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Quantum cryptography shows that one can guarantee the secrecy of correlation on the sole basis of the laws
of physics, that is, without limiting the computational power of the eavesdropper. The usual security proofs
suppose that the authorized partners, Alice and Bob, have a perfect knowledge and control of their quantum
systems and devices; for instance, they must be sure that the logical bits have been encoded in true qubits and
not in higher dimensional systems. In this paper, we present an approach that circumvents this strong assump-
tion. We define protocols, both for the case of bits and for generic d-dimensional outcomes, in which the
security is guaranteed by the very structure of the Alice-Bob correlations, under the no-signaling condition. The
idea is that if the correlations cannot be produced by shared randomness, then Eve has poor knowledge of
Alice’s and Bob’s symbols. The present study assumes on the one hand that the eavesdropper Eve performs
only individual attacks �this is a limitation to be removed in further work�, and on the other hand that Eve can
distribute any correlation compatible with the no-signaling condition �in this sense her power is greater than
what quantum physics allows�. Under these assumptions, we prove that the protocols defined here allow
extracting secrecy from noisy correlations, when these correlations violate a Bell-type inequality by a
sufficiently large amount. The region in which secrecy extraction is possible extends within the region of
correlations achievable by measurements on entangled quantum states.
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I. INTRODUCTION

Quantum physics has been shown to provide a means to
distribute correlations at a distance whose secrecy can be
guaranteed by the laws of physics, without any assumption
on the computational power of the eavesdropper. This is the
nowadays largely studied field of quantum cryptography �or
quantum key distribution, QKD�, the most mature develop-
ment of quantum information science �1�. The fact itself, that
quantum physics can be used to distribute secrecy, is safe: if
the authorized partners share a maximally entangled state,
then secrecy is definitely guaranteed. But of course, one must
verify that secrecy is not immediately spoiled by any small
departure from this ideal case; this is why much theoretical
research has been devoted to the derivation of rigorous
bounds for the security of quantum cryptography �2�. Still, a
lot of questions remain unsolved: for instance, the theorists,
who find security proofs, and the experimentalists, who real-
ize devices, tend to make different and often incompatible
assumptions when figuring out their schemes.

In particular, an assumption in theoretical proofs has gone
unnoticed until recently �3�: one assumes that the logical bits
are encoded in quantum systems whose dimension is under
perfect control �generally, qubits�. Why do we question this
assumption? First, because it is interesting in itself to ask
whether one can remove an assumption, that is, whether one
can base the studies of security on weaker constraints �4�.
Second, because side channels are a serious issue in practical
quantum cryptography. Experimentalists have to be careful
that, when they encode �say� polarization, they encode only

polarization, and that the device does not change the spectral
line, or the spatial mode, or the temporal mode of the photon
as well. Third, because it is important for practical reasons:
quantum cryptography is becoming a commercial product. If
a security expert recommends a quantum cryptography de-
vice, he should be able to assess that the device acts as it
should with “reasonable” means. After all, the eavesdropper
Eve could be herself the provider of the device!

Anyone faced with this scenario feels at first that if Eve is
allowed to sell you the devices and you cannot know them in
detail, there is no hope for security. Surprisingly, recent ad-
vances in quantum information suggest that this despair, rea-
sonable as it is, may be too pessimistic. Let us see where the
hope lies and which assumptions are really crucial.

The scheme to distribute correlations we have in mind is
represented in Fig. 1. In Alice’s and Bob’s laboratories, the
dark gray square represents the device possibly provided by
Eve. The distribution of correlations is made in three steps.
In the first step, both laboratories are open to the signal that
correlate them. This signal comes either from outside, or is
emitted by Alice’s device to Bob’s, or vice versa: in any case,
it must be assumed to be under Eve’s full control. In the
second step, the laboratories are completely sealed, an obvi-
ously necessary condition as we are going to see. On the
device that reads the signal, Alice and Bob must have a knob
which allows them to choose among at least two alternatives
�in usual QKD, this is, for instance, the choice of the basis�.
It is obviously necessary to assume that no information about
the position of the knob leaks out of Alice’s and Bob’s labo-
ratories �in QKD, if Eve would know the basis, she can
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measure the state without introducing errors�. Now, condi-
tioned on the choice of an input �a position of the knob
labeled x for Alice and y for Bob�, an output is produced �a
for Alice, b for Bob�. The lists of a and b constitute the raw
key. How can there be some secrecy in this raw key? The
insight from quantum physics is that the outputs may not be
under the provider’s control: if the probability distribution of
the outputs violates some kind of Bell inequality, then by
definition those outputs have not been produced by shared
randomness—in other words, the correlations have been pro-
duced by the measurements themselves and did not pre-exist
to them. They could have been produced by communication,
if information about the inputs x and/or y would have propa-
gated between Alice and Bob; but we have insisted on the
no-signaling assumption: no information about x and y
should leak out of Alice’s and Bob’s laboratories, respec-
tively �5�. The third step is usual: Alice and Bob can make
classical data processing in order to distill a fully secret key.

