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It has been proposed recently that hyperfine depolarization of selected molecular rotational states can be
used to produce molecules with highly polarized nuclear spins, and formulas for two distinct nuclei have been
given in the limit of hierarchical approximation. Here we present the general, nonhierarchical coupling for-
malism for the derivation of the H�i�

�k��I , t� factors that govern the time dependence of the nuclear polarizations.

The described technique, especially when combined with methods that polarize the electronic angular momen-
tum, can lead to the production of highly polarized atoms from molecular photodissociation, at densities close
to that of the parent molecule. In addition, we calculate the time dependence of the H and F nuclear spin
polarizations, following the pulsed-laser preparation of the HF �v=1,J=1,m=1� state. It is shown that the
polarization of the F and H nuclear spins attain values of about 85% and 70% at time delays of about 1 �s and
4 �s, respectively. Similar results are shown for the pulsed preparation of the DF �v=0,J=1,m=1� state,
demonstrating the D atoms can also be significantly polarized.

DOI: 10.1103/PhysRevA.74.042503 PACS number�s�: 33.15.Pw, 33.20.Wr, 67.65.�z, 72.25.Fe

I. INTRODUCTION

In recent decades, control over spin and, more generally,
over quantum angular momentum has led to many techno-
logical advances, such as NMR and medical imaging �1,2�,
and has allowed the study of many spin-dependent phenom-
ena, such as nuclear, atomic, molecular, and surface scatter-
ing �3–5�. Angular momentum polarization also plays a very
important role in chemical dynamics, as the spatial direction
of the angular momentum of the different species involved in
a chemical reaction plays a fundamental role in the way the
interaction takes place �6,7�.

Methods for producing spin-polarized atoms include
Stern-Gerlach separation �8,9�, optical pumping �10�, and
spin-exchange optical pumping �11�. In addition, van Brunt
and Zare proposed a method to produce high-density polar-
ized atoms from molecular photodissociation �12�, which ex-
ploits the fact that the projection of electronic angular mo-
mentum in the parent molecule is conserved in the
projections of the angular momenta of the atomic photofrag-
ments, in the case of prompt photodissociation.

The hyperfine interaction couples the rotational angular
momentum J and the nuclear spin I of a molecule to give the
total angular momentum F. Pulsed-laser excitation of a par-
ticular rotational �JM� state of a molecule often occurs with-
out hyperfine resolution, so that the hyperfine states associ-
ated with the particular rotational state are excited
coherently. The beating that naturally results in such a situ-
ation has been studied theoretically �13� and experimentally
�14–17�, and is referred to as hyperfine depolarization, which
can be viewed, classically, as the precession of J and I about
F, and results in the time-dependent transfer of polarization
between J and I. As shown in these studies, the effect of
hyperfine depolarization is significant when the molecules
are excited in states of relatively low J �when J is approxi-

mately equal to I�, while it becomes less important when
excitation of higher J states is considered �when J is signifi-
cantly larger than I�.

A variety of experiments have been performed where the
effects of rotational polarization �either in the reactants or the
products� on various aspects of reactivity have been studied.
In some of these studies, the effects of hyperfine depolariza-
tion need to be taken into account to correct the results for
the reduction of the reactant or product polarization �18–29�.

Although hyperfine depolarization has been considered
traditionally to be a drawback for the production of polarized
molecules, the hyperfine coupling of J and I has recently
been proposed as a promising method to produce highly po-
larized nuclei in molecules �30�. The rotation of isolated
molecules is first oriented via pulsed-laser excitation with
circularly polarized light �with coherent excitation of the hy-
perfine components�, whereas the nuclear spins are initially
unpolarized. The hyperfine beating transfers polarization
from J to I. Prompt photodissociation of the molecules using
a laser pulse, carefully timed to coincide with a maximum in
the nuclear polarization, allows this polarization to be “fro-
zen in”, producing highly polarized atomic nuclei. This, in
addition to the highly polarized electronic angular momen-
tum that can arise from the photodissociation process itself
�31�, allows the production of highly polarized atoms at den-
sities close to the parent molecular density.

The time dependence of the nuclear spin polarization of
rotational state-selected molecules, with two nuclear spins,
have been reported recently, in the limit of the hierarchical
coupling approximation �30�. This approximation is appli-
cable when the coupling of the two nuclear spins to the ro-
tational angular momentum J is significantly different, so
that the polarization transfer from the molecule to one
nucleus occurs in much shorter time scales than the other. In
this paper we present the complete quantum-mechanical
treatment in the general case, when the hierarchical coupling
approximation does not apply.

