-
tionary. The ionization probability, determined by the loss in
norm through the absorbing boundary of the TDDFT system,
is slightly lower than in the exact system. The electrons are
still too tightly bound in the approximate TDDFT propaga-
tion based on V, of Eq. (21). This is consistent with the
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FIG. 4. (Color online) Comparison of ground-state occupation
probabilities calculated for the laser-driven 1D He model for several
approaches: exact occupation probability calculated by projection
of the time-dependent many-body wave function (solid black line
starting at r=0) compared to the results of Eq. (16) evaluated with
the exact time-dependent density and exact final-state densities
[solid bold black line starting after the turnoff of the laser pulse,
(online: blue)]. The curves are almost indistinguishable within the
graphical resolution. The TDDFT ground-state occupation accord-
ing to the projection approach of Eq. (9) [projection onto the exact
many-body ground state (black dashed line)]. The results of the
read-out functional of Eq. (16) evaluated for the TDDFT density
with the exact final-state densities p “ for Ny=7 and N;=5 [upper
and lower gray solid lines, respectlvely (online: red lines)]. The
results of the read-out functional of Eq. (16) evaluated for the TD-
DFT density with DFT final-state densities p f”DFT (dotted line).

slightly higher ground-state occupation probability. Because
of the absence of discrete cross-channel correlations, the pro-
jection approach in this regime gives reasonable but not ac-
curate results.

Applying the read-out functional of Eq. (16) to calculate
state-to-state transition probabilities for the TDDFT density
we distinguish two different cases, which differ in the final-
state densities applied. In the first case we consider the exact
final-state density matrix Py (Dex . Increasing the number of ex-
cited states in the truncated‘ space of final states N, results in
a slowly or nonconvergent series of transition probabilities.
As can be seen in Fig. 4, the transition probability jumps by
increasing Ny and we could not reach converged results for
Ny="1. By contrast, using the exact time-dependent density,
convergence is reached already for N,=4. This is a hint that
the problem lies in the incorrect dynamics of the TDDFT
density (see the inset in Fig. 3) rather than the convergence
properties of the series with respect to Ny. The choice of the
exact final-state densities is therefore not well adapted to the
approximate TDDFT calculation. We therefore constructed
as a second choice DFT final-state densities p<.l).DFT from
single Slater determinants of DFT orbitals. The  transition
probabilities evaluated by Eq. (16) rapidly converge with
respect to Ny. The converged result for the ground-state oc-
cupation, however, shows a considerable discrepancy to the
exact solution. In fact, the projection approach gives results
in better agreement with the exact result.
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The important observation is that the read-out functional
sensitively depends on the dynamics of the density. Although
in the present case the approximated exchange-correlation
potential gives overall good results for one-particle expecta-
tion values, i.e., the dipole moment, it does not guarantee a
reliable determination of transition probabilities. This obser-
vation suggests fundamental limitations to the determination
of the S matrix, or equivalently n-particle correlation func-
tions from the density n(7,#) and thus from the TDDFT. The
functional S; {n] displays an extreme sensitivity to the errors
in the density n(r,7). n(r,t) involves the information com-
pression from the N-particle density to the one-particle den-
sity. Conversely, reconstructing the N-particle density or the
full § matrix from the reduced one-particle density involves
the reverse process of information “magnification” or expan-
sion. This process will be extremely sensitive to small errors
in n(7,t), as such errors will be magnified in the extraction
process. In line with fundamental theorems of the TDDFT
[1] the recovery of S; [n] is clearly possible, as demonstrated
here for exactly solved systems. For practical TDDFT calcu-
lations involving inevitably approximate exchange-
correlation functionals, however, the extreme sensitivity to
even slight errors in n(r,f) may pose a major stumbling
block for extracting scattering information.

IV. CONCLUSIONS

We have investigated two different methods to extract
state-to-state transition amplitudes from the TDDFT calcula-
tions. In the first method, the correlated many-body wave
function is approximated by a Slater determinant of the time-
dependent Kohn-Sham orbitals. This approximate wave
function is projected onto appropriate final states (exact
states or Kohn-Sham configuration states). The resulting
state-to-state transition probabilities suffer oscillations after
the switchoff of the external perturbation. The second read-
out functional to calculate state-to-state transition probabili-
ties directly involves the time-dependent densities and repre-
sents thus a well-suited density functional within the
framework of the TDDFT. The problem of cross-channel
correlations can be avoided and well-defined transition prob-
abilities can be determined in the asymptotic limit #— 0.
This was demonstrated in the case of two model systems, a
1D harmonic dot and a 1D helium atom in an external laser
field for the exact time-dependent densities. While read-out
functionals for the S matrix can be constructed, they are
shown to be extremely sensitive to small errors in the den-
sity. Evaluating the read-out functional with the densities of a
TDDFT calculation with error-afflicted exchange-correlation
potential gives rise to ambiguous results, reflecting the prob-
lems of present-day approximations of exchange-correlation
potentials.
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