The reasoning above is exactly the intuition that led Ekert
to discover �independently of previous works� quantum cryp-
tography in 1991 �6�. Ekert’s work contains in nuce the idea
of a device-independent security proof: it should be possible
to demonstrate that a probability distribution, which violates
some Bell inequality, is secure by this very fact, without any
reference to the formalism of quantum physics. Of course, in
physics as we know it today, a Bell inequality can only be
violated with entanglement: that is why people immediately
used the quantum formalism to study Ekert’s intuition �7�.
But recently, tools have been developed that allow one to
study no-signaling distributions in themselves, without the
formalism of Hilbert spaces. It is then possible to come back
to the original intuition by Ekert and try to prove security

only through the violation of a Bell-type inequality. This is
the theme of the present paper.

Since we need to introduce in more detail the tools used
in this work, we do this in Sec. II and postpone the outline of
the paper to Sec. II D.

II. CRYPTOGRAPHY IN THE NO-SIGNALING POLYTOPE

This first section introduces the language and the tools
which are needed in a general framework. We focus from the
very beginning on bipartite correlations, i.e., correlations
involving two partners, traditionally called Alice and Bob.

A. Formalization of Bell-type experiments

The physical situation one must keep in mind is a Bell-
type experiment. Alice and Bob receive several pairs of en-
tangled quantum particles. On each particle, Alice performs
the measurement x randomly drawn from a finite set of mA
possibilities; as a result, she obtains the output a out of a
discrete set containing nA symbols. Independently from Al-
ice, Bob performs the measurement y randomly drawn from
a finite set of mB possibilities; as a result, he obtains the
output b out of a discrete set containing nB symbols. Such an
experiment is characterized by the family of probabilities

P�a,b,x,y� = P�a,b�x,y�P�x�P�y� . �1�

There are D=mAmBnAnB such numbers, so each experiment
can be described by a point in a D-dimensional space; more
precisely, in a region of such a space, bounded by the con-
ditions that probabilities must be positive and sum up to one.
By imposing further restrictions on the possible probability
distributions, the region of possible experiment shrinks, thus
adding nontrivial boundaries �8–10�. For our study, three
restrictions are meaningful.

The first restriction is the requirement that the probability
distribution must be built without communication, only with
shared randomness. In the literature, this has been known as
the hypothesis of local hidden variables. In our context, these
variables are not hidden “in nature” �as in the original inter-
pretational debates about quantum physics�: they may rather
be hidden in Alice’s and Bob’s laboratories, in the devices
that Eve has provided to them. The bounded region, which
contains all probability distributions that can be obtained by
shared randomness, forms a polytope, that is a convex set
bounded by a finite number of hyperplanes �“facets”�; there-
fore we refer to it as to the local polytope. The vertices of the
local polytope are the points corresponding to deterministic
strategies, that is, strategies in which a=a�x� and b=b�y�
with probability one; that is, P�a ,b �x ,y�=�a,a�x��b,b�y�. There
are clearly mA

nAmB
nB such strategies. The vertices are thus eas-

ily listed, but to find the facets given the vertices is a com-
putationally hard task. The importance of finding the facets is
pretty clear. If a point, representing an experiment, lies
within the polytope, then there exists a strategy with shared
randomness �a local variable model� that produces the same
probability distribution. On the contrary, if a point lies out-
side the local polytope, then the experiment cannot be repro-
duced with shared randomness only. The interpretation of the

x

a b

y

A lice Bob

(a)

(b)

FIG. 1. A pictorial description of the no-signaling assumption in
our context. The dark gray boxes in Alice’s and Bob’s laboratories
are the devices provided by Eve. In a first step, the laboratories are
open for the signal that correlates them �gray spheres�. The arrows
on the channel indicate that it is not important whether this signal
comes from outside, or is emitted by Alice’s device to Bob’s, or
vice versa: in any case, it is under Eve’s control. What is important,
is that the inputs �x ,y� have not been chosen yet. In a second step,
the laboratories are absolutely closed: no leakage of information
about the inputs �x ,y� or the outputs �a ,b� is allowed. In a third step
�not shown�, Alice and Bob can carry out the usual procedures of
error correction and privacy amplification by communicating on an
authenticated channel.
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facets of the local polytope is therefore obvious: they corre-
spond to Bell’s inequalities. We shall call the region which
lies outside the local polytope a nonlocal region.

