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A Hookean model of a three-body problem for particles with arbitrary masses and charges where two of
them interact with each other through a Coulomb potential and with the third through a harmonic potential is
presented. It is shown that a condition relating the masses to the harmonic coupling constants must be satisfied
in order to render this problem separable. A general exact analytic solution written in terms of the relative
interparticle coordinates is given as well as general expressions for the total and binding energies of this
three-body system. We apply these results to examine electronic, muonic, antiprotonic, and pionic families of
non-Born-Oppenheimer Hookean systems. The first contains the atoms or atomic ions: Ps−�e+e−e−�,
H−�p+e−e−�, D−�d+e−e−�, T−�p+e−e−�, 4He�he+2e−e−�, and the following molecular ions: Ps2

+�e−e+e+�,
H2

+�e−p+p+�, HD+�e−d+p+�, HT+�e−t+p+�, DT+�e−d+t+�, D2
+�e−d+d+�, T2

+�e−t+t+�. The muonic and antiprotonic
families are similar to the electronic ones except that the species are formed replacing e− by �− or p−. The
pionic family comprises exotic atoms containing at least one pion. We also apply these results to two-electron
three-dimensional spherical quantum dots and for these systems we examine the effect of electronic correla-
tion, particularly on the singlet-triplet transitions and on the collective motion of the electrons and center of
mass leading to “floppy”dynamics.
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I. INTRODUCTION

The three-body problem, both in its classical and quantum
mechanical versions, has attracted—and continues to
attract—a great deal of attention. The reason has to do with
the fact that due to a number of inherent difficulties this
problem cannot be considered as fully solved in either of
these domains. In classical mechanics, Poincaré’s studies of
the three-body problem pointed out the existence of noninte-
grable Newtonian dynamical systems and opened the way to
the understanding of chaotic phenomena. This led, in turn, to
formulations in terms of nonlinear differential equations to
which novel solutions have been recently found for specific
cases �1–5�.

The three-body problem in atomic physics appeared when
an attempt was made to extend the semiclassical notions en-
tering in the construction of the Bohr atom in order to ex-
plain the spectrum of He. Although almost a century has
gone by, the vitality of this problem is attested to by the fact
that still now solutions are being presented for particular re-
stricted cases of the Coulomb three-body problem �6–10� or
for models based on Gaussian potentials �11� or on inverse-
square ones �12�.

In quantum mechanics, the insurmountable difficulty en-
countered in the treatment of a three body problem with
Coulombic potentials is the nonseparability of the
Schrödinger equation �13�. For this reason, much effort has
been devoted to formulating this problem in terms of more
tractable two-body systems �14� where Jacobian coordinates
are used in order to eliminate from the outset the motion of
the center of mass. Then, generally, the remaining six de-
grees of freedom are expressed in terms of hyperspherical
coordinates �15–18�. In addition, Faddeev’s equations, which
were originally designed to treat the quantum three-body
scattering problem, have also been employed to describe
bound states �19–23�. However, the complexities of a quan-
tum mechanical three-body system become apparent when
the two-body subsystems are weakly bound or even unbound
�Borromean�. In those cases the weakly bound states in low
angular momentum are very extended and give rise to what
has been called “halos.” Also, the Efimov effect, associated
with the emergence of weakly bound states in the three-body
system when the two-body subsystems show vanishing bind-
ing energy �and the scattering wavelength greatly exceeds
the force range�, appears as a universal long range property
of the potential �24–26�.

Very extensive literature has accumulated on the applica-
tions of the three-body approach in the case of the 4He trimer
�for some recent references, see �27,28��. Similarly, these*Electronic address: xabier.lopez@ehu.es
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methods have also been used to treat some atomic and
muonic three-body systems �21,29–33�. Different kinds of
model potentials have also been introduced with the aim of
simplifying the three-body problem. In this respect, it is in-
teresting to note that the three–body problem with � interac-
tions cannot be solved for general masses �34�. The problem
of establishing sufficient conditions for the existence of a
physically allowed solution for three-particles interacting
through an inverse-square potential, has been investigated by
Pupyshev �35�. The effect of adding an inverse-square term
to form a Fues-Kratzer-type potential has also been recently
investigated �36�. An exact solution to the quantum version
of the rigid three-body problem has been obtained by Ma
�23�. The harmonic potential has also attracted a great deal of
attention in view of the similarities it presents with the actual
potential that confines electrons in quantum dots. Another
gratifying feature of this potential is that, in the case of two
harmonically confined electrons interacting through a Cou-
lombic potential, it is possible to find analytic solutions for
particular values of the coupling parameter �37–45�. The har-
monic potential has also been used to model and to obtain
analytic solutions for the non-Born-Oppenheimer H2

+ ion
�46� as well as to examine in an approximate fashion the
behavior of a confined three-electron system �47�.

In the present work, we deal with the Hookean model of
the quantum three-body system with masses m1, m2, and m3,
where particles two and three �with charges Z2 and Z3� inter-
act with each other through a Coulomb potential, and where
particles one and two and one and three interact through
harmonic potentials with coupling constants K12 and K13,
respectively. In Sec. II, we show that the ratio of harmonic
coupling constants K13/K12 must be proportional to the mass
ratio m3 /m2 in order to decouple the Schrödinger equation
into three equations which describe: the motion of the whole
system in terms of the displacement of a collective coordi-
nate, the relative motion of the interacting particles two and
three, and the motion of a quasiparticle �a three-dimensional
harmonic oscillator�, respectively. In Sec. III, we present an
explicit wave function for this general three-body problem
written in terms of the interparticle coordinates and give a
general formula both for the total and binding energies of
this three-body system. In Sec. IV the present non-Born-
Oppenheimer Hookean model is applied to describe the be-
havior of electronic, muonic, antiprotonic, and pionic fami-
lies of three-body systems. In Sec. V, we also apply this
model to discuss the effect of electronic correlation both on
the spectra and collective motion of three-dimensional quan-
tum dots. Finally, in Sec. VI we advance some conclusions.