In Sec. II we outline the derivation of the nonhierarchical
formulas for the hyperfine polarization factors. The proce-*Corresponding author. Email address: ptr@iesl.forth.gr
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dure is similar to the derivation of the hyperfine depolariza-
tion factor G�k��J , t� by Altkorn et al. �13�; thus, we will
emphasize the few differences that exist in the derivation of
the nuclear polarization formulas, while all the necessary in-
termediate steps are shown in the Appendix. In Sec. III we
apply these formulas to the well-studied case of HF and dis-
cuss the implications of this work to HF and other systems.

II. THEORY

An atomic or molecular gas is polarized when the angular
momentum distribution is not isotropic, i.e., the m-state
populations, of a particular state J with respect to some labo-
ratory axis, are not all equal. An angular momentum distri-
bution may be described by the �2J+1�2 density matrix ele-
ments �m�m, or equivalently, by the �2J+1�2 multipole
moments Aq

�k��J�, where k, which is limited to the integer
values 0�k�2J, is the order of the multipole moment.
These two sets of parameters are related by the expressions
�18,22�

�m�m = �
k,q

�2k + 1��J�J + 1��k/2

c�k��J	J�k�	J�
�− 1�J+q−m�

�
 J k J

− m q m�
�Aq

�k��J� �1a�

and

Aq
�k��J� =

c�k�
�Jm�J2�Jm�k/2 �

m,m�

�m�m�Jm�Jq
�k��Jm�� , �1b�

where �J 	J�k� 	J� are the reduced matrix elements of the ro-
tational angular momentum J, and represents Jq

�k� the spheri-
cal tensor operators of J �for a short introduction to the for-
malism, see Application 13 of �22��, and c�k� are
proportionality constants �18�.

Although the set of the �m�m density matrix elements and
the Aq

�k��J� parameters are equivalent, the symmetry of the
Aq

�k��J� parameters is more convenient for many applications,
in particular those that involve optical excitation, for which
the Aq

�k��J� parameters are a much more convenient basis �the
constraints of many selection rules are usually expressed
much more succinctly�. For example, the time dependence of
a molecule’s polarization, which has been polarized follow-
ing prompt preparation such as pulsed-laser excitation or as a
product of a chemical reaction or photodissociation, is char-
acterized by a time-dependent polarization factor G�k��J , t�
�13�,

Aq
�k��J,t� = G�k��J,t�Aq

�k��J,t = 0� , �2�

where

G�k��J,t� =
�J�k��t��
�J�k��0��

=
�FiF	T�k��t�	Fi�F��
�FiF	T�k��0�	Fi�F��

=
�J	J�k��t�	J�
�J	J�k��0�	J�

and

T�k��t� = I2
�0�I1

�0�J�k��t� , �3�

which has been derived with the use of the Wigner-Eckart
theorem �22�. Equation �2� shows that the value of the
Aq

�k��J , t� parameter is simply proportional to the initial value

of the parameter Aq
�k��J , t=0�, modified by the factor

G�k��J , t�, and there is no mixing of parameters of different
rank.

The explicit form of the reduced matrix elements of the
Jq

�k� tensor is obtained through the evaluation of the reduced
matrix elements of a tensor T�k�, which is a spherical tensor
of rank k constructed from the angular momentum tensor
operators in J, I1, I2 space �22�. This tensor describes the
total angular momentum of the system T�k��t�= I2

�0�I1
�0�J�k��t�,

in the �I2�I1J�FiF� coupled basis, which yields the expression
for G�k��J , t� �13�,