The second restriction is the requirement that the prob-
ability distribution must be obtained from measurements on
quantum bipartite systems. The bounded region thus ob-
tained shall be called the quantum region. It is not a poly-
tope, since there is not a finite set of extremal points. It is a
convex set if one really allows all possible measurements on
all possible states in arbitrary-dimensional Hilbert space
�9,11�; if one restricts to the measurements on a given state,
or even to von Neumann measurements on a Hilbert space
with given dimension, convexity is not proved in general
�although no counterexample is known, to our knowledge�.
Needless to recall, the quantum region contains the local
polytope but is larger than it; measurement on quantum
states can give rise to nonlocal correlations �Bell inequalities
are violated�.

The third restriction is the requirement that the probability
distribution must not allow signaling from Alice to Bob or
vice versa. The no-signaling requirement is fulfilled if and
only if Alice’s marginal distribution does not depend on
Bob’s choice of input, and vice versa: that is, the probability
distributions must fulfill

�
b

P�a,b�x,y� = P�a�x� , �2�

�
a

P�a,b�x,y� = P�b�y� . �3�

These conditions define again a polytope, the no-signaling
polytope, which contains the quantum region. The determin-
istic strategies are still vertices for this polytope; to these,
one must add other vertices which represent, loosely speak-
ing, purely nonlocal no-signaling strategies. These additional
points, sometimes called nonlocal machines or nonlocal
boxes, have been fully characterized only in a few cases.

B. Secrecy of probability distributions

Here is the question that we are going to address in this
paper. Alice and Bob have repeated many times the “mea-
surement” procedure and share an arbitrary large number of
realizations of the random variables distributed according to
P�a ,b �x ,y�. By revealing a fraction of their lists, they can
estimate whether their probability distribution lies in the lo-
cal polytope or in the nonlocal region. The goal is to study
whether Alice and Bob can extract secrecy out of their data
with this knowledge only.

To motivate the question, let us consider the best-known
quantum cryptography protocol, the one invented by
Bennett and Brassard in 1984 �BB84� �12�. In this
protocol, a ,b� �0,1� and x ,y� �X ,Z� are both binary. In the
absence of any error, the BB84 protocol distributes perfect
correlations when x=y and no correlations when x�y, that
is, P�0,0 �X ,X�= P�1,1 �X ,X�= 1

2 , P�0,0 �Z ,Z�= P�1,1 �Z ,Z�
= 1

2 , and P�a ,b �X ,Z�= p�a ,b �Z ,X�= 1
4 . If Alice and Bob have

obtained their results by measuring two-dimensional quan-
tum systems �qubits�, such correlations provide secrecy

under the usual assumption that the eavesdropper is limited
only by the laws of quantum physics �13�. However, this
distribution can also be obtained with shared randomness: if
Alice and Bob would share randomly distributed pairs of
classical bits �rX ,rZ�, they simply have to output rZ �respec-
tively rX� if they are asked to measure Z �respectively X�.
Thus, we see the importance of the additional assumption on
the physical realization, namely, that both Alice and Bob are
measuring a qubit, and therefore the pair �rX ,rZ� is not
available because �X ,Z��0.

In other words, the correlations of BB84, even in the ab-
sence of errors, are not secure by themselves. They are se-
cure only provided the quantum degrees of freedom are un-
der good control. The question we raised can now be put in
its true perspective: Are there correlations that are secure by
themselves, by the very fact of being what they are, without
having even to describe how Alice and Bob managed to
obtain them from a real channel?

It turns out that it is easier to tackle this question by
considering that the eavesdropper Eve is not even limited by
quantum physics but only by the no-signaling constraint.
This means that Eve can distribute any many-instances prob-

ability distribution P�a� ,b� �x� ,y�� that lies within the no-
signaling polytope; Alice and Bob have the freedom of
choosing their sequence of measurements �x� and y�, respec-
tively� and will obtain the corresponding outcomes. By mak-
ing this assumption, we stand clearly on the conservative
side: if we can demonstrate that a nonvanishing secret key
can be extracted against such a powerful eavesdropper, then
the secret key achievable against a “realistic” �i.e., quantum�
eavesdropper will be at least as long.