II. THE THREE-BODY PROBLEM WITH COULOMB
AND HOOKEAN INTERACTION

A. The Hamiltonian

Consider the following three-body problem for a system
of three particles defined in terms of the vectors r1, r2, r3
with masses m1, m2, and m3, possessing charges Z1, Z2, and
Z3 and interacting through the potentials

V12�r1,r2� = K12
e2

ao
34��0

�r1 − r2�2, �1�

V13�r1,r3� = K13
e2

ao
34��0

�r1 − r3�2, �2�

V23�r2,r3� =
Z2Z3e2

4��0�r2 − r3�
, �3�

where ao=h2�0 /�mee
2 is the Bohr radius. The Hamiltonian

for this system is

Ĥ = −
h2

8�2m1
�r1

2 −
h2

8�2m2
�r2

2 −
h2

8�2m3
�r3

2

+ K12
e2

ao
34��0

�r1 − r2�2 + K13
e2

ao
34��0

�r1 − r3�2

+
Z2Z3e2

4��0�r2 − r3�
�4�

and the �spinless� Schrödinger equation is:

Ĥ��r1,r2,r3� = E��r1,r2,r3� . �5�

Let us introduce the relative and center-of-mass coordinates
for particles two and three:

r = r2 − r3, �6�

s =
m2r2 + m3r3

m2 + m3
. �7�

Calling M23=m2+m3, the inverse transformations are

r2 = s +
m3

M23
r , �8�

r3 = s −
m2

M23
r . �9�

Using these equations in the evaluation of �r1−r2�2 and �r1

−r3�2 and transforming the Laplacians into the coordinate
system defined by r1, r, and s, we can rewrite the Hamil-
tonian operator given in Eq. �4� as follows:

Ĥ = −
h2

8�2

1

�23
�r

2 −
h2

8�2

1

M23
�s

2 −
h2

8�2

1

m1
�r1

2

+
e2

ao
34��0

��K12 + K13��r1 − s�2 + 2�K13
m2

M23
− K12

m3

M23
�

��r1 − s� · r + 	K13� m2

M23
�2

+ K12� m3

M23
�2
r2�

+
Z2Z3e2

4��0r
, �10�

where �23=m2m3 /M23. Introducing this Hamiltonian into
Eq. �5�, measuring the distances in bohrs, the energy in har-
trees, and the mass in atomic units �me=1�, we obtain
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	−
1

2

1

�23
�r

2 −
1

2

1

M23
�s

2 −
1

2

1

m1
�r1

2 + �K12 + K13��r1 − s�2

+ 2�K13
m2

M23
− K12

m3

M23
��r1 − s� · r + 	K13� m2

M23
�2

+ K12� m3

M23
�2
r2 +

Z2Z3

r

� = E� . �11�

B. Separability condition for the Hamiltonian

Equation �11� shows that in spite of the above coordinate
transformations, there remain couplings among the new co-
ordinates. The fourth term in the right-hand side �rhs� gives
coupling between the coordinates r1 and s and the fifth, be-
tween r1−s and r. The first coupling can be readily disposed
of, as will be shown below. However, in order to eliminate
the latter, we must require that its coefficient be zero:

�K13
m2

M23
− K12

m3

M23
� = 0 �12�

which leads to the equation

K13

K12
=

m3

m2
. �13�

One way to fulfill this condition is to require that particles
two and three be equal, i.e., that

m2 = m3 = m and K12 = K13 = k . �14�

But condition �13� is also satisfied as long as the harmonic
coupling constants K1i are proportional �with the same con-
stant of proportionality� to the product of their corresponding
masses, i.e., when

K1i = a � m1 � mi for i = 2,3. �15�

In what follows, to insure the decoupling, we assume that
either conditions �14� or �15� hold and obtain:

	K13� m2

M23
�2

+ K12� m3

M23
�2
r2 = K12

m3

M23
r2 = K13

m2

M23
r2

�16�

and

K12 + K13 = K12
M23

m2
= K13

M23

m3
. �17�

C. Decoupling of Schrödinger’s equation

Setting the wave function

��r1,r2,r3� = �r�r��r1,s�r1,s� �18�

and using Eqs. �16� and �17� we can decouple Eq. �11� into
the following:

	−
1

2

1

�23
�r

2 + K13
m2

M23
r2 +

Z2Z3

r

�r�r� = Er�r�r� �19�

and

	−
1

2

1

M23
�s

2 −
1

2

1

m1
�r1

2 + K13
M23

m3
�r1 − s�2
�r1,s�r1,s�

= Er1,s�r1,s�r1,s� . �20�

Now, expanding �r1−s�2 and multiplying by m1 we can re-
write Eq. �20� in the general form:

	−
1

2

1

M
�s

2 −
1

2
�r1

2 + 4�2�r1
2 + s2 − 2r1 · s�
�r1,s�r1,s�

= Er1,s� �r1,s�r1,s� , �21�

where we have defined

M = M23/m1, 4�2 = K13
m1M23

m3
, Er1,s� = m1Er1,s.

�22�

Equation �21� may be put in a more convenient form by
introducing the auxiliary variable s̃=�Ms:

	−
1

2
�s̃

2 −
1

2
�r1

2 + 4�2�r1
2 +

s̃2

M
−

2r1 · s̃
�M

�
�r1,s̃�r1,s�

= Er1,s̃�r1,s̃�r1, s̃� , �23�

where Er1,s� =Er1,s̃. Observe that this equation can be decou-
pled through coordinates P and Q defined by means of the
unitary rotation

�P

Q
� = � cos � sin �

− sin � cos �
��r1

s̃
� �24�

of angle �=tan−1�M�. With this transformation Eq. �21� can
be cast as follows:

	−
1

2
�P

2 −
1

2
�Q

2 +
4�2�M + 1�

M
Q2
�P,Q�P,Q�

= EP,Q�P,Q�P,Q� . �25�

Taking �P,Q�P ,Q�=�P�P��Q�Q� we obtain the following
decoupled equations:

−
1

2
�P

2�P�P� = EP�P�P� �26�

and

	−
1

2
�Q

2 +
WQ

2

2
Q2
�Q�Q� = EQ�Q�Q� , �27�

where we have defined

WQ
2

2
= 4�2 �M + 1�

M
�28�

and where, in view of Eq. �22� the energy is

Er1,s =
EP + EQ

m1
. �29�
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D. Solution to the relative motion equation

Multiplying Eq. �19� by �23, we obtain the equation:

	−
1

2
�r

2 +
Wr

2

2
r2 +

Kr

2r

�r�r� = Er��r�r� , �30�

where, bearing in mind Eq. �22� we have defined

Wr
2

2
= K13�23

m2

M23
, Kr = 2Z2Z3�23, and Er� = �23Er.

�31�

The wave function appearing in Eq. �30� can be separated
into its radial and angular parts �r�r�=	r�r�Ylr,mr

��r ,
r� and
as a result, setting 	r�r�=�r�r� /r we obtain the following
equation for the radial part:

	−
1

2

d2

dr2 +
lr�lr + 1�

2r2 +
Kr

2r
+

Wr
2

2
r2
�r�r� = Er��r�r� .

�32�

The general solution to this equation is

�nr,lr
�r� = rlr+1 exp�−

Wr�nr,lr�
2

r2�
i=0

nr

air
i, �33�

where we have emphasized the dependence of the coupling
constant Wr�nr , lr� on the quantum numbers. For any specific
pair of quantum numbers nr, lr, the coupling constant
Wr�nr , lr� is determined through the solution of the recursion
relations for the expansion coefficients �43�.

The corresponding energy is given by

Er� = Wr�nr,lr��nr + lr +
3

2
� . �34�

E. Solution to the equation for the quasiparticle motion

Equation �27� describes the motion of a three-dimensional
harmonic oscillator whose wave function can be written as
the product of a radial and an angular part, i.e., �Q�Q�
=	Q�Q�YnQ,lQ

��Q ,
Q� where the radial part is given by

	�Q,lQ
�Q� = N�Q,lQ

QlQ exp�− �WQ/2�Q2�

�F�− �Q,lQ + 3/2,WQQ2� �35�

and where F�−�Q , lQ+3/2 ,WQQ2� is the confluent hypergeo-
metric function.

