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Security proof of a three-state quantum-key-distribution protocol without rotational symmetry
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Standard security proofs of quantum-key-distribution (QKD) protocols often rely on symmetry arguments.
In this paper, we prove the security of a three-state protocol that does not possess rotational symmetry. The
three-state QKD protocol we consider involves three qubit states, where the first two states |0,) and |1,) can
contribute to key generation, and the third state |+)=(|0,)+|1,))/ \2 is for channel estimation. This protocol has
been proposed and implemented experimentally in some frequency-based QKD systems where the three states
can be prepared easily. Thus, by founding on the security of this three-state protocol, we prove that these QKD
schemes are, in fact, unconditionally secure against any attacks allowed by quantum mechanics. The main task
in our proof is to upper bound the phase error rate of the qubits given the bit error rates observed. Uncondi-
tional security can then be proved not only for the ideal case of a single-photon source and perfect detectors,
but also for the realistic case of a phase-randomized weak coherent light source and imperfect threshold
detectors. Our result in the phase error rate upper bound is independent of the loss in the channel. Also, we
compare the three-state protocol with the Bennett-Brassard 1984 (BB84) protocol. For the single-photon source
case, our result proves that the BB84 protocol strictly tolerates a higher quantum bit error rate than the
three-state protocol, while for the coherent-source case, the BB84 protocol achieves a higher key generation

rate and secure distance than the three-state protocol when a decoy-state method is used.
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I. INTRODUCTION

Quantum key distribution (QKD) [1,2] allows two distant
parties to expand a previously shared secret key by sending
quantum states through a quantum channel. The most well-
known QKD protocol is the Bennett-Brassard 1984 (BB84)
protocol [1], which has been proved unconditionally secure
against any attacks allowed by quantum mechanics [3-11].
Standard security proofs of many QKD protocols, including
the BB84 protocol, the Scarani-Acin-Ribordy-Gisin 2004
(SARG04) protocol [12-15], the symmetric three-state pro-
tocol [16,17], and the generalized rotationally symmetric
protocol [18,19], often rely on rotational symmetries. In this
paper, we prove the security of a QKD protocol that does not
possess rotational symmetry. The protocol involves Alice
sending one of the three qubit states {|0.),|1,),(|0,)
+|1z>)/\5} to Bob, where the first two states are for key
generation and the third state is for channel estimation. Note
that this protocol is similar to the BB84 protocol in that they
share the same three qubit states. In fact, in practical imple-
mentations of the BB84 protocol, when one of the four laser
sources is out of operation (due to, for example, malfunction-
ing), the QKD scheme implemented becomes the three-state
protocol that we consider in this paper. The security proof of
the three-state protocol analyzed in this paper then assures us
that even the handicapped BB84 protocol can still be secure
in these situations [20]. This three-state protocol has also
been proposed and implemented in some frequency-based
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QKD systems [21-23]." In these frequency-based systems,
the state |0,) (|1,)) is represented by a pulse in frequency wy
(wy), while the state (|0,)+|1,))/2 is represented by a pulse
in a superposition of the two frequencies. In these systems, it
is relatively easy to generate the three states and thus the
three-state protocol is well suited for these systems. In order
to understand the security of these systems, a rigorous secu-
rity analysis of the three-state protocol is in order and it is
the purpose of this paper to provide such an analysis. We
note that a similar protocol has been proposed and imple-
mented in some time-bin-based QKD systems [24-28]. In
one time-bin-based scheme [28], each signal is associated
with two time positions and there are three different signals.
A logic 0 (1) is represented by a light pulse in the first (sec-
ond) position and no pulse in the other position, while a
decoy signal is represented by a superposition of a pulse in
the first position and a pulse in the second position. The
channel is estimated by checking the coherence between two
consecutive nonempty pulses appearing within or across the
bit separations. This gives rise to the difference between this
protocol and the one we consider in this paper. If only the
coherence within the bit separations was checked, then it is
equivalent to our protocol. Thus, the analysis in the paper
does not directly apply to this particular time-bin-based
scheme. On the other hand, the result of this paper suggests
that even if only the coherence within the bit separations is
checked, unconditional security can still be established, thus
making it unnecessary to check for the across-the-bit coher-

'Note that some of these systems actually prepare the state |0,)
+|1z) instead, which has a different normalization (without the fac-
tor of \2) than the one we consider. These QKD systems are not
qubit based, and thus our security proof is not directly applicable to
them.
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ence for the sake of achieving unconditional security. This
means that a secure time-bin-based scheme can be built by
implementing the three-state protocol analyzed in this paper,
where the channel-estimation state is realized by checking
the within-the-bit coherence.