In quantum cryptography, secrecy relies on entanglement.
On which physical quantity can such a strong security, as the
one we are asking for, rely? The answer is: On the nonlocal-
ity of the correlations, that is, on the fact that the correlations
cannot be obtained by shared randomness �5�. No secrecy
can be extracted if Alice and Bob share a probability distri-
bution which lies within the local polytope, just as no se-
crecy against a quantum Eve can be extracted out of
separable states �14,15�.

C. Individual eavesdropping strategies

Barrett, Hardy, and Kent �4� have shown an example of a
protocol in which quantum correlations can provide secrecy
against the most powerful attack by a no-signaling Eve. This
is the first example that one can achieve security even against
a supraquantum Eve, showing that security in key distribu-
tion arises from general features of no-signaling distributions
rather than from the specificities of the Hilbert space struc-
ture. However, their example has important limitations: ac-
tually, it provides a protocol to distribute a single secret bit
�thence, zero key rate� in the case when Alice and Bob share
correlations that can be ascribed to noiseless quantum states.

In this paper, we tackle the problem from the other side:
we do not go straight for security against the most powerful
adversary, but we follow the same path that was followed
historically by quantum cryptography, namely, we limit the
eavesdropper to adopt an individual strategy. This means the
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following: Eve follows the same procedure for each instance
of measurement—that is, she is not allowed to correlate dif-
ferent instances. Moreover, Eve is asked to put her input z
before any error correction and privacy amplification. Con-
sequently, any individual attack is described of a three-partite
probability distribution P�a ,b ,e �x ,y ,z� such that

P�a,b�x,y� = �
e

P�e�z�P�a,b�x,y,e,z� . �4�

Note that Eve is also limited by no-signaling; that is why the
left-hand side does not depend on z. One can see that this is
an individual attack by looking at it as follows: when Eve
gets outcome e out of her input z, she sends out the point
P�a ,b �x ,y ,e ,z�.

Now we demonstrate two similar, important results about
individual eavesdropping strategies:

Theorem 1. Eve can limit herself in sending out extremal
points of the no-signaling polytope.

Proof. Suppose that an attack is defined in which one of
the P�a ,b �x ,y ,e ,z� is not an extremal point. Then, this
point can be itself decomposed on extremal points:
P�a ,b �x ,y ,e ,z�=��P���P�a ,b �x ,y ,e ,z ,�� where the
P�a ,b �x ,y ,e ,z ,�� are all extremal. But the knowledge of �
must be given to Eve. By redefining Eve’s symbol as �e ,��
→e, we have an attack which is as powerful as the one we
started from and is of the form �4� while having only extreme
points in the decomposition.

Theorem 2. Suppose that Alice and Bob can transform

P�a ,b �x ,y� into P̃�a ,b �x ,y� by using only local operations
and public communication independent of a ,b ,x ,y. Then

there exists a purification of P̃�a ,b �x ,y� that gives Eve as
much information as the best purification of P�a ,b �x ,y�.

Proof. Suppose �4� is the best purification of P from Eve’s
point of view; for clarity, let us use Theorem 1 to say that the
P�a ,b �x ,y ,e ,z� are extremal points. The procedure of Alice
and Bob can be described as follows: for each realization of
the variables �a ,b ,x ,y�, Alice draws a random number and
reveals publicly its value j; then, she and Bob apply the local
transformation Tj on which they have previously agreed,
transforming x→Xj, a→Aj, etc. Since there is no correlation
between j and �e ,z�, each extremal point P��a ,b �x ,y ,e ,z� is
transformed into

P̃�a,b�x,y,e,z� = �
j

P�j�P�Aj,Bj�Xj,Y j,e,z�

= �
j,�

P�j�P���e, j�P�a,b�x,y,�,z� . �5�

Consequently, P̃�a ,b �x ,y� is a mixture of the extremal points
P�a ,b �x ,y ,� ,z� with weight P�� �z�=� j,eP�e �z�P�j�
�P�� �e , j�. To conclude the proof, just notice that Eve
has been able to follow the full procedure, because she
has learned j and the list of the Tj is publicly known.

Thus, there exists a decomposition of P̃�a ,b �x ,y� onto ex-
tremal points that gives Eve as much information as the best
decomposition of P�a ,b �x ,y�.

D. Outline of the paper

This is all that could be said in full generality. In what
follows, we study mainly scenarios in which x ,y� �0,1�.
Alice and Bob choose between two possible measurements.
In Sec. III, we address the case where also the outcomes a
and b are both binary; apart from Sec. III D, all the results of
this section have been announced in Ref. �3�. In Sec. IV, we
explore the case where both the outcomes are d-valued, in
particular for d=3. In both situations, we shall consider an
explicit protocol for Alice and Bob, without claim of
optimality. Conclusions and perspectives are listed in Sec. V.