G�k��J,t� = �
l
�,��
F,F�

�2F + 1��2F� + 1�
�2I1 + 1��2I2 + 1�

cos� �E�,F − E��,F��t

�


� 
 �
Fi,Fi�

�− 1�Fi+Fi���2Fi + 1��2Fi� + 1�

��Fi� J I1

J Fi k
��Fi� F� I2

F Fi k
�CFi,�

�F� CFi�,��
�F��*�2

,�4�

where F is the quantum number associated with the total
angular momentum F=J+I1+I2. Fi represents an intermedi-
ate coupling quantum number associated with Fi=I1+J,
which is a good quantum number in the limit of hierarchical
coupling. In such a case the hyperfine energy levels are cal-
culated in the �F ,Fi� basis. The energies that correspond to
the general, nonhierarchical coupling are obtained by diago-
nalizing the hyperfine Hamiltonian in this basis. Thus, they
depend not on Fi but on �, a quantum number that represents
a less specific coupling, the one that diagonalizes the hyper-
fine Hamiltonian. Assigning particular values to � is not nec-
essary for the evaluation of �4�, since these indices serve
only to distinguish the eigenenergies and to connect them to
the appropriate eigenvector elements labeled here as CFi,�

F .
This notation was established by Altkorn et al. �13� in their
derivation of the expression �4�, for the rotational depolar-
ization factor. This notation is followed here as well, in our
similar derivation of the H�i�

�k��I , t� polarization factors.

The time dependence of the polarization of each nucleus
is similarly governed by a time-dependent polarization fac-
tor, H�i�

�k��I , t�, which relates the spatial distribution of the

nuclear spin, I, with the original molecular polarization of J,

Aq
�k��I,t� = H�i�

�k��I,t�Aq
�k��J,t = 0� �5�

Leaving the evaluation of the reduced matrix elements to be
discussed in the Appendix, we present here the final expres-
sion for the polarization factors for I1 and I2, respectively:
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H�1�
�k��I1,t� =

Uk�I1�
Uk�J� �

F,F�

�2F + 1��2F� + 1�
�2I2 + 1���2I1 + 1��2J + 1�

�
���

cos� �E�,F − E��,F��t

�


� �
Fi,Fi�

�− 1�2Fi���2Fi + 1��2Fi� + 1�CFi,�
�F� CFi�,��

�F��*�Fi Fi� k

F� F I2
��Fi Fi� k

I1 I1 J
�

� �
Fi�,Fi�

�− 1�Fi�+Fi���2Fi� + 1��2Fi� + 1�CFi�,�
�F�� CFi�,��

�F�* �Fi� Fi� k

F� F I2
��Fi� Fi� k

J J I1
� , �6�

and

H�2�
�k��I2,t� =

Uk�I2�
Uk�J� �

F,F�

�2F + 1��2F� + 1�
�2I1 + 1���2I2 + 1��2J + 1�

�
���

�− 1�I1+J+k+F� cos� �E�,F − E��,F��t

�


� �
Fi,Fi�

�− 1�Fi+Fi���2Fi + 1��2Fi� + 1�CFi,�
�F� CFi�,��

�F��*�Fi Fi� k

F� F I2
��Fi Fi� k

J J I1
��

Fi�

�− 1�3Fi�−FCFi�,�
�F�� CFi�,��

�F�* �F� F k

I2 I2 Fi�
� .

�7�

The subscript �i� refers to the order in which the nuclei have
been coupled. For example, H�1�

�k��I1 , t� refers to the time

dependence of the polarization of nucleus I1, for which
we have first coupled J and I1 followed by I2, whereas
H�2�

�k��I1 , t� refers also to the polarization of I1, but for which

we have first coupled J and I2 followed by I1. Of course,
H�1�

�k��I1 , t� and H�2�
�k��I1 , t� must be equal, which is not imme-

diately obvious by comparing Eqs. �6� and �7�. The Uk�J� are
equal to the reciprocals of the Vk�J� and fk�J� defined in �32�
and �33�, respectively. They are normalization constants that
rescale the Aq

�k��J , t� to the Aq
�k��I , t� for different values of I

and J, and take the values U�J�=1, and U2�J�= ��2J−1��2J
+3� / �J�J+1���1/2.

Conservation of the projection of angular momentum,

�mJ�t�� + �mI1
�t�� + �mI2

�t�� = �mJ�0�� , �8�

can be expressed as

G�1��t� +�I1�I1 + 1�
J�J + 1�

H�1�
�1��I1,t� +�I2�I2 + 1�

J�J + 1�
H�2�

�1��I2,t� = 1,

�9�

using �mJ�t�� equal to �J�J+1�A0
�1��J , t� �33�, using similar

expressions for the other projections, and Eqs. �2� and �5�.
Equation �9� is a useful check of the correct use of Eqs. �4�,
�6�, and �7�, and we use this check in the calculations plotted
below.