In this paper, we prove the unconditional security of the
three-state protocol not only for the case of a single-photon
source, but also for the case of a phase-randomized weak
coherent-state source. Essentially, the reason that the proto-
col is secure is because the information gain by an eaves-
dropper implies disturbance in the signals received by a le-
gitimate receiver. Here, our main task is to make this
argument rigorous and quantitative. To do this, we upper
bound the phase error rate of the key-generating qubits using
the bit error rates of the key-generating qubits and the
channel-estimation qubits [cf. Eq. (26)] with the assumption
that a single-photon source is used. Once the phase error rate
is estimated, we may establish the security of the protocol by
applying Shor and Preskill’s argument [6] when a single-
photon source is used and by applying the result of
Gottesman-Lo-Liitkenhaus-Preskill (GLLP) [8] and the
decoy-state method [29-38] when a coherent light source is
used. We remark that our result on the phase error rate upper
bound is independent of the loss in the channel, similar to the
BB84 protocol.

The paper is organized as follows: We first describe the
three-state protocol in Sec. II. In Sec. III, we upper-bound
the phase error rate of the key-generating qubits. This upper
bound can then be used to compute the key generation rate
for both the ideal case and the realistic case in Sec. IV. We
finally conclude in Sec. V.

II. THE PROTOCOL

In this section, we outline the three-state protocol in
prepare-and-measure version which is how it can be imple-
mented in reality without a quantum computer and in an
entanglement-distillation-protocol- (EDP-) based version
which is equivalent to the prepare-and-measure form and is
used mainly for proving the security. In the following, we
assume that Alice and Bob are equipped with a perfect
single-photon source and perfect detectors. Also, only the
qubits detected by Bob are considered, and thus the security
proof of this protocol is loss independent.

We use the following notations: the eigenstates in the Z
basis are |0,) and |1.), whereas the eigenstates in the X basis
are |+)2(10.)+]1)/12 and |-) 2 (0~ 1))/12.

A. Prepare-and-measure version

We outline the protocol as follows.

(i) Alice chooses a random 8N(1+ §)-bit string a, where
0>0 is a small parameter. For each bit i, if a;=0, she trans-
mits a state randomly chosen in the |0,), |1,) basis; if a;=1,
she transmits |+).

(ii) Bob receives the 8N(1+ ) qubits and using a random
[8N(1+ ) ]-bit string b measures each qubit in the Z basis (if
b;=0) or the X basis (if b;=1).

(iii) Alice announces a and Bob announces b.
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(iv) They discard any results where a;# b;. With high
probability, there are at least 4N bits left and 2N of them
belong to each basis. Alice decides N bits in the Z basis as
the check bits and the remaining N bits in the Z basis as the
data bits.

(v) Alice and Bob announce the values of the N check bits
in the Z basis and the 2N check bits in the X basis. They
compute the quantum bit error rates for the two sets sepa-
rately. We denote the two quantum bit error rate (QBER)
values by e, and «, respectively.

(vi) They choose an error correcting code capable of cor-
recting errors at a bit error rate of e;,. Alice computes the bit
error syndrome of her data bits using this code and transmits
the syndrome to Bob. Bob corrects the errors in his data bits.

(vii) They estimate the phase error rate e, of the data bits
from e, and a and choose a binary block code capable of
correcting errors at a rate of e,. They apply the generator
matrix of the code to their data bits, producing the final se-
cret key.

We remark that the data bits consist of only the key-
generating qubits {|0,),|1,)}, while the check bits consist of
all qubits {|0,),|1,),|+)} of which the first two are also used
for the key generation and the third is only for channel esti-
mation. The task is to estimate the phase error rate e, of the
data bits from the bit error rates e, and « of the check bits.
Also note that this three-state protocol is very similar to the
BB84 protocol. The only difference is that the |—) state in
BB84 is not used in this protocol.