Note, in view of Eqs. �22� the coupling parameters are
connected and satisfy the explicit relations:

WQ�nr,lr� =
�M123

�m1

�23
Wr�nr,lr� , �36�

E0,0
Q =

3

2
�M123�23

�m1Z2
2Z3

2, �37�

where M123=m1+m2+m3. Since we take EP=0 �we measure
the energy of the system with respect to that of the collective

displacement�, bearing in mind Eqs. �29� and �37�, we finally
obtain:

Er1,s =
3

2
�M123

m1
�23Z2

2Z3
2. �38�

III. EXPLICIT REPRESENTATIONS FOR THE TOTAL
WAVE FUNCTION AND EXPLICIT FORMS OF

THE TOTAL AND BINDING ENERGIES

Another consequence of setting EP=0 is that the wave
function �P�P� becomes a constant and can be disregarded
�note that this deletion does not arise from taking P=0 as the
origin of the coordinate system�. As a consequence, the total
three-particle wave function corresponding to the quantum
numbers nr, lr, and �Q, lQ can be written:

�nr,lr,�Q,lQ
�r1,r2,r3�

=
1

4�
	nr,lr

�r�	�Q,lQ
�Q�Ylr,mr

��r�YlQ,mQ
��Q� . �39�

Actually, the individual spherical harmonics must couple to
form a total angular momentum eigenfunction characterized
by the global quantum numbers L and M. In fact, similar
methods to those discussed by Frolov and Smith �48� �see
also Refs. �49,50�� may be used here to generate the global
wave function �nr,�Q,L,M�r ,Q�. For simplicity, we only con-
sider here the totally symmetric ground-state case with L
=0 and M =0 which corresponds to lr=0 and lQ=0 and is
described by the wave function:

�nr,0,�Q,0�r1,r2,r3� =
1

4�
	nr,0

�r�	�Q,0�Q� . �40�

A. Interparticle coordinate representation

Using Eqs. �6� and �61� we have r2�r23
2 and

Q2 =
m2

M123
r12

2 +
m3

M123
r13

2 −
�23

M123
r23

2 . �41�

Hence, the general form of the total wave functions is:

�nr,0,�Q,0�r1,r2,r3� =
Nnr,0

r N�Q,0
Q

4�
�

i=0

nr

air23
i �

�exp�− 12r12
2 − 13r13

2 − 23r23
2 �

�F�− �Q,3/2,WQQ2� , �42�

where

23 =
1

2
�Wr�nr,0� −� m1

M123
�23�2

Z2
2Z3

2, �43�

12 =
1

2
� m1

M123
�23m2Z2

2Z3
2, �44�
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13 =
1

2
� m1

M123
�23m3Z2

2Z3
2, �45�

and where the argument of the confluent hypergeometric
function is:

WQQ2 = Wr�nr,0�
1

�23
� m1

M123
�m2r12

2 + m3r13
2 − �23r23

2 � .

�46�

In the treatment of the Coulombic case, it is customary to
express the variational wave function �48,51� in terms of the
basis functions ��i�r12,r13,r23�=exp�−ir23−�ir13−�ir13��
which explicitly contain the interparticle coordinates. It is
observed that the exact Hookean solution given by Eq. �42�
has this general form, except for the fact that due to har-
monic confinement we have Gaussians instead of exponen-
tial functions. Moreover, in the exact Hookean case, the pa-
rameters ij are totally determined by the quantum numbers,
the masses, and the charges. Another interesting fact is the
appearance in the Hookean system of a correlation function
for the particles with the same charge �two and three� whose
order is determined by the quantum number nr. As we show
below, the order of this polynomial can be quite large �nr
=65, for example, for H2

+� when the Hookean wave function
is constrained to yield a �r� value close to that of the Cou-
lombic system.

B. Electronic and nuclear coordinate representation

In the work of Bishop and Cheung �52� the wave function
for a Coulombic three-body system, say H2

+, is written in
terms of the internuclear distance R=r23 and of the vector
re= �re ,�e ,
e� denoting the relative position of the electron
with respect to the nuclear geometric center. Hence, re=r1
−s, where s= �r2+r3� /2. The connection of this representa-
tion with the present one can be readily established by noting
that the coordinate Q may be written:

Q = −� M23

M123
�r1 − s� = −� M23

M123
re. �47�

However, in contrast with Bishop and Cheung’s defini-
tion, in the present case �see Eq. �7��, s is the nuclear center
of mass. But, since for homonuclear diatomic molecules, the
nuclear and the geometric center of mass coincide, we see
that the exact Hookean wave function in this case can be
expressed in terms of the electronic and nuclear coordinates:

�nr,0,�Q,0�r23,Q� =
1

�4�
	nr,0

�R��̃�Q,0�re,�e,
e� . �48�

Note, moreover, that the vector re can also be expressed, as it
is done in the treatment of Bishop and Cheung �53�, in terms
of prolate spheroidal coordinates as re= �� ,� ,
�, where �
= �r12+r13� /R and �= �r12−r13� /R.

C. Total energy and binding energies

The total energy depends on the quantum numbers and
can be written:

ET = Er + Er1,s =
1

�23
Wr�nr,lr�	�nr + lr +

3

2
�

+�M123

m1
�2�Q + lQ +

3

2
�
 . �49�

Finally, the binding energy Ei
B=ET−Ei

at, defined as the differ-
ence between the total energy for the three-body system ET
and that of an “atom,” Ei

at consisting of particles one and i
�i=2,3�, is given by

Ei
B =

1

�23
Wr�nr,lr�	�nr + lr +

3

2
� +�M123

m1
�2�Q + lQ +

3

2
�

−��23

�1i

�M23

mj
�2ñr + l̃r +

3

2
�
 �50�

for i� j, where ñr and l̃r are the quantum numbers for the
“atom.” We assume, moreover, that the same molecular har-
monic coupling constant also holds in the case of the “atom.”

IV. APPLICATION TO THREE-BODY SYSTEMS

There exists a large number of Coulomb three-body sys-
tems that over the years have attracted much attention. These
systems have been thoroughly studied by means of approxi-
mate methods. The latter, in view of the extreme precision
required for a proper description of these systems, have un-
dergone considerable refinements.

Among the most studied three-particle systems, we may
distinguish the following families: electronic, muonic, anti-
protonic, and pionic. The family of electronic three-particle
systems is formed by the following atoms �or atomic ions�:
Ps−�e+e−e−�, H−�p+e−e−�, D−�d+e−e−�, T−�t+e−e−�,
4He�he+2e−e−� and its finite-nuclei isoelectronic series, and
the following molecular ions: Ps2

+�e−e+e+�, H2
+�e−p+p+�,

HD+�e−d+p+�, HT+�e−t+p+�, DT+�e−d+t+�, D2
+�e−d+d+�,

T2
+�e−t+t+�. The family of muonic systems is similar to that of

electronic ones except that the species are formed replacing
e− by the negative muon �−. Similarly, the family of antipro-
tonic systems is generated by replacing e− by the antiproton
p−. Finally, under the denomination of pionic systems we
consider the family of exotic atoms and molecules resulting
from the combinations of at least one positive or negative
pion with muons �positive and negative�, electrons, posi-
trons, protons, and antiprotons.