When the hierarchical approximation is applied, Fi is con-
sidered to be a good quantum number which coincides with
�, and thus CFi,�

�F� =�Fi,�
. In this situation, the nuclear

polarization expressions H�1�
�k��I1 , t� and H�2�

�k��I2 , t� can be sim-

plified to �see Appendix�

H�1�
�k��I1,t� =

Uk�I1�
Uk�J� �

l
Fi,Fi�
F,F�

�− 1�Fi�−Fi

�
�2F + 1��2F� + 1��2Fi + 1��2Fi� + 1�

�2I2 + 1���2I1 + 1��2J + 1�

� cos� �EFi,F
− EFi�,F��t

�
�Fi Fi� k

I1 I1 J
�

��Fi Fi� k

J J I1
��Fi Fi� k

F� F I2
�2

�10�

and

H�2�
�k��I2,t� =

Uk�I2�
Uk�J� �

F,F�
�
Fi

�− 1��I1+J+k+F�−F+Fi�

�
�2F + 1��2F� + 1��2Fi + 1�
�2I1 + 1���2I2 + 1��2J + 1�

� cos� �EFi,F
− EFi,F��t

�
�F� F k

I2 I2 Fi
�

��F� F k

Fi Fi I2
��Fi Fi k

J J I1
� , �11�

while �4� reduces to
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G�k��J,t� = �
F,F�

�
Fi,Fi�

�2F + 1��2F� + 1��2Fi + 1��2Fi� + 1�
�2I1 + 1��2I2 + 1�

� �Fi� J I1

J Fi k
�2�Fi� F� I2

F Fi k
�2

�cos� �EFi,F
− EFi�,F��t

�
 . �12�

In the simplest case where the molecule possesses one or
more indistinguishable nuclei, or only one of the nuclei has
nonzero spin �i.e., I2	0 and I1= I�, Eq. �12� is simplified and
the molecular depolarization is described by

G�k��J,t� = �
F,F�

�2F + 1��2F� + 1�
�2I + 1� �F� F k

J J I
�2

�cos� �EF − EF��t

�
 , �13�

whereas Eq. �10� is also simplified, and the nuclear polariza-
tion of I is described by

H�k��I,t� =
Uk�I�
Uk�J� �

F,F�

�− 1�F−F�

�
�2F + 1��2F� + 1�
��2I + 1��2J + 1�

cos� �EF − EF��t

�


��F� F k

J J I
��F� F k

I I J
� . �14�

III. DISCUSSION

In this section we examine the well-studied system of HF
and plot the time dependence of the polarization of J and the
H and F nuclear spins �i.e., the G�k��J , t� and H�i�

�k��I , t� fac-

tors� following the prompt preparation of the HF �v=1,J
=1,m=1� state. The computer program that has been used to
evaluate the relevant formulas uses the information available
from high-resolution spectroscopic measurements. In par-
ticular, the hyperfine Hamiltonian used, in the absence of
electromagnetic fields, is �34�

H = CF�IF · J� + CH�IH · J� + JHF�IH · IF�

+ �SHF/�2J + 3��2J − 1���3�IH · J��IF · J�

+ 3�IF · J��IH · J� − 2�IH · IF�J�J + 1�� , �15�

where the values for the hyperfine structure constants are
CF=307.637 kHz, CH=−71.128 kHz, SHF=28.675 kHz, and
JHF=0.529 kHz, for the lowest vibrational state v=0 and the
first excited rotational state J=1 �34�. The corresponding val-
ues for higher vibrational and rotational states are calculated
as

CH,F�v,J� = CH,F�v = 0,J = 0� + aH,Fv + bH,FJ�J + 1� ,

�16�

with aF=53 kHz, aH=1.99 kHz, bF=0.17 kHz, and bH
=0.036 kHz �35�. Figure 1 shows the time dependence of the

G�2��J , t� factors, which describe the depolarization of the
alignment of the HF �v=1,J=1,m=1� state. As we see, sig-
nificant disagreement between the hierarchical �Eq. �4�� and
nonhierarchical expression �Eq. �12�� appears only in very
large times, where the hierarchical approximation’s solution
appears somewhat slower. This is a natural consequence of
the hierarchical approximation, which implies that all the
polarization exchange occurs through Fi=J+I1, which for
HF is the dominant coupling, but not the only one. Of
course, the differences shown here occur on time scales not
interesting for most experimental purposes; nevertheless, it is
useful to see how the two approaches perform in a real sys-
tem.