B. EDP-based version

Now we describe the equivalent EDP-based QKD proto-
col. During the quantum state transmission phase, Alice
sends Bob 4N quantum signals through a channel controlled
by an eavesdropper Eve. Specifically, for the /th signal, Alice
prepares the state

1 1 1
[W)ap=T=100k| =1041005 + =[104105
V2 \2 V2

1
+ =Dl +)al + )5 (1)
V2

and sends system B to Bob through Eve while keeping sys-
tem A to herself. In the most general attack by Eve, she
interacts the 4N signals sent by Alice and some ancilla with
an unitary operation. An output qubit from the unitary opera-
tion is then sent to Bob for the /th transmission. We assume
that Bob always uses the same basis as Alice for each qubit
pair, since the qubit pairs where Alice and Bob measure with
different bases are discarded. Specifically, for the 2N check
qubit pairs in the |1)x part, Bob measures in the {|+),|—)}
basis, and since Alice always sends the |+) state to Bob, he
declares an error (no error) if the measurement outcome is
|=) (|+)). This allows him to compute the QBER for this
part, which we denote by «. For the 2N qubit pairs in the
|0)¢ part, Alice and Bob randomly choose N of them as
check qubit pairs and compare their values publicly. They
both perform Z basis measurements on them and announce
their measurement outcomes in order to compute the QBER
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for these N qubit pairs, which we denote by e,. An error
correcting code capable of correcting errors up to a bit error
rate of e, can be used by Alice and Bob to remove errors in
the remaining N data qubit pairs, which are then privacy
amplified to produce the final key. Since the amount of pri-
vacy amplification needed to eliminate Eve’s information on
the final key is indicated by the phase error rate of the data
qubit pairs (denoted by e,), Alice and Bob need to upper
bound this quantity from what they observed, ¢, and «a. In
what follows, we solve this problem of upper bounding e,
given fixed values of ¢, and a. Once e, is obtained, the key
generation rate can easily be computed using e, and e,

II1. UPPER-BOUNDING THE PHASE ERROR
RATE

In this section, we solve the main problem of upper-
bounding the phase error rate in the data qubit pairs, using
the bit error rates observed in the check qubit pairs. The
values e, and « are actually observed in the check qubit
pairs, not in the data qubit pairs. On the other hand, we are
interested in the bit error rates of the data qubit pairs, not the
check qubit pairs. In order to relate e, and « to the data qubit
pairs, we apply a random sampling argument to infer that
what is observed in the check qubit pairs is very close to
what could be observed in the data qubit pairs. Specifically,
the random sampling argument can be stated as follows

Lemma 1 [random sampling test (see, for example, [39])].
Given 2N bits, they are randomly divided into two sets, each
containing N bits. Then,

Pr{c; < 8N and ¢, > (6+ €)N} < exp[- O(€N)], (2)

where ¢; and ¢, are the number of ones in the two sets, &
=<1 is some fraction representing the number of ones, and
€>0 is a small parameter.

Therefore, with high probability, the bit error rates of e,
and a could be observed in the data qubit pairs. Note that the
use of classical probability argument is valid here, since

the events contributing to e, e, and « are outcomes of a

projection measurement projecting onto the states
{100kl & vyii,j,i',j'=0,1}. Here, |¢;;) are the Bell
states:

) = %(|0i>z+ (= 1Y[12),). 3)
V2

In what follows, because of this random sampling argument,
we assume that the QBER’s ¢;, and « are also observed in the
N data qubit pairs. Now the model becomes Alice sending N
data qubits to Bob through Eve who may perform on them
any joint operation that are consistent with e, and «a. Since
we only consider the data qubit pairs, we index them from
[=1 to [=N for simplicity. Eve’s operation on the /th data
qubit pair can conveniently be represented in the Kraus (or
operator sum) form EV(p)==EpEW)T, where the set of
operator {E"/): V f} defines the mapping for the /th data qu-
bit pair and all the other data qubit pairs have been traced
over. Recall that the our main problem is to upper bound e,

over all Eve’s operations 5(1)() that are consistent with the
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observed values of ¢, and «. Essentially, there are two con-
straints in our optimization problem: one associated with e,
and the other with . We first consider the constraint with «
by computing the correct and incorrect probabilities associ-
ated with each data qubit pair if a measurement in the |1)x
basis were to be performed. In this basis, there are only two
outcomes: either that Alice sends |+) and Bob receives |+)
(no bit error) or that Alice sends |+) and Bob receives |—) (a
bit error). The corresponding probabilities are

p'? 2 pr{error at position [}

= gas(l+ = [EQ(PXY)[L + = gap, (4)

pﬂ = Pr{no error at position [}

= gapll + + |5(l)(|\1’><‘1’|)|1 + + kg (5)