Results of the Hookean model calculations for atomic and
molecular electronic systems are presented in Tables I and II,
respectively. Similarly, those for muonic, antiprotonic and
pionic systems are listed in Tables III–V, respectively. The
data for electronic systems listed in Tables I and II is given in
hartrees for the energy and in bohrs for the length. Unless
explicitly stated, the data in the remaining tables is presented
in muonic units of energy �hartree/m�=� .u.� and muonic
units of distance �bohr�m�=� .u.�. In these tables, Er de-
notes the internal energy for the Coulombic interaction of
particles two and three in the harmonic potential field pro-
duced by particle one. The value of Er has been decomposed
into its kinetic �Er

K�, repulsion �Er
R�, and confinement �Er

C�
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energy components. The reported energy Er1,s=EQ /m1 is es-
sentially the energy of a “particle” whose wave function is
described by the collective coordinate Q coupling the motion
of particle one with the center of mass of particles two and
three. It follows, in view of Eq. �47�, that this is the energy
resulting from the vibration of the collective coordinate Q.
The energy shown in the tables corresponds to the �=0 and
lQ=0 level of the three-dimensional harmonic oscillator.
Note that in this case there is no need to decompose this
energy as the kinetic and potential energy components are
coupled by the virial theorem. The total energy ET corre-
sponds to the sum of Er and Er1,s and is given in general form
by Eq. �49�. Binding energies with respect to the dissociation
of the three-particle system into an atom containing particles
one and i �i=2,3� are calculated by means of Eq. �50�.

The results presented in the upper part of these tables
correspond to nr=1 and, hence, they refer to the simplest
correlated wave function. In addition to the values of �r�
computed for nr=1 we have listed for comparison purposes
at the bottom of these tables the reported average values,
�r�Coul, �whenever available in the literature� for full Cou-
lombic interaction.

In order to establish a closer correspondence between the
model Hookean calculations presented here and real Cou-

lomb systems, we have searched for ground state solutions of
the Hookean model �Eq. �33�� corresponding to different nr
values such that the average values of the interparticle dis-
tances �r� are larger, but lie as close as possible to the �r�Coul

ones. These results are reported in the lower part of the
tables. Thus, for example, in the lower part of Table II we
present for H2

+ and HD+ results obtained for nr=65 and nr
=75, respectively, which yield �r�=2.099 bohrs ��r�Coul

=2.063 bohrs� for H2
+ and �r�=2.089 bohrs ��r�Coul

=2.055 bohrs� for HD+. It is clear that the wave functions for
nr�1 reported in the present calculations correspond in al-
most all cases to very highly correlated interparticle wave
functions of the type described by Eq. �33�.

V. APPLICATION TO QUANTUM-DOT SYSTEMS

In the present section we use the Hookean three-body
model to examine electron correlation in a two-electron
spherical quantum dot and, in particular, to assess the influ-
ence of finite and infinite masses of either the quantum dot or
impurities on the collective dynamics of this system. Three-
dimensional spherical quantum dots have been realized ex-
perimentally only recently through the use of colloidal semi-
conductor nanocrystals �59,60�. �In contrast, two-

TABLE I. Hookean model results for three-body electronic atomic systems. The nr values denote the degree of correlation, Eq. �33�. Data
in electronic atomic units.

Atom
Ps−

e+e−e−
H−

p+e−e−
D−

d+e−e−
T−

t+e−e−

4He
he+2e−e−

nr 1 1 1 1 1

Wr 2.500000�10−1 2.500000�10−1 2.500000�10−1 2.500000�10−1 2.500000�10−1

Er
K 2.894176�10−1 2.894176�10−1 2.894176�10−1 2.894176�10−1 2.894176�10−1

Er
R 4.474432�10−1 4.474432�10−1 4.474432�10−1 4.474432�10−1 4.474432�10−1

Er
C 5.131392�10−1 5.131392�10−1 5.131392�10−1 5.131392�10−1 5.131392�10−1

Er 1.250000 1.250000 1.250000 1.250000 1.250000

Er1,s 1.299038 7.504084�10−1 7.502043�10−1 7.501364�10−1 7.501020�10−1

ET 2.549038 2.000408 2.000204 2.000136 2.000102

E3
B 1.488378 1.250204 1.250102 1.250068 1.250051

E2
B 1.488378 1.250204 1.250102 1.250068 1.250051

�r� 2.684659 2.684659 2.684659 2.684659 2.684659

�Q� 1.212522 3.723038�10−2 2.633597�10−2 2.152141�10−2 1.861258�10−2

nr 3 2

Wr 1.826863�10−2 5.000000�10−2

Er
K 1.764072�10−2 5.102834�10−2

Er
R 8.609083�10−2 1.652955�10−1

Er
C 6.068614�10−2 1.336761�10−1

Er 1.644177�10−1 3.500000�10−1

Er1,s 9.492660�10−2 1.500817�10−1

ET 2.593443�10−1 5.000817�10−1

E3
B 1.818371�10−1 3.500408�10−1

E2
B 1.818371�10−1 3.500408�10−1

�r� 1.292418�10+1 6.942413

�Q� 4.485457 8.324966�10−2

�r�Coul 8.548580�54� 4.415693�55� 1.422248�55�
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dimensional �2D� quantum dots were produced almost two
decades ago �61,62�.�

Recently, the excitation spectrum of two-electron �2D�
quantum dots has been investigated by tunneling spectros-
copy �63� and the theoretical prediction of singlet-triplet
transitions with increasing magnetic field has been experi-
mentally corroborated. This, in turn, reinforces the sugges-
tion that these states may be used as those of a qubit, or that
these two-electron dots may be employed to implement logi-
cal gates in quantum computing.

In two-electron quantum dots as well as in those contain-
ing N�2 electrons the incorporation of electron correlation
effects has been shown to be essential for an adequate inter-
pretation of their experimental spectra and transport proper-
ties �64–67�. However, in quantum dots, as opposed to real
atoms, the effect of electron correlation may be varied at will
through manipulation of the dimension and shape of the
nanocrystal as well as of the strength, boundaries, and sym-
metries of the confining fields �68,69�. This fact makes the
quantum dot many-body problem much more complex that
the usual atomic one.