III. BINARY OUTCOMES

In this section, we consider mA=mB=nA=nB=2, that is,
a ,b ,x ,y� �0,1� are all binary. Below, all the sums involving
bits are to be computed modulo 2.

A. The polytopes and the quantum region

In the case of binary inputs and outputs, the local and
the no-signaling polytopes have been fully characterized
and their structure is rather simple. A lot �but not all� is
known about the quantum region too. Under no-signaling,
the full probability distribution is entirely characterized by
eight probabilities; therefore, all these objects live in an
eight-dimensional space.

The local polytope �16,17� has eight nontrivial facets. Up
to symmetries like relabeling of the inputs and of the outputs,
they are all equivalent to the Clauser-Horne-Shimony-Holt
�CHSH� inequality �18�. The representative of this inequality
reads

ICHSH = �
x,y=0

1

P�a + b = xy�xy� � 3. �6�

On each facet lie eight out of the sixteen deterministic strat-
egies; these are said to saturate the inequality, because by
definition they give ICHSH=3. Note that the eight points on a
facet are linearly independent from one another �19�. The
deterministic strategies that saturate our representative �6�
are readily seen to be the following ones:

L1
r = �a�x� = r,b�y� = r� ,

L2
r = �a�x� = x + r,b�y� = r� ,

L3
r = �a�x� = r,b�y� = y + r� ,

L4
r = �a�x� = x + r,b�y� = y + r + 1� , �7�

where r=0,1.
The no-signaling polytope �10� is obtained from the local

polytope by adding a single extremal nonlocal point on top
of each CHSH facet. The nonlocal point on top of our
representative is defined by
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PPR =
1

2
��a + b = xy� . �8�

This point is the so-called PR box, invented by Popescu and
Rohrlich �20� and by Tsirelson �8�. It violates the CHSH
inequality up to its algebraic limit ICHSH=4.

About the quantum region: the set of correlations that are
producible by measuring quantum states is known and cor-
responds to what can be produced by measurement on two-
qubit states �21�. It is an open question whether the analysis
of the marginals can reveal further features of the quantum
region. The violation of CHSH is bounded by

ICHSH�QM� � 2 + 	2, �9�

where the maximum is reached with the probability
distribution

P�a + b = xy�xy� =

1 +
1
	2

2
, �10�

obtained by measuring suitable observables on a maximally
entangled state.

B. The nonlocal raw probability distribution

To study the possibility of secret key extraction, we can
restrict our attention to the sector of the nonlocal region that
lies above a given facet of the local polytope, say the repre-
sentative one for which we have collected the tools above.
Any point in this sector, by definition, can be decomposed as
a convex combination of the PR box �8� and of the eight
deterministic strategies on the facet �7�. As shown above, we
can assume without loss of generality that Eve distributes
these nine strategies. We shall write pNL �for nonlocal� the
probability that Eve sends the PR box to Alice and Bob, and
pj

r the probability that Eve sends the deterministic strategy
Lj

r. We shall also write pL=� j,rpj
r=1− pNL.

The statistics generated by Eve sending the extremal
points are summarized in Table I. The reading of this table is
pretty clear. For instance, one finds that P�a=b=0 �x=y=0�
= pNL /2+ p1

0+ p2
0+ p3

0. To obtain P�a ,b ,x ,y�, one must multi-
ply the entries of the table by P�x�P�y�. Since we are sup-
posing that the extremal points are sent to Alice and Bob by
Eve, the label of each point can be considered also as Eve’s
symbol.

Finally, we note that using Table I in �6�, one finds

pNL = ICHSH − 3. �11�

In other words, pNL measures directly the violation of the
CHSH inequality. It follows that in the quantum region

pNL�QM� � 	2 − 1 
 0.414. �12�

C. The CHSH protocol for cryptography

Whenever Eve distributes the PR box, she has no infor-
mation at all about the bits received by Alice and Bob be-
cause of the monogamy of those correlations �10�. On the

contrary, when she distributes a deterministic strategy she
has some information, depending on the actual cryptographic
protocol. The question is thus: Which is the best procedure to
extract a secret key out of the raw distribution of Table I? We
have no answer in full generality, but we can notice a few
things and propose a protocol which is a reasonable candi-
date for optimality. A good cryptography protocol should �i�
present high correlations between Alice and Bob and �ii�
reduce Eve’s information as much as possible. Now, in
the raw data, we see that Alice and Bob are highly anticor-
related when x=y=1. It is thus natural to devise a procedure
that allows them to transform these anticorrelations in
correlations. A good procedure reveals as little as possible
information on the public channel.