[The notation used is that +— (++) in the subscript means
that Alice sends |+) and Bob measures |—) (|+)).] To con-
struct the first constraint, we need to relate these two prob-
abilities for the data bits to a. Note that they are not related
in a straightforward manner, since « is the observed bit error
rate in the data qubit pairs (inferred from that of the check
qubit pairs using the random sampling argument) while we
only have probabilities of each data qubit pair on hand. In
this situation, we utilize Azuma’s inequality [40] to establish
the relation, as used similarly in [14,15,17]. To proceed, we
obtain Eve’s operation on the /th qubit pair, £/(-), by tracing
over the previously measured qubit pairs conditional on their
measurement outcomes and unconditionally tracing over the
qubit pairs to be measured later. This means that the two
probabilities in Egs. (4) and (5) are now conditional prob-
abilities, conditional on the measurement outcomes of the
previously measured qubits. Considering each event sepa-
rately, Azuma’s inequality asserts that the sum of the error
(no error) probabilities over all qubits is close to the ob-
served counts of the error (no error) events. Mathematically,
it means that

N
!
Cox— 2 pii
=1

Pr| | — | =¢€|<2exp

NeX2
, 6
N ©

where c,_[c,,] is the observed counts of the error [no error]
events, pi’l [pili] is the error [no error] probability for the Ith
qubit pairs given by Eq. (4) [Eq. (5)], and €>0 is a small
quantity. Note that this probability drops exponentially as N
increases. Now, since a=c,_/(c,_+c,,) by definition, it is

easy to relate pﬂ to a as N goes to infinity as follows:

E P

PR B (7)
>0+ p)
=1

—)} basis is
performed on the data qubit pairs (only measurements in the
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measurement outcomes of the earlier qubit pairs to explicitly
form £Y(-). Nevertheless, Eq. (7) holds for any measurement
outcomes, and there is no need to know what these outcomes
are. Note that as an alternative to Azuma’s inequality, the
quantum de Finetti theorems [41-44] may be used to argue
that the entanglement between a subset of the randomly per-
muted qubit pairs vanishes, establishing Eq. (7) also. In this
case, a sublinear number of qubit pairs have to be discarded.

By the same token, the second constraint of our optimi-
zation problem associated with e, can be constructed in a
similar way. In this case, there are four possibilities associ-
ated with the data qubit pairs: no error, a bit error, a phase
error, and both types of errors. Thus, they give rise to the
following four probabilities:

qils) £ K<O|AB<¢N‘|5(Z)(|\I,><\I}|)|¢r.Y>AB|O>K’

r,s=0,1, (8)

where |¢,,) are the Bell states defined in Eq. (3). Applying
Azuma’s inequality gives

N

2 qi+ai]
=1
ep= , 9

N

! 1 1 1
2 460+ dio+ail +abi
I=1

N
> qoi +4i)
=1

e,= . (10)

P= N
[ 1 )
> i +aiy+at)

=1

!
+ 4y

Therefore, our optimization problem becomes maximizing e,
given in Eq. (10) over Eve’s operations £/(-) subject to Eqs.
(7) and (9). To simplify the problem, by using the parametri-
zation EU/ )=ay’f T +a§§’f X+ a(;’f ly +ag’f )Z and explicitly
evaluating pili and qils), we rewrite the maximization problem
as follows:

S P + o P
Lf

p =
S P+ P+ o+ o
Lf

maximize e >

(11)

S o+ |af
Lf

subject to e, = ,
S af P + P + o + P
Lf

(12)
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2 liay - ay?
Ly

a= ’
2 |ia(;’f) _ a(Zl,f)|2 " |a§[’f) + ag,ﬂ|2
Lf

(13)

where the maximization is over all a(l‘f), B=1,X,Y,Z. Note
that the summation over all the qubit pairs / in this problem
signifies that Eve’s attack is a joint attack. However, the
following theorem says that a collective attack by Eve is as
powerful as a joint attack in the sense of causing the same bit
and phase error rates {eb,a,ep}. Furthermore, Eve’s collec-
tive attack only needs to consist of one Kraus operator. This
theorem essentially eliminates the need to consider joint at-
tacks in upper bounding the phase error rate.

Theorem 1 (reduction from a joint attack to a collective
attack). For the three-state protocol, any values of the bit and
phase error rates {e,,a,e,} achievable by any joint attack
consisting of any number of Kraus operators are also achiev-
able by a collective attack consisting of only one Kraus op-
erator.