Due to the intrinsic nonseparability of Coulomb electron-
electron interaction in N-electron quantum dots, the correla-
tion problem cannot be treated analytically. In view of this

fact, approximate descriptions of quantum dots have been
advanced where the electron-electron interaction is treated,
for example, via a constant interaction model �70� or where,
keeping the interaction unchanged, approximations based on
infinite-barrier quantum-well boxes �parallelepipeds �71� and
spheres �72,73�� are used. Also, for the actual interactions
and boundaries, several usual quantum chemistry methods
have been used. Among these, we have diagonalizations of
large configuration interaction representations of the Hamil-
tonian matrix �these are usually referred as “exact” diagonal-
izations� �74–80�, Hartree-Fock calculations �78,81–85�, �in-
cluding coupled-cluster-type ones �86��, density functional
theory applications �87–90�, and, finally, quantum Monte
Carlo calculations �91�. Let us remark, however, that even
for two-electron quantum dots it is observed that in order to
incorporate correlation properly, one must go beyond pertur-
bative schemes based on the independent-particle picture or
spin-density functional theory �63�.

Customarily, two interacting electrons in a two-or three-
dimensional quantum dot model are led in terms of a har-
monic trapping potential �43,69,92–95�. �For generalizations,
see Refs. �47,96�.� The advantage of such a two-particle
model is that it has analytical closed-form solutions for cer-
tain values of the harmonic confining parameter �or equiva-

TABLE II. Hookean model results for three-body electronic molecular ions. Data in electronic atomic units.

Molecule
H2

+

e−p+p+
HD+

e−d+p+
HT+

e−t+p+
D2

+

e−d+d+
DT+

e−t+d+
T2

+

e−t+t+

nr 1 1 1 1 1 1

Wr 8.428642�10+5 1.497929�10+6 1.894456�10+6 3.368111�10+6 4.843873�10+6 7.554037�10+6

Er
K 5.314149�10+2 7.084360�10+2 7.967043�10+2 1.062302�10+3 1.273947�10+3 1.590906�10+3

Er
R 8.215740�10+2 1.095251�10+3 1.231715�10+3 1.642333�10+3 1.969538�10+3 2.459560�10+3

Er
C 9.422019�10+2 1.256061�10+3 1.412562�10+3 1.883469�10+3 2.258716�10+3 2.820686�10+3

Er 2.295191�10+3 3.059748�10+3 3.440981�10+3 4.588104�10+3 5.502200�10+3 6.871152�10+3

Er1,s 8.346388�10+4 1.362447�10+5 1.768097�10+5 2.358798�10+5 3.161073�10+5 4.322901�10+5

ET 8.575907�10+4 1.393044�10+5 1.802507�10+5 2.404679�10+5 3.216095�10+5 4.391613�10+5

E3
B 2.673316�10+4 2.806526�10+4 2.716566�10+4 7.366433�10+4 7.682331�10+4 1.334721�10+5

E2
B 2.673316�10+4 6.061623�10+4 9.175828�10+4 7.366433�10+4 1.215734�10+5 1.334721�10+5

�r� 1.462111�10−3 1.096765�10−3 9.752521�10−4 7.314185�10−4 6.099059�10−4 4.883932�10−4

�Q� 4.783562�10−3 3.744044�10−3 3.286606�10−3 2.845479�10−3 2.458009�10−3 2.101905�10−3

nr 65 75

Wr 1.006212�10+1 1.168541�10+1

Er
K 4.770370�10−3 4.151491�10−3

Er
R 4.795329�10−1 4.813823�10−1

Er
C 2.445372�10−1 2.448665�10−1

Er 7.288404�10−1 7.303982�10−1

Er1,s 9.963927�10−1 1.062850

ET 1.725233 1.793249

E3
B 1.020581 9.254673�10−1

E2
B 1.020581 1.179399

�r� 2.099100 2.089231

�Q� 1.384476 1.340493

�r�Coul 2.063913�55� 2.055�56�
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TABLE III. Hookean model results for three-body muonic systems �atoms and molecules�. Data in muonic units.

Atom e+�−�− p+�−�− d+�−�− t+�−�− he+2�−�− Molecule �−p+p+ �−d+p+ �−t+p+ �−d+d+ �−t+d+ �−t+t+

nr 1 1 1 1 1 nr 1 1 1 1 1 1

Wr 5.169207�10+1 5.169207�10+1 5.169207�10+1 5.169207�10+1 5.169207�10+1 Wr 4.076371�10+3 7.244484�10+3 9.162218�10+3 1.628931�10+4 2.342658�10+4 3.653383�10+4

Er
K 2.894176�10−1 2.894176�10−1 2.894176�10−1 2.894176�10−1 2.894176�10−1 Er

K 2.570099 3.426232 3.853127 5.137647 6.161230 7.694149

Er
R 4.474432�10−1 4.474432�10−1 4.474432�10−1 4.474432�10−1 4.474432�10−1 Er

R 3.973405 5.296997 5.956982 7.942866 9.525338 1.189525�10+1

Er
C 5.131392�10−1 5.131392�10−1 5.131392�10−1 5.131392�10−1 5.131392�10−1 Er

C 4.556802 6.074730 6.831618 9.109080 1.092390�10+1 1.364177�10+1

Er 1.250000 1.250000 1.250000 1.250000 1.250000 Er 1.110031�10+1 1.479796�10+1 1.664173�10+1 2.218959�10+1 2.661047�10+1 3.323117�10+1

Er1,s 1.527013�10+1 8.301721�10−1 7.911222�10−1 7.776999�10−1 7.708110�10−1 Er1,s 2.884750�10+1 4.667223�10+1 6.029605�10+1 8.043906�10+1 1.075049�10+2 1.467492�10+2

ET 1.652013�10+1 2.080172 2.041122 2.027700 2.020811 ET 3.994781�10+1 6.147019�10+1 7.693777�10+1 1.026287�10+2 1.341154�10+2 1.799804�10+2

E3
B 5.709501 1.289070 1.270287 1.263724 1.260334 E3

B 1.901295�10+1 2.302225�10+1 2.449500�10+1 4.497582�10+1 5.025829�10+1 7.525961�10+1

E2
B 5.709501 1.289070 1.270287 1.263724 1.260334 E2

B 1.901295�10+1 3.356167�10+1 4.555195�10+1 4.497582�10+1 6.497626�10+1 7.525961�10+1

�r� 2.684659 2.684659 2.684659 2.684659 2.684659 �r� 3.023182�10−1 2.267761�10−1 2.016512�10−1 1.512341�10−1 1.261092�10−1 1.009842�10−1

�Q� 5.085355 5.089840�10−1 3.687731�10−1 3.039323�10−1 2.640187�10−1 �Q� 2.573040�10−1 2.022886�10−1 1.779739�10−1 1.540874�10−1 1.332866�10−1 1.140809�10−1

nr 5 6 6 7 8 9

Wr 7.809046�10+1 8.464026�10+1 1.070459�10+2 1.245592�10+2 1.236029�10+2 1.385771�10+2

Er
K 3.931354�10−2 3.162311�10−2 3.556322�10−2 3.079873�10−2 2.533865�10−2 2.264663�10−2

Er
R 3.161700�10−1 3.036170�10−1 3.414465�10−1 3.435360�10−1 3.218995�10−1 3.227438�10−1

Er
C 1.973985�10−1 1.834316�10−1 2.062865�10−1 2.025667�10−1 1.862884�10−1 1.840185�10−1