In Fig. 2 we see the evolution of G�1��J , t� that
governs rotational orientation and the corresponding
nuclear spin orientation, calculated with the general,
nonhierarchical formulas �4�, �6�, and �7�. The products
��I1�I1+1� /J�J+1��H�1�

�k��I1 , t�, and ��I2�I2+1� /J�J+1��
�H�2�

�k��I2 , t� directly correspond to �m1� and �m2�, respec-

tively. As we see in Fig. 2, these products vary in a comple-
mentary fashion with respect to G�1��t�, so that they satisfy
conservation of the projection of angular momentum as ex-
pressed in �9�.

Figure 2 shows that the values of H�1��I1 , t� and
H�1��I2 , t� almost reach their maximum values at about 1 and
4 �s. This temporal behavior can be explained by the differ-
ent values of the hyperfine constants that couple each nuclear
spin to the molecular rotation. In the HF molecule in particu-
lar, the ratio of these constants is CF /CH�5.3 �for v=J=1�
�34�, and this situation has an approximate correspondence to
the relative frequencies of the nuclear polarization beatings.
It should be noted here that if the time-averaged polarization
of the nuclear spins is detected, instead of the maximum
nuclear polarizations that can be obtained at specific times,
the polarization obtained is going to be much smaller. For the

FIG. 1. �Color online� The molecular depolarization factor
G�2��J , t� that determines the time dependence of the rotational
alignment, as calculated from the general nonhierarchical expres-
sion of Eq. �2� �solid red line�, and from the hierarchical approxi-
mation of Eq. �8� �dashed black line�.
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situation presented in Fig. 2, the average molecular depolar-
ization and corresponding nuclear polarization will be �mJ�
=0.596, �mIF

�=0.213, and �mIH
�=0.191. The average depo-

larization and polarization values satisfy conservation of an-
gular momentum as expressed in �9�. Application of the hi-
erarchical approximation expressed in Eqs. �10�–�12� give
slightly smoother plots for the polarization factor, and as
shown in Fig. 1 fail only at very large times.

We consider now the case of the pulsed excitation of the
�v=0,J=1,m=1� state of DF, for which the hierarchical ap-
proximation can no longer be used to reasonable approxima-
tion. We use the same Hamiltonian as in Eq. �15�, except by
replacing IH, CH, and SHF by ID, CD, and SDF, and adding the
following term for the interaction of the quadrupole moment
of ID with J,

HQ = − � �eqQ�D

2ID�2ID − 1��2J − 1��2J + 3�
��3�ID · J�2 +

3

2
�ID · J� − �ID

2 J2� . �17�

The hyperfine energies are calculated by using the constants
CF=158.356 kHz, CD=−5.755 kHz, SDF=4.434 kHz, JDF
=0 �no experimental measurement is given�, and �eqQ�D

=354.238 kHz �34�, and ID=1. In Fig. 3 we show the time
evolution of the polarization of J, ID, and IF following
pulsed excitation of the �v=0,J=1,m=1� state of DF, for the
case of �a� nonhierarchical coupling, using Eq. �4�, �6�, and
�7�, and �b� the case of hierarchical coupling, using Eq.
�10�–�12�. We see that even though the same hyperfine ener-
gies have been used in both cases, the time evolution is sig-
nificantly different for the two cases, and we therefore show
that the complete nonhierarchical formalism is necessary to
describe a system such as DF. We also note that D nuclei
with �mD��0.6 can be produced by exciting the �v=0,

J=1,m=1� state of DF, and by photodissociating after about
4.5 �s.