Proof. The idea is that any two sets {aﬁ
;1 S ),Cl;é »f),a;l S

Lf) a(l,f)
X

and {a ,ag”f ,)} can be combined into one
set without changing the values of ¢,, @, and e, (see the
Appendix). Repeated applications of this idea can reduce any
number of sets into one set. This means that whatever values
of {e,,a,e,} achievable by any number of sets are also
achievable by just one set. |

The consequence of this theorem is that it is sufficient to
consider (I,f) taking on only one value (i.e., dropping the
summations over / and f) in the maximization problem in Eq.
(11) without loss of generality. This is an important conse-
quence since the original maximization problem in Eq. (11)
involves infinitely many optimization variables (a%’f ) VI, )
and the new maximization problem involves only four opti-
mization variables (a;,ay,ay,ay). This is a significant sim-
plification in the problem. Note that the reduction from joint
attacks to collective attacks was first discussed in Ref. [45].
The idea was also implicitly used in Ref. [10]. Similar re-
duction results with explicit proofs were also obtained in an
information-theoretic security proof [46] and can also be de-
duced from the quantum de Finetti theorems [41-44]. These
two techniques are different from ours. In particular, the dif-
ference between the techniques involving the quantum de
Finetti theorems and ours is that the former requires discard-
ing a sublinear number of qubits and ours does not require
any discarding. This difference may have practical implica-
tions when the number of qubits is finite. Even though the
number of discarded qubits in the de Finetti approximation is
insignificant in the asymptotic case, it may be significant in
the finite situation. The difference between the information-
theoretic security proof and ours is that in the former, a col-
lective attack is equal to a joint attack in the sense that the
smooth Rényi entropies of the states in the two attacks are
roughly equal, and in our proof, the two attacks are equal in
the sense that they both cause exactly the same bit and phase
error rates. Also, we further show that it is sufficient to con-
sider a collective attack consisting of only one Kraus opera-
tor as opposed to infinitely many Kraus operators.

@H (0
ayay”}
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A. Exact upper bound

In order to simplify the maximization problem in Eq. (11),
we first write it as

max  (lag] +|ay|?e,, (14)
subject to |ay|* +|ay|* =1, (15)
l1-e
2 =g+ |agl?, (16)
€p
1- ar+ ayl?
a: |.1 x|2’ (17)
o liay - ag

where the first constraint is introduced to fix the scaling of
ag’s and the second and third constraints are rearrangements
of Egs. (12) and (13). To simplify the problem further, we
note that in order to maximize the objective, the third con-
straint should be taken so that a; and ay are in phase with
each other and iay and a, are in phase with each other. This
results in the following problem:

max  (lag]* +|ay|?e,, (18)

subject to  |ay|* +|ay[*=1, (19)
A 1 - € ) P

ey = =|a)|* +|az|*, (20)

L—a la/* +|ay)’+2|aj|ay]

A

o=

(21)

a |a1/|2 + |‘lz|2 —2|ay|laz|”

by three constraints, we can eliminate two of them—namely,
a; and ay—to get one single constraint describing the fea-

and (20) into Eq. (21):
N
b= laz®) + (1=lay?) + 241 - ay Ve, = |az = é(ay|?
+laz|* - 2layllaz]). (22)

Squaring both sides gives a quartic equation, which admits
four solutions for |a,| in terms of |ay|. However, there are
only two valid solutions in the region ¢,<1/2 and a<1/2:

|aY|2)

|az| =

+ \/— 1+ eAb(l +a) - |ay|2(5é— 1) = 2]ay|Na(1 - |aY|2)],

epa<1/2, (23)

where the signs are (——+) and (++ —). Since |a| is part of
the objective function of the problem in Eq. (18), we want to
use of the solution of |a,| that is the largest. Therefore, we
use the solution of |a,| with signs (++—) and the problem
becomes
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max  (laz® + |ay[*)ey, (24)

ay|<1
where |a,| substituted from Eq. (23) with signs (++ —). This
problem can be solved numerically for some fixed ¢, and «
to obtain an upper bound on e, (which is the objective value
of the problem). Note that Eve can always construct an at-
tack with e,=1/2 that is as powerful as any arbitrary attack
with an arbitrary e,<1 [47]. She can construct this new
attack by launching half of the time the arbitrary attack and
the other half of the time the arbitrary attack with a phase flip
operation. In this way, the phase error rate of this new attack
is 1/2.

B. Limiting cases

We need to deal with the cases that ¢,=0, =0, or both
separately. For the case that ¢,=0 and o> 0, we see from Eq.
(12) that ay=ay=0 and thus e,=a. For the case that e,>0
and @=0, we see from Eq. (13) that ay=iay and thus e,
<2e,. For the case that ¢,=0 and a=0, we have ay=ay
=az=0 and thus e¢,=0. Note that the last case is consistent
with the idea that information gain implies disturbance.
Since there is no disturbance in that case, no information is

gained by Eve and thus e,=0.

C. Closed-form approximate upper bound

It may be difficult to solve the problem in Eq. (24) ana-
Iytically. Thus, in order to obtain an analytical upper bound
on e, instead of using the exact value for |a,| from Eq. (23),
we use an upper bound of |a,| which is given by

la(1 =|ayP) + V=1 +e,(1 +a)].