Er 5.528821�10−1 5.186717�10−1 5.832962�10−1 5.769015�10−1 5.335266�10−1 5.294090�10−1

Er1,s 5.526275�10−1 5.452907�10−1 7.044633�10−1 6.150924�10−1 5.672157�10−1 5.566371�10−1

ET 1.105510 1.063962 1.287759 1.191994 1.100742 1.086046

E3
B 7.044635�10−1 6.147595�10−1 6.750492�10−1 7.511407�10−1 6.582968�10−1 6.888278�10−1

E2
B 7.044635�10−1 7.378958�10−1 9.210662�10−1 7.511407�10−1 7.359516�10−1 6.888278�10−1

�r� 3.399547 3.504126 3.115897 3.073171 3.260075 3.235919

�Q� 1.859022 1.871486 1.646537 1.762100 1.834960 1.852314

�r�Coul 3.299486�57� 3.100710�57� 3.036524�57� 2.834452�57� 2.747914�57� 2.652825�57�
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lently of the applied external magnetic field�. However,
Yannouleas and Landman �97� have reinterpreted these re-
sults as a prototypical three-body problem corresponding to a
linear molecule XYX where the X’s are the electrons and the
Y an infinitely heavy confining dot Y. Through this interpre-
tation the rovibration nature of the two-electron quantum dot
spectra is revealed.

The Hamiltonian for a two-electron three-dimensional
quantum dot in a magnetic field �B �z� described by the vec-
tor potential A= �−y ,x ,0�B /2, is:

Ĥ = 
j=1

2 � 1

2m* �P j − eA j�2 +
m*

2
�wo

2�xj
2 + yj

2� + wz
2zj

2��
+

e2

4��0�

1

�r1 − r2�
�51�

�where m* is the effective mass and � an effective dielectric
constant�. This Hamiltonian separates in relative and center-
of-mass coordinates r=r1−r2 and R= �r1+r2� /2, respec-
tively, into

TABLE IV. Hookean model results for three-body antiprotonic systems �atoms and molecules�. Data in muonic units.

Atom e+p−p− p+p−p− d+p−p− t+p−p− he+2p−p−

nr 1 1 1 1 1

Wr 4.076371�10+3 4.076371�10+3 4.076371�10+3 4.076371�10+3 4.076371�10+3

Er
K 2.570099 2.570099 2.570099 2.570099 2.570099

Er
R 3.973405 3.973405 3.973405 3.973405 3.973405

Er
C 4.556802 4.556802 4.556802 4.556802 4.556802

Er 1.110031�10+1 1.110031�10+1 1.110031�10+1 1.110031�10+1 1.110031�10+1

Er1,s 4.036591�10+2 1.153578�10+1 9.420091 8.601868 8.156089

ET 4.147594�10+2 2.263608�10+1 2.052040�10+1 1.970217�10+1 1.925639�10+1

E3
B 1.292905�10+2 1.321716�10+1 1.236270�10+1 1.200964�10+1 1.181060�10+1

E2
B 1.292905�10+2 1.321716�10+1 1.236270�10+1 1.200964�10+1 1.181060�10+1

�r� 3.023182�10−1 3.023182�10−1 3.023182�10−1 3.023182�10−1 3.023182�10−1

�Q� 9.890888�10−1 1.365415�10−1 1.068694�10−1 9.138743�10−2 8.116479�10−2

Molecule p−p+p+ p−d+p+ p−t+p+ p−d+d+ p−t+d+ p−t+t+

nr 1 1 1 1 1 1

Wr 4.076371�10+3 7.244484�10+3 9.162218�10+3 1.628931�10+4 2.342658�10+4 3.653383�10+4

Er
K 2.570099 3.426232 3.853127 5.137647 6.161230 7.694149

Er
R 3.973405 5.296997 5.956982 7.942866 9.525338 1.189525�10+1

Er
C 4.556802 6.074730 6.831618 9.109080 1.092390�10+1 1.364177�10+1

Er 1.110031�10+1 1.479796�10+1 1.664173�10+1 2.218959�10+1 2.661047�10+1 3.323117�10+1

Er1s 1.153578�10+1 1.775535�10+1 2.231319�10+1 2.976455�10+1 3.908552�10+1 5.270548�10+1

ET 2.263608�10+1 3.255331�10+1 3.895491�10+1 5.195415�10+1 6.569599�10+1 8.593666�10+1

E3
B 1.321716�10+1 1.717736�10+1 1.900053�10+1 2.889786�10+1 3.378852�10+1 4.609058�10+1

E2
B 1.321716�10+1 1.999682�10+1 2.483394�10+1 2.889786�10+1 3.804615�10+1 4.609058�10+1

�r� 3.023182�10−1 2.267761�10−1 2.016512�10−1 1.512341�10−1 1.261092�10−1 1.009842�10−1

�Q� 1.365415�10−1 1.100585�10−1 9.817647�10−2 8.500384�10−2 7.417888�10−2 6.387933�10−2

nr 10 12 12

Wr 4.590259�10+1 3.931810�10+1 6.131671�10+1

Er
K 1.119390�10−2 7.952041�10−3 9.930515�10−3

Er
R 1.768315�10−1 1.501797�10−1 1.875446�10−1

Er
C 9.960965�10−2 8.304190�10−2 1.037028�10−1

Er 2.876350�10−1 2.411737�10−1 3.011779�10−1

Er1s 8.387528�10−2 6.559935�10−2 8.845847�10−2

ET 3.715103�10−1 3.067730�10−1 3.896363�10−1

E3
B 3.065387�10−1 2.532210�10−1 3.227605�10−1

E2
B 3.065387�10−1 2.603668�10−1 3.227605�10−1

�r� 5.882775 6.884813 5.513139

�Q� 1.601295 1.810666 1.559260

�r�Coul 5.797779�57� 6.533299�57� 4.794814�57�
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Ĥr = − �r
2 + �2r2 +

1

r
+

�*w0

2
t�i

�

�
r
� �52�

and

ĤR = −
1

4
�R

2 + 4�2R2 +
�*w0

2
t�i

�

�
R
� . �53�

Here we have defined

�2 � ��*w0

2
�2� t2

4
+ 1� , �54�

where t=�C /�0, �C=eB /m*. The confinement strength on
the z axis has been set to:

�z
2 = �0

2 + � eB

2m*�2

. �55�

Recall that �*=� /Eh, with Eh being the Hartree energy. From
Eq. �52� we obtain the radial equation:

	−
1

2

d2

dr2 +
1

2

lr�lr + 1�
r2 +

�2

2
r2 +

1

2r

u�r� = E�u�r� �56�

with

E� =
1

2
E� −

�*�0

4
tmr. �57�

Observe that Eq. �56� is of the same type as Eq. �32�, whose
eigenenergies are given by Eq. �34� for the discrete set of
values of �=Wr�nr , lr� which afford an analytical close form
solution. Consequently, from Eqs. �34� and �57� the energy
of the two-electron quantum dot in a magnetic field �B �z� is
given by

E� = 2Wr�nr,lr��nr + lr +
3

2
� +

�*w0

2
tmr. �58�

As mentioned above, Eq. �56� is exactly soluble �43,93�
only for a discrete set of values of the coupling constant �
=Wr�nr , lr�. These values, for a given lr, starting from
Wr�1, lr� decrease for nr�1. Also, for values of �
�Wr�1, lr� we can calculate accurate energies for each lr by
taking the uncorrelated solution �with nr=0� of Eq. �33� and
correcting it for the electronic interaction in first order of
perturbation theory �this is allowed in this case as we are in
the weakly correlated regime�. We have used both the exact
values of the energy for the points where �=Wr�nr , lr� plus
some approximate values of the energy �calculated at a few
points for ��Wr�1, lr�� to interpolate the energy of the quan-
tum dot for arbitrary coupling constant �cf. �93��. The result-

TABLE V. Hookean model results for “exotic” three-body pionic molecular systems �57�. Data in muonic units.