The formalism presented here, except for proofs of the
hierarchical formulas of �30�, allows the description of a
larger variety of molecular systems. The simplest possible
situation is when the molecule possesses one nonzero
nuclear spin or possesses two or more indistinguishable nu-
clei. In such cases, for example OH, H2, or CH4, formulas
�13� and �14� apply. The approximate hierarchical formulas
apply in the case where the coupling of one nuclear spin is
much stronger than the other. All of the hydrogen halides
except HF exhibit strong quadrupole coupling for the halo-
gen nuclei so that the polarization dependence is very well
described by the hierarchical expressions of Eq. �10�–�12�.
Even in the case of HF, where IF=1/2 and does not possess
a quadrupole moment, we find that the hierarchical approxi-
mation is still quite accurate. On the other hand, the general,
nonapproximating formalism will be necessary for molecules
for which the coupling strengths of the two nuclei are similar
such as DF, and for molecules consisting of two isotopes of
the same nuclei such as 35Cl37Cl, HD, HT, etc. Those, and

FIG. 2. The time dependence of �mJHF
� �bold line�, �mIF

� �solid
line�, and �mIH

� �dotted line� as well as their summation �which is
always 1� for the prompt preparation of the HF �v=1,J=1,m=1�
rovibrational state without hyperfine resolution. Note that all three
plots always sum to unity �the initial projection of mJ�.

FIG. 3. The time dependence of �mJDF
� �bold line�, �mID

� �solid
line�, and �mIF

� �dotted line� as well as their summation �which is
always 1� for the prompt preparation of the DF �v=0,J=1,m=1�
rovibrational state without hyperfine resolution, for calculations us-
ing �a� the nonhierarchical coupling expressions of Eqs. �4�, �6�,
and �7�, and �b� the hierarchical coupling expressions of Eqs.
�10�–�12�. Note that all three plots always sum to unity.
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more examples, interesting for their potential use as a source
for polarized atoms are currently under study, and we hope to
present their properties in future work.
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APPENDIX

The time dependence of the first nuclei’s polarization is
characterized by a time-dependent polarization factor

H�1�
�k��I1,t� = 
 J�J + 1�

I1�I1 + 1��
k/2 �I1

�k��t��
�J�k��0��

= 
 J�J + 1�
I1�I1 + 1��

k/2 �FiF	X�k��t�	Fi�F��
�FiF	T�k��0�	Fi�F��

, �A1�

where X�k��t�= I2
�0�I1

�k��t�J�0� and X�k��t�=eiHt/�X�k��0�e−�iHt/��.
Following Alkorn’s notation, we will refer to S�14.66� and
FR�15.15� as the 14.66 and 15.15 expressions of Refs.
�36,37�, respectively. Applying FR�15.15� leads to

�FiF	I2
�0�I1

�k��t�J�0�	Fi�F�� = �
Fi�,Fi�

�FiF	eiHt/�	Fi�F�
�2F + 1�1/2 �Fi�F	I2

�0�I1
�k��t�J�0�	Fi�F��

�Fi�F�	e−�iHt/��	Fi�F��
�2F� + 1�1/2 , �A2�

while application of S�14.66� leads to

�FiF	I2
�0�I1

�k��t�J�0�	Fi�F�� = �I2	I2
�0�	I2��I1	I1

�k�	I1��J	J�0�	J� �
Fi�,Fi�

��2F + 1��2F� + 1��2Fi� + 1��2Fi� + 1��2k + 1�

�
�FiF	eiHt/�	Fi�F�

�2F + 1�1/2 � I1 I1 k

J J 0

Fi� Fi� k
�� I2 I2 0

Fi� Fi� k

F F� k
� �Fi�F�	e–�iHt/��	Fi�F��

�2F� + 1�1/2 . �A3�

The reduced matrix element �FiF 	T�k��0� 	Fi�F�� can be evaluated by application of S�14.66�,

�FiF	I2
�0�I1

�0�J�k�	Fi�F�� = ��2F + 1��2F� + 1��2Fi� + 1��2Fi + 1��2k + 1��I2	I2
�0�	I2��I1	I1

�0�	I1��J	J�k��0�	J�� I1 I1 0

J J k

Fi Fi� k
�� I2 I2 0

Fi Fi� k

F F� k
�.