The protocol we propose, and that we call CHSH protocol
for obvious reasons, is the following:

�1� Distribution. Alice and Bob repeat the measurement
procedure on arbitrarily many instances and collect their
data.

�2� Parameter estimation. By revealing publicly some of
their results, they estimate the parameters of their distribu-
tion, in particular the fraction pNL of intrinsically nonlocal
correlations.

�3� Pseudosifting. For each instance, Alice reveals the
measurement she has performed �x=0 or x=1�. Whenever
Alice declares x=1 and Bob has chosen y=1, Bob flips his
bit. Bob does not reveal the measurement he has performed.
This is the procedure which transforms anticorrelations into
correlations while revealing the smallest amount of informa-
tion on the public channel. We call it pseudosifting, because
it enters in the protocol at the same place as sifting occurs in

TABLE I. Table of the distribution Alice-Bob-Eve for the raw
data. The entries are the P�a ,b �x ,y�. In parentheses, we indicate
Eve’s symbol.

A \B y=0, b=0 y=0, b=1 y=1, b=0 y=1, b=1

x=0, pNL /2 �PPR� pNL /2 �PPR�
a=0 p1

0 �L1
0� p1

0 �L1
0�

p2
0 �L2

0� p2
0 �L2

0�
p3

0 �L3
0� p4

0 �L4
0� p4

0 �L4
0� p3

0 �L3
0�

x=0, pNL /2 �PPR� pNL /2 �PPR�
a=1 p1

1 �L1
1� p1

1 �L1
1�

p2
1 �L2

1� p2
1 �L2

1�
p4

1 �L4
1� p3

1 �L3
1� p3

1 �L3
1� p4

1 �L4
1�

x=1, pNL /2 �PPR� pNL /2 �PPR�
a=0 p1

0 �L1
0� p2

1 �L2
1� p1

0 �L1
0� p2

1 �L2
1�

p3
0 �L3

0� p3
0 �L3

0�
p4

1 �L4
1� p4

1 �L4
1�

x=1, pNL /2 �PPR� pNL /2 �PPR�
a=1 p2

0 �L2
0� p1

1 �L1
1� p2

0 �L2
0� p1

1 �L1
1�

p3
1 �L3

1� p3
1 �L3

1�
p4

0 �L4
0� p4

0 �L4
0�
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other protocols, but here all the items are kept.
�4� Classical processing. The details depend on whether

one considers one-way postprocessing �“error correction and
privacy amplification,” efficient in terms of secret key rate�
or two-way postprocessing �“advantage distillation,” ineffi-
cient for small errors but tolerating larger errors�. The two
cases are discussed separately below.

After pseudosifting, and writing � j = P�y= j�, we can write
the Alice-Bob-Eve distribution splits into two, one for each
value of x, as given in Table II. It is important to understand
the content of these two distributions. Suppose Eve has sent
out L1

0 and Alice has announced x=0 in the pseudosifting
phase. Then Eve knows for sure both Alice’s and Bob’s out-
comes, here a=0 and b=0. In fact, for x=0, the strategy L1

0

gives only this result. However, if Eve has sent out L3
0 and

Alice has announced x=0, things are different: Eve still
knows for sure Alice’s outcome �a=0�, but Bob’s outcome
depends on his input, being b=0 if y=0, b=1 if y=1. Re-
markably, the roles are exactly reversed for x=1: in this case,
L3

0 produces only a=0 and b=0, while L1
0 gives a=0, b=0 if

y=0 and b=1 if y=1.
In fact, a closer examination of the tables shows that all

the eight local points have such a behavior: �i� Alice’s out-
come a is always known to Eve, because the setting used by
Alice is publicly known. �ii� If a local point provides Eve

with full information about Bob’s outcome b when x=0, the
same point leaves her uncertain about b when x=1, and vice
versa. We shall come back to this interesting feature in Sec.
III D. Obviously, Eve’s uncertainty is maximal when Alice’s
and Bob’s settings are chosen at random; therefore, we set
from now on

P�x = i� = P�y = j� � � j =
1

2
. �13�

Note that this situation is different from quantum cryptogra-
phy. In the quantum case, Eve’s information does not depend
on the frequency with which each setting is used, and in fact
Alice and Bob can use almost always the same setting, pro-
vided they use the other one�s� sometimes in order to check
coherence �22�.