Molecule �−�+�+ �−�+�+ �−�+�+ �−�+�+

nr 1 1 1 1

Wr 9.019558�10+1 5.169207�10+1 6.697615�10+1 6.697615�10+1

Er
K 3.823012�10−1 2.894176�10−1 3.294375�10−1 3.294375�10−1

Er
R 5.910423�10−1 4.474432�10−1 5.093145�10−1 5.093145�10−1

Er
C 6.778223�10−1 5.131392�10−1 5.840948�10−1 5.840948�10−1

Er 1.651166 1.250000 1.422847 1.422847

Er1s 1.890618 1.189189 1.555749 1.417526

ET 3.541784 2.439189 2.978595 2.840373

E3
B 2.032492 1.445039 1.771270 1.708753

E2
B 2.032492 1.445039 1.678005 1.633047

�r� 2.032397 2.684659 2.358528 2.358528

�Q� 1.005076 1.102643 1.107978 1.009938

nr 3 3 4 4

Wr 6.591000 3.777373 2.323564 2.323564

Er
K 2.330221�10−2 1.764072�10−2 9.274569�10−3 9.274569�10−3

Er
R 1.137202�10−1 8.609083�10−2 6.003148�10−2 6.003148�10−2

Er
C 8.016230�10−2 6.068614�10−2 3.929031�10−2 3.929031�10−2

Er 2.171847�10−1 1.644177�10−1 1.085964�10−1 1.085964�10−1

Er1s 1.381561�10−1 8.689944�10−2 5.397266�10−2 4.917738�10−2

ET 3.553408�10−1 2.513171�10−1 1.625690�10−1 1.577737�10−1

E3
B 2.450500�10−1 1.786700�10−1 1.206840�10−1 1.185151�10−1

E2
B 2.450500�10−1 1.786700�10−1 1.174484�10−1 1.158887�10−1

�r� 9.784136 1.292418�10+1 1.815900�10+1 1.815900�10+1

�Q� 3.718054 4.078983 5.948586 5.422226

�r�Coul 7.249287�57� 7.714412�57� 13.205�57� 17.100�57�
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ing energies plotted vs 1/� are given in Fig. 1 for lr=0 to
lr=4.

Now we can reconstruct the total energy E� for arbitrary
values �, and not only for those �=Wr which enable an
analytical solution of Eq. �56�. Thus, Fig. 2 shows the energy
of the two-electron three-dimensional quantum dot as a func-
tion of t=eB /m*�0. Observe that when the azimuth quantum
number mr=0 the energy curves corresponding to various
values of lr do not cross but, for the minimum energy states,
i.e.: mr=−lr, they do cross. Since, the polar quantum number
lr conveys the spin state of the total wave function, namely,
for lr even the state must be singlet and for odd values of lr
the state must be triplet; Fig. 3 reveals that singlet-triplet and
triplet-singlet transitions take place as the external magnetic
field �B �z� increases. This behavior has recently been ob-
served experimentally for two-electron two-dimensional
quantum dots �63�. We predict that it should also be seen in
two-electron three-dimensional quantum dots.

The exact solutions given by Eq. �33� depend on nr
=0,1 ,2 , . . .. which is not exactly a quantum number but
rather a parameter which describes the order of the correla-
tion polynomial of Eq. �33�. In this sense, nr defines the
degree of interelectronic correlation. For decreasing values

of the coupling constant, we observe higher values of the
correlation parameter, denoting a more structured type of
correlation �a higher order polynomial�. A heuristic noninte-
ger parameter nr

* may be introduced assuming that for all
values of � �and not only those for which �=Wr�nr , lr�� an
equation of the type

E� = 2��nr
* + lr +

3

2
� +

�*w0

2
tmr �59�

holds. In Fig. 4 we plot nr
* vs ln �.

As mentioned above, Yannouleas and Landman �97� have
suggested a more elaborate model for a two-electron quan-
tum dot, where the electrons �described by the Hamiltonian
�16�� couple their motion to that of an infinite mass repre-
senting the quantum dot. In order to establish a connection
with Yannouleas and Landman’s XYX model, we consider
the effect on the three-body system of taking the limit when
the mass m1 goes to infinity. From Eq. �24�, using Eqs. �7�
and �22�, one can straightforwardly obtain

P =
�m1

�M123

r1 +
m2

�m1

1
�M123

r2 +
m3

�m1

1
�M123

r3, �60�
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FIG. 1. �Color online� Energy of Eq. �57� of a two-electron
three-dimensional quantum dot interpolated in a wide range values
of � for lr=0–4. Curves run in order from bottom, lr=0, to top lr

=4. �Color: lr=0 red curve, lr=1 green curve, lr=2, blue curve, lr

=3 magenta curve and, lr=4 black curve.� Inset: Detailed view for
the most sensible values of �.

1 2 3 4 5 6 7
t

0.5

1

1.5

2

E
’
(
m
r
0

=
)

FIG. 2. �Color online� Energy of a two-electron three-
dimensional quantum dot as a function of t=eB /m*�0 for mr=0
and lr=0–4. Curves run in order from bottom, lr=0, to top lr=4.
�Color: lr=0 red curve, lr=1 green curve, lr=2, blue curve, lr=3
magenta curve and, lr=4 black curve.�
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FIG. 3. �Color online� Ground states energy �mr=−lr� of a two-
electron three-dimensional quantum dot as a function of t
=eB /m*�0 for lr=0–4. Curves run in order at t=0 from bottom,
lr=0, to top lr=4. �Color: lr=0 red curve, lr=1 green curve, lr=2,
blue curve, lr=3 magenta curve and, lr=4 black curve.�
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FIG. 4. �Color online� Effective radial quantum number of a
two-electron three-dimensional quantum dot as a function of as a
function of � for lr=0–4. Curves run in order from top, lr=0, to
bottom lr=4. �Color: lr=0 red curve, lr=1 green curve, lr=2, blue
curve, lr=3 magenta curve and, lr=4 black curve.�
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Q = −
�M23

�M123

r1 +
m2

�M23

1
�M123

r2 +
m3

�M23

1
�M123

r3 �61�

and taking m1→� it is seen that

lim
m1→�

P = r1, �62�

lim
m1→�

Q = 0. �63�

Setting Q=0 in Eq. �61� and identifying m2=m3=me we ob-
tain r1= �r2+r3� /2. Thus, r1 coincides with the coordinate R
of the center-of-mass motion in Eq. �53�. Placing the center
of coordinates in the position of the infinitely massive par-
ticle m1 is, hence, equivalent to selecting the center-of-mass
coordinate as the origin. In this case, from r1=R=0, it fol-
lows that r2=−r3. In turn, this result implies that for infinite
m1 the electrons move on the opposite sides of a rotating
sphere. From this we conclude that in the infinite mass limit
motion of the electrons in a quantum dot is that of a rigid
rotator XYX, which is equivalent to a collectively rotating
Wigner molecule �98–100�.