�A4�

Thus, the ratio of the reduced matrix elements in �A1� equals

�FiF	I2
�0�I1

�k��t�J�0�	Fi�F��

�FiF	I2
�0�I1

�0�J�k��0�	Fi�F��
=

�I1	I1
�k�	I1��J	J�0�	J�

�J	J�k��0�	J��I1	I1
�0�	I1�

�
Fi�,Fi�

��2F + 1��2F� + 1��2Fi� + 1��2Fi� + 1��2k + 1�

�

�
�,�

CFi�
�F� CFi���

�F�* CFi��

�F�� CFi���
�F��* cos�E�,F − E��,F�

�
t� I1 I1 k

J J 0

Fi� Fi� k
�� I2 I2 0

Fi� Fi� k

F F� k
�

��2F + 1��2F� + 1��2Fi + 1��2Fi� + 1��2k + 1�� I1 I1 0

J J k

Fi Fi� k
�� I2 I2 0

Fi Fi� k

F F� k
�

. �A5�

We multiply both the numerator and the denominator of this ratio with

� I1 I1 0

J J k

Fi Fi� k
�� I2 I2 0

Fi Fi� k

F F� k
���2F + 1��2F� + 1��2Fi + 1��2Fi� + 1��2k + 1� , �A6�

and we sum over Fi ,F ,Fi� ,F� to obtain the orthonormality relation of the 9-j symbols. After rearranging the terms we obtain
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�FiF	I2
�0�I1

�k��t�J�0�	Fi�F��
�FiF	I2

�0�I1
�0�J�k��0�	Fi�F��

=
�I1	I1

�k�	I1��J	J�0�	J�
�J	J�k��0�	J��I1	I1

�0�	I1� �
F,F�

�2F + 1��2F� + 1��2k + 1�2 �
�,��

cos�E�,F − E��,F�

�
t

� �
Fi,Fi�

CFi,�
�F� CFi�,��

�F��*��2Fi + 1��2Fi� + 1�� I1 I1 k

J J 0

Fi Fi� k
�� I2 I2 0

Fi Fi� k

F F� k
�

� �
Fi�,Fi�

CFi�,�
�F�* CFi�,��

�F�� ��2Fi� + 1��2Fi� + 1�� I1 I1 0

J J k

Fi� Fi� k
�� I2 I2 0

Fi� Fi� k

F F� k
� , �A7�

and thus,

Aq
k�I1,t�

Aq
k�J,0�

= 
 J�J + 1�
I1�I1 + 1��

k/2 �I1	I1
�k�	I1��J	J�0�	J�

�J	J�k��0�	J��I1	I1
�0�	I1� �

F,F�

�2F + 1��2F� + 1��2k + 1�2

� �
�,��

cos�E�,F − E��,F�

�
t �

Fi,Fi�

CFi,�
�F� CFi�,��

�F��*��2Fi + 1��2Fi� + 1�� I1 I1 k

J J 0

Fi Fi� k
�� I2 I2 0

Fi Fi� k

F F� k
�

� �
Fi�,Fi�

CFi�,�
�F�* CFi�,��

�F�� ��2Fi� + 1��2Fi� + 1�� I1 I1 0

J J k

Fi� Fi� k
�� I2 I2 0

Fi� Fi� k

F F� k
� . �A8�

Reducing the 9-j symbols to the corresponding 6-j symbols, and using Eq. �5�, we obtain Eq. �6�, where the leading constants
have been collected into the ratio Uk�I1� /Uk�J�. Applying the conditions for hierarchical coupling �CFi,�

�F� =�Fi,�
� gives the

hierarchical coupling description, Eq. �10�, for H�1�
�k��I1 , t�.

In a similar manner, we obtain the following expression for the time dependence of the polarization of nucleus I2:

Aq
k�I2,t�

Aq
k�J,0�

= 
 J�J + 1�
I2�I2 + 1��

k/2 �I2	I2
�k�	I2��J	J�0�	J�

�J	J�k��0�	J��I2	I2
�0�	I2� �

F,F�

�2F + 1��2F� + 1��2k + 1�3/2

� �
�,��

cos�E�,F − E��,F�

�
t �

Fi,Fi�

CFi�
�F� CFi�a�

�F��*��2Fi + 1��2Fi� + 1�� I1 I1 0

J J 0

Fi Fi� 0
�� I2 I2 k

Fi Fi� 0

F F� k
�

� �
Fi�,Fi�

CFi�,�
�F�* CFi�,��

�F�� ��2Fi� + 1��2Fi� + 1�� I1 I1 0

J J k

Fi� Fi� k
�� I2 I2 0

Fi� Fi� k

F F� k
� . �A9�

Reducing the 9-j symbols with a vanishing element to 6-j symbols �e.g., using Eq. 4.25 in �22�� gives, in the general case,
Eq. �7�, whereas applying the conditions for hierarchical coupling �CFi,�

�F� =�Fi,�
� first and then reducing the 9-j symbols gives

the hierarchical coupling description of Eq. �11�.
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