Now we can understand better the advantage of our pseu-
dosifting procedure. If neither Alice nor Bob would reveal
their setting, Eve’s information on the deterministic strate-
gies would decrease, but Alice and Bob would stay anticor-
related when x=y=1. If, on the contrary, both Alice and Bob
would reveal their setting, Eve would have full information
on both a and b for every deterministic strategy. The pseu-
dosifting procedure corrects for the anticorrelation, and
keeps some uncertainty in Eve’s knowledge about Bob’s
result.

In summary, Table II contains the probability distribution
Alice-Bob-Eve after pseudosifting. Now we must study
whether one can extract secrecy out of them, using classical
pre- and postprocessing. Before turning our attention to that,
we want to stress a nice feature of the distribution we have
just obtained.

D. Uncertainty relations

Remarkably, the protocol we have defined exhibits a fea-
ture which is also present in quantum cryptography, namely,
the fact that Eve gains information on a “basis” at the ex-
pense of introducing errors in the complementary one. Here
it is precisely.

Refer to Table II, recalling that �0=�= 1
2 . The probabilities

p�a�b �x� of error between Alice and Bob when x=0 and
x=1 are, respectively

eAB�0 =
1

2
�p3

0 + p3
1 + p4

0 + p4
1� , �14�

eAB�1 =
1

2
�p1

0 + p1
1 + p2

0 + p2
1� . �15�

Eve’s uncertainty on Bob’s symbol, measured by conditional
Shannon entropy, is

H�B�E,x = 0� = 1 − �p1
0 + p1

1 + p2
0 + p2

1� , �16�

H�B�E,x = 1� = 1 − �p3
0 + p3

1 + p4
0 + p4

1� . �17�

Thus, there appears in our protocol a cryptographic
uncertainty relation in the form

TABLE II. Probability distributions Alice-Bob-Eve for the data
after the pseudosifting of the CHSH protocol, conditioned to the
knowledge of x=0 or x=1.

x=0 b=0 b=1

a=0 pNL /2 �PPR�
p1

0 �L1
0�

p2
0 �L2

0�
p3

0�0 �L3
0� p3

0�1 �L3
0�

p4
0�1 �L4

0� p4
0�0 �L4

0�

a=1 pNL /2 �PPR�
p1

1 �L1
1�

p2
1 �L2

1�
p3

1�1 �L3
1� p3

1�0 �L3
1�

p4
1�0 �L4

1� p4
1�1 �L4

1�

x=1 b=0 b=1

a=0 pNL /2 �PPR�
p1

0�0 �L1
0� p1

0�1 �L1
0�

p2
1�1 �L2

1� p2
1�0 �L2

1�
p3

0 �L3
0�

p4
1 �L4

1�

a=1 pNL /2 �PPR�
p1

1�1 �L1
1� p1

1�0 �L1
1�

p2
0�0 �L2

0� p2
0�1 �L2

0�
p1

3 �L1
3�

p4
0 �L4

0�
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H�B�E,x� = 1 − 2eAB�x+1. �18�

The origin of this relation is rather clear. The pseudosifting
phase of the protocol is optimized to extract correlations
from the nonlocal strategy �PR box�, but on deterministic
strategies, the pseudosifting has another action. Specifically:
for L1

r and L2
r , after pseudosifting we have b�y=0�=b�y=1�

=a when x=0 �no error, and Eve knows b�, and b�y=0�
�b�y=1� when x=1 �error in half cases, and Eve does not
know b�; for L3

r and L4
r , it is just the opposite. In summary,

for each local strategy, Eve learns everything only for one
Alice’s setting, and for the other an error between Alice and
Bob occurs half of the time.

This is the first evidence of an analog of quantum me-
chanical uncertainty relations in a generic no-signaling
theory. We can now move to the main issue, the extraction of
a secret key.

E. One-way classical postprocessing

1. Generalities

For one-way classical postprocessing, the bound for the
length of the achievable secret key rate under the assumption
of individual attacks is the Csiszár-Körner �CK� bound
�23,24�. In the case where Eve’s knows more about Alice’s
symbol than about Bob’s, as is the case here, the CK bound
reads