(25)

We use this upper bound for |a | in the problem
max|ay|gl(|az|2+ 1)e,. Since the objective value of this prob-
lem is larger than or equal to the objective value of the origi-
nal problem in Eq. (24), the solution of this problem is defi-
nitely an upper bound (but may not be tight) on e,. The
solution to the approximate upper bound is

i

2
— I—e,
:|:l+<\’l—a/+a —1+_) :|eb
epa

=a+e,(2-2a-d%)

+2Va(l — a)e,(1 —ey,—e,a), epa<1/2. (26)

Note that the three special cases in Sec. III B can be obtained
by taking the corresponding limit in Eq. (26). In order to
illustrate how good the approximate upper bound in Eq. (26)
is compared to the optimal one obtained by solving the prob-
lem in Eq. (24) numerically, we plot in Fig. 1 the two bounds
on ¢, over different values of e, assuming e,=a. It can be
seen that the approximate bound is very close to the optimal
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FIG. 1. Comparison of the approximate upper bounds on e, in
Eqgs. (26) and (28) with the optimal one obtained by solving the
problem in Eq. (24), assuming ¢,=a. The solid, dashed, and dotted
curves (from bottom to top) correspond to the optimal bound [Eq.
(24)], the general approximate bound [Eq. (26)], and the specific

approximate bound [Eq. (28)].

one, especially for small ¢,. Note that one may obtain an-
other simple bound on e, from Eq. (26) as

ep

This bound is close to the bound in Eq. (26) when both ¢,
and « are small.

< a+2e,+2\e,a. (27)

D. Special case: ¢,=a

For the special case e,=«, a linear relation between e,
and the approximate e, can be derived easily. Substituting
a=e¢, in Eq. (27), we get

e, < 5ey,. (28)

This linear relation, which can readily be observed in Fig. 1,
is in sharp contrast to the e,=e¢, relation for the BB84 pro-
tocol; specifically, there is a factor of 5 increase (approxi-
mately) in the relation for this three-state protocol.

IV. KEY GENERATION RATE

In the previous section, we derived two upper bounds on
the phase error rate for the three-state protocol; an optimal
one is given by the solution of the problem in Eq. (24) and
an approximate one is given by Eq. (26). Using the phase
error rate upper bounds, the key generation rate can be
readily obtained both for the single-photon source case and
for the coherent-source case. Obviously, when comparing the
performance of the three-state protocol and the BB84 proto-
col, the three-state protocol can only perform as good as, but
no better than, the BB84 protocol, since one state is absent in
the three-state protocol. Indeed, as we show in the following,
the BB84 protocol is superior to the three-state protocol in
the tolerable QBER, the key generation rate, and the maxi-
mal secure distance.

A. Single-photon source and perfect detectors

When a single-photon source and perfect detectors are
used, the key generation rate on the sifted key using local
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FIG. 2. (Color online) QBER bounds of the three-state protocol
and the efficient BB84 protocol. For the three-state protocol, the
region below the solid curve is secure with 1-LOCC and the region
above the dashed curve is insecure with 2-LOCC. The solid curve is
computed using the approximate phase error rate upper bound in
Eq. (26), while the dashed curve is computed using a method based
on intercept-and-resend attacks [48]. For the three-state protocol,
the QBER lower bound for the Z-basis states (the x intercept) is
0.075 and the QBER lower bound for the |+) state (the y intercept)
is 1/2. The 2-LOCC lower bound for the efficient BB84 protocol
(dotted curve) is reproduced from Ref. [49] with a higher precision.

operations and one-way classical communications (1-LOCC)
can be obtained by applying Shor-Preskill’s argument [6]:

R=1- HZ(eb) - HZ(ep)9 (29)

where e, is either the approximate upper bound in Eq. (26)
or the solution of the problem in Eq. (24), and H,(x)
=—xlog,(x)—(1-x)log,(1-x) is the binary entropy function.
Figure 2 shows the secure region using this key generation
rate with the approximate upper bound in Eq. (26). The curve
is found by searching for (e, @) such that the key rate in Eq.
(29) is zero. The highest tolerable QBER of the data bits is
¢;,=0.075 when a=0; whereas the highest tolerable QBER of
the check bits is a=1/2 when ¢,=0. Also shown in the fig-
ure are the upper bound for the protocol with local opera-
tions and two-way classical communications (2-LOCC),
computed using a method based on intercept-and-resend at-
tacks proposed by us [48], and the lower bound for the effi-
cient BB84 protocol [50] with 2-LOCC. The latter is repro-
duced from Ref. [49] (the “Gottesman-Lo” curve in Fig. 2 of
Ref. [49]) with a higher precision. We can compare the three-
state protocol with the efficient BB84 protocol regarding the
tolerable bit error rates. It can be seen that the lower bound
curve for the efficient BB84 protocol is above the upper
bound curve for the three-state protocol. Thus, the efficient
BB84 protocol can tolerate higher bit error rates than the
three-state protocol.