However, when the mass m1�me is finite, the coordinate
P �which in the three-body problem considered here is pro-
portional to the center of mass� is slightly displaced from the
position r1 of the more massive particle m1. Similarly, since
the collective coordinate Q is different from zero, for any
value of Q there arises a functional dependency between the
coordinate r1 and that of the center-of-mass motion of the
electrons. Since the motion of Q is governed by an equation
of a three-dimensional harmonic oscillator �27�, it has char-
acteristic vibrations and rotations. However, from Eq. �61� it
is clear that the vibrations arise from a coupling of the mo-
tions of the coordinate of the massive particle �r1� with that
of the center of mass of the electrons. This motion, therefore,
may be described as that of a “floppy” system. Hence, the
present three-body model leads us to the same type of con-
clusions already advanced by Yannouleas and Landman �97�.
Moreover, since the value of WQ given by Eq. �28� depends
both on the relative mass M = �m2+m3� /m1 and also on the
parameter � which effectively defines the steepness of the
confining potential of the quantum dot, we may conclude
that the degree of floppiness and its effect on the spectra �97�
could be possibly controlled through variations of these pa-
rameters �101�.

Impurities have been long recognized as important ele-
ments in spherical quantum dot systems �see, for example
�102� and references therein�. Depending on their type and
location, they are able to induce symmetry breaking leading
to the formation of Wigner molecules �103�. The presence of
an impurity with mass m1 and charge Z1 converts the two-
body problem given by Eq. �51� into a proper three-body
problem. Clearly, the impurity contributes to the Hamiltonian
�51� with an additional kinetic energy term plus two other
terms arising from the Coulomb interaction between the
charged impurity and the pair of electrons. However, in the
effective mass regime, the effect of the impurity is incorpo-
rated solely via the additional Coulomb interaction �103�.

The prototypical three-body system considered in the
present work, may be regarded as a model for impurities in
quantum dots provided the Coulombic interactions in the lat-
ter are replaced by harmonic ones. In this approximation, the
results of the three-body problem obtained here are directly
applicable to the description of an impurity of mass m1
placed at the position r1 in a two-electron quantum dot. For
finite mass m1, the energy spectrum is modified according to
Eq. �49�.

VI. DISCUSSION

The following observations are in order with respect to
the Hookean model for the three-body problem that we have
considered here.

In the first place, the adoption of a Hookean type interac-
tion between the positive and negative particles is not suffi-
cient to guarantee decoupling in the case where the particles
with the same charge have different masses. Decoupling oc-
curs only when the condition relating force constants and
masses given by Eq. �13� is satisfied.

In the second place, we observe that the nr=1 values of
the quantum number determining the degree of the correla-
tion polynomial for the interaction of particles with the same
charge leads to Hookean systems with high energies and
small values for the average of the interparticle distance as
compared to the actual values for Coulomb systems. In order
to have a more realistic approximation to the latter it is nec-
essary to go to higher values of nr. For electron-positron
systems Ps−�e+e−e−� the actual value of �r�Coul=8.55 �see
Table I� is bracketed between nr=2 and nr=3. For
H−�p+e−e−�, between nr=1 and nr=2. However, for the
Hookean finite mass helium atom 4He the bracketing occurs
between nr=0 and nr=1. From the above observations we
may infer that the electrons in Ps− are more correlated than
those in H− and the latter, more so than those in 4He. More-
over, it is clear that the analytic functions obtained as dis-
crete solutions to the Hookean problem do not exactly cor-
respond to those solution that best represent the distance
�r�Coul for Coulomb systems.

In the third place, we observe that for massive particles
with the same charge, it is necessary to go to extremely high
nr values �nr=65 for H2

+ and nr=75 for HD+�. These results
are in agreement with the values found for the nuclei inter-
particle distance for the Hookean model of the diatomic mol-
ecule H2 �58�. Again, we find that it is the nature of the
correlation function between the nuclei the determining fac-
tor in their spatial localization. As observed previously, this
behavior fits the pattern of Wigner crystallization. This is
attested in the present case by noticing from Table II that the
ratio of the kinetic energy Er

K to the interparticle energy Er
goes from 0.23 for nr=1 to 0.007 for nr=65 in H2

+, for ex-
ample. The same behavior is observed for HD+ �Table II� as
well as for the muonic molecules reported in Table III, the
antiprotonic ones, in Table IV and the exotic �pionic� ones, in
Table V. However, it is clear that for muonic, antiprotonic,
and pionic systems, the suitable values for nr are consider-
ably lower than those for the electronic molecules H2

+ and
HD+. The reason, of course, stems from the fact that in the
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latter, the relation between masses is less pronounced that in
the former.

The above considerations lead us to conclude that since
for each one of these higher values of nr �i.e., nr�1� we
select the nodeless wave function �i.e., the wave function
that complies with the requirement of being a ground state�,
and since the energy corresponding to this wave function
always lies below that of the ground state for nr=1, it is clear
that we can find two excited states corresponding to the
given nr�1 that bracket the ground state energy for nr=1. In
this sense, the results for nr=1 listed in the tables may be
given in terms of interpolations between the energies of these
excited states. It follows then that the energy for the �nr=1
and nodeless� ground-state wave function for the H2

+

Hookean system lies between the energies of two excited and
node-possessing wave functions for nr=65.

Now in the case of quantum dots, application of the three-
particle Hookean model to these systems results in the fol-
lowing nontrivial observations. The first, that the exact ana-
lytic solutions including correlation obtained for the former
are directly transferable to the latter. Clearly, the availability
of exact analytic closed-form wave functions provides a very
useful tool for the direct analysis of correlation phenomena.
The second, that the inclusion of a mass m1 �attributable to
the implicit mass of the quantum dot �97�� allows for a more
complex description of electron dynamics in quantum dots in

terms of such notions as electron molecules �or collectively
rotating Wigner molecules �98–100��. As shown above, in
the limit of infinite mass m1, there arises a picture of rigidly
rotating XYX conformation �with equal distances X-Y and
Y-X�. In addition, for finite mass, one enters a dynamic re-
gime of what is usually characterized as “floppy” motion.
Hence, the present results for two-electron three-dimensional
quantum dots, offer a different and perhaps profitable per-
spective for the elucidation of this type of problem.
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