We consider the special case e,=c«, which corresponds to
a 45° line in Fig. 2. In this case, we may obtain the tolerable
e;, of the three-state protocol from the figure or by substitut-
ing the approximate relation given in Eq. (28) into the key-
generation-rate formula given in Eq. (29). Using the latter
method, we obtain a lower bound of e,=0.0425, which is
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substantially lower than the one-way lower bound of BB84
(e,=0.110 [6]). The two-way lower bound of BB84 corre-
sponds to the point where e, =« on the efficient BB84 curve
in Fig. 2 and is equal to 19.9%. This is higher than the
two-way upper bound of the three-state protocol at e,=«
=14.6%. Thus, the BB84 protocol strictly tolerates a higher
QBER than the three-state protocol does.

B. Coherent source and imperfect threshold detectors

In the previous section, we derived the upper bounds on
the phase error rate of the three-state protocol with the as-
sumption of a single-photon source. Nevertheless, we can
easily establish security when a phase-randomized weak co-
herent light source and imperfect threshold detectors are used
by applying the decoy-state method [29-38]. In essence, the
bit error rates of the single-photon emissions, e, and «, can
be upper bounded by the decoy-state method. The phase er-
ror rate of the single-photon emissions, e, can then be upper
bounded either by using the approximate bound in Eq. (26)
or by solving the problem in Eq. (24). We can further utilize
the result of Ref. [8], which proves the security of BB84 with
an imperfect source, to find the key generation rate of the
three-state protocol on the sifted key to be

R<-Q,f(E)H,(E,) + Q\[1-Hy(e,)], (30)

where the subscript p denotes the mean photon number for
the signal states, O, is the gain2 of the signal states, E,, is the
QBER of the signal states, O and e, are the gains and the
phase error rates of the single-photon states, f(x) is the error
correction efficiency as a function of error rate, and H,(x) is
the binary entropy function.

Figure 3 compares the performance of the three-state pro-
tocol and the BB84 protocol by using the decoy-state method
of Ref. [30]. The simulation parameters used are from the
Gobby-Yuan-Shields (GYS) experiment [51], and we have
used f(E,)=1.22. Here, the phase error rate of the single-
photon emissions, e, is upper bounded by solving the prob-
lem in Eq. (24). As shown in Fig. 3, the BB84 protocol is
better than the three-state protocol in both the key generation
rate and the maximal secure distance. Also, the slopes of
both curves can be observed to be approximately the same at
short and medium distances. The difference in the key gen-
eration rates for the BB84 protocol and the three-state pro-
tocol can be determined from Eq. (30). Note that for the
BB84 protocol, e,=ey, while for the three-state protocol, e,
~ 5e,, (since we have e,=a in this model of the QKD setup).
Thus, when the mean photon numbers wu for both protocols
are the same; the difference in the key generation rates is
simply Q,[H,(5e,)—H,(e;)]. On the other hand, when the
mean photon numbers are different as in Fig. 3 where the
optimal u is always used, the difference in the key genera-
tion rates has to be calculated directly using Eq. (30).

The gain of a particular state (e.g., the signal state or the single-
photon state) is the probability that Alice transmits that state and
Bob’s result is conclusive.
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FIG. 3. (Color online) Comparison between the three-state pro-
tocol and the BB84 protocol using the decoy-state method of Ref.
[30]. The two key-generation-rate curves are computed from Eq.
(30). The simulation parameters used are from the Gobby-Yuan-
Shields (GYS) experiment [51], and we have used f(E,)=1.22. The
optimal mean photon numbers p for both curves are used at all
distances. The maximal secure distance is 88.5 km for the three-
state protocol and 142.2 km for BB84.

V. CONCLUDING REMARKS

In this paper, we considered a three-state protocol and
proved its security. Specifically, we showed how the phase
error rate of the data bits is upper bounded using the bit error
rates observed in the check bits. This protocol is very similar
to the BB84 protocol, sharing the same three qubit states.
Essentially, we showed that, by removing one state from the
BB84 protocol and thus destroying the rotational symmetry,
the protocol is still secure. This three-state protocol is inter-
esting in itself since it can be easily implemented in some
frequency-based QKD systems [21-23]. The result of this
work is that these QKD schemes are in fact secure against
the most general attacks allowed in quantum mechanics.

We compared the three-state protocol with the BB84 pro-
tocol both for the single-photon source case and the coherent
source case. Specifically, for the single-photon source case,
we showed that the BB84 protocol can strictly tolerate higher
bit error rates than the three-state protocol. For the coherent-
source case, the achievable key generation rate and maximal
secure distance of the BB84 protocol are both larger than that
of the three-state protocol, when the decoy-state method of
Ref. [30] is used. In essence, the three-state protocol is infe-
rior to the BB84 protocol; however, the three-state protocol
does have its own merit of being easily implementable in
some systems.

We may consider some variations of the three-state pro-
tocol. In the three-state protocol we analyzed, Alice sends
states in the Z and X bases with equal probabilities. This
gives rise to Bob using the same basis as Alice with a prob-
ability of 1/2, and thus half of the qubit pairs are discarded.
Although not done in this paper, one may improve on this
inefficiency in basis mismatch by applying the idea of effi-
cient BB84 [50]. In the asymptotic limit, Alice and Bob use
the same basis with probability approaching 1.

In the analysis we provided, we upper bound the phase
error rate of the Z basis states by using the average bit error
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rate of the two Z basis states and the bit error rate of the |+)
state. On the other hand, it is possible to perform a more
refined analysis by considering the three bit error rates sepa-
rately, one for each of the states |0.), |1,), and |+). Although
not addressed in this paper, such an analysis can be done in a
similar manner as in this paper. In addition, one may con-
sider a three-state protocol where the check state is not the
|[+) state, but some other state that is an unequal superposi-
tion of the |0,) and |1,) states, or a four-state protocol involv-
ing the same three states as our three-state protocol plus a
state not on the X—Z plane of the Bloch sphere [e.g., (|0,)
+il1.))/ \5] In this case, it would be interesting to apply the
same approach to analyze the security of these protocols.

Note added. After the first posting of our paper on the
arXiv e-print server, we learned from Norbert Liitkenhaus
about the existence of an independent proof of the security of
the three-state protocol based on a different approach by the
Geneva group. Recently, such an independent proof has ap-
peared in Appendix A of Ref. [52].
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APPENDIX: SUFFICIENCY OF USING ONE SET
{ay,ax,ay,az}

In this section, we show that it is sufficient to consider
using only one set of {a;,ay,ay,a,} in the problem in Eq.
(11). The idea is to construct a new set {a;,ay,ay,a,} from

two existing sets {ag‘v),ag),a(},‘?),a(z‘v)}, where s=1,2, such that

laglP=lay'P+|aP, B=1X.Y.Z, (A1)
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liay - azP = liay’ - af P + liay? —af'P.  (A2)
la; +ax)?=|alV + a PP+ a'? + P (A3)

are satisfied, meaning that the values of {e,,a,e,} [cf. Eqs.
(11)—(13)] are preserved when the new set is used instead of
the two existing ones. Note that condition (A1) already gives
the magnitudes of the new ag’s. Thus, only the phases of
them remain to be found. Let us consider terms with a; and
ay (the case for ay and a, are exactly the same). First note
that we can express |a;+ay|*=|a/|*+|ay|*+2c|a/||ay|, where
|c| =<1 is a function of the phase difference between a; and ay
and is what we need to determine next. Once we have found
¢, we can construct the new set by letting ay=|ay| and «;
=exp(i arccos ¢)|a,].
To find ¢, we write condition (A3) as

claflay = cWlailay’l + PNai?llaPl,  (Ad)

where condition (A1) has been used to eliminate the square
terms. From this, we can readily get

Vlaf ) + claf? o

1)|2

RS

where we have again used condition (A1). All that is left to
do is to verify that |c|<1 as follows:

el <

V]a

laf"llay| + af?|la¥|
El)lz 2)|2

(A6)
+laP P+ PP

1+g:8x

VI+g1+g%

where the first inequality follows from the fact that |c¢(!]
<1 and |c?|<1, and we have used the definitions
g,é|a§2)|/|a§1)| and gxé|a§(2)|/|a§)|. Now, it is easy to show
that the right-hand side of Eq. (A7) is less than or equal to 1.
For the special case that |a;])|=0 and/or |a§;)|=0, the same
conclusion of |c|<1 can be trivially seen.

The construction of the new ay and a, is similar to the
above (which is for ¢; and ay), by using conditions (A1) and
(A2).
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