RCK = sup
�B�,T�←B

�H�B��E,T� − H�B��A,T�� , �19�

where B→ �B� ,T� is called preprocessing. From his initial
data B, Bob obtains some processed data B� that he does not
reveal and some other processed data T that are broadcasted
on a public channel. For classical distributions, bitwise pre-
processing is already optimal �23,24�. In this paper, we have
not explored the possible use of T. In this case, the prepro-
cessing reduces to flipping each bit with some probability q.
Consequently, we will have an estimate rCK�RCK for the
achievable secret key rate. Recalling the link I�X :Y�=H�X�
−H�X �Y� between Shannon entropies and mutual
information, we write our estimate for the CK bound as

rCK = max
B�←B

�I�A:B�� − I�B�:E��

=
1

2 �
x=0,1

max
B�←B

�I�A:B��x� − I�B�:E�x�� . �20�

Let us sketch the computation explicitly for x=0 �for con-
ciseness, we omit to write this condition in the formula
below�. In Table II, one reads for p�a ,b�,

p�0,0� =
pNL

2
+ p1

0 + p2
0 +

p3
0 + p4

0

2
,

p�0,1� =
p3

0 + p4
0

2
,

p�1,0� =
p3

1 + p4
1

2
,

p�1,1� =
pNL

2
+ p1

1 + p2
1 +

p3
1 + p4

1

2
. �21�

If we denote by q the probability that Bob flips his bit in the
preprocessing, then

p�a,b�� = �1 − q�p�a,b = b�� + qp�a,b = b� + 1� . �22�

These four probabilities allow us to compute the mutual in-
formation I�A :B��=H�A�−H�A �B��. Turning to Eve, before
preprocessing she has full knowledge of Bob’s symbol for L1

r

and L2
r , and no knowledge for L3

r and L4
r . As a consequence

of the fact that Eve knows exactly on which items she has
full information and on which she has no information at all,
one has simply

H�B��E� = H�B�E� + �1 − H�B�E��h�q� , �23�

where h is binary entropy. The calculation is, of course, iden-
tical for x=1 and this allows computation of rCK for any
probability distribution. We focus explicitly on two cases.

2. Isotropic distribution

Let us consider an isotropic probability distribution, that
is, a distribution of the form

P�a,b�x,y� =
1 + pNL

4
��a + b = xy� +

pL

8
. �24�

This necessarily implies pj
r= pL /8 for all j ,r, since recall that

the Lj
r are linearly independent. Note that the point of highest

violation in the quantum region �10� is of this form, with
pNL=	2−1.

Remarkably, Alice and Bob can transform any distribution
with a given pNL to the isotropic distribution defined by the
same pNL with local operations and public communication, a
procedure called depolarization �25�. This implies that the
results of this paragraph are in some sense generic. In fact,
by theorem 2 of Sec. II C, Eve’s best individual eavesdrop-
ping strategy for a fixed value of pNL consists in preparing an
isotropic distribution. Alternatively, we can modify the pro-
tocol to add the fact that Alice and Bob apply systematically
the depolarization procedure.

For isotropic distributions, the two tables for x=0 and
x=1 become identical, and we can rewrite them as Table III.
In this table, we have changed the notation for Eve’s knowl-
edge and have written �a ,b� when Eve knows both out-

TABLE III. Probability distribution Alice-Bob-Eve for the
CHSH protocol, in the case of isotropic distribution.

�isotropic� b=0 b=1

a=0 pNL /2 �?, ?�
pL /4 �0, 0�
pL /8 �0, ?� pL /8 �0, ?�

a=1 pNL /2 �?, ?�
pL /4 �1, 1�

pL /8 �1, ?� pL /8 �1, ?�

SECRECY EXTRACTION FROM NO-SIGNALING CORRELATIONS PHYSICAL REVIEW A 74, 042339 �2006�

042339-7



comes, �a,?� when she knows only Alice’s, and �?,?� when
she knows none.

This distribution has p�a=0�= p�a=1�= 1
2 . Before prepro-

cessing, the error between Alice and Bob is eAB= pL /4;
after preprocessing, the quantity to be corrected in error cor-
rection is eAB� = �1−q�eAB+q�1−eAB�. Eve’s information is
pL

2 �1−h�q��. Thus,

rCK = max
q��0,1/2�

�1 − h�eAB� � −
pL

2
�1 − h�q�� . �25�

This quantity is plotted in Fig. 2 as a function of the distur-
bance D defined by pNL=	2�1−2D�−1. This parameter char-
acterizes the properties of the channel linking Alice and Bob;
it is therefore useful for comparison with a quantum realiza-
tion of the CHSH protocol and with BB84 �see Sec. III G
and Appendix A�. We see that rCK�0 for D�6.3% that is
pNL	0.236 for the optimal preprocessing. Without prepro-
cessing, the bound becomes pNL	0.318. The important re-
mark is that both these values are within the quantum region
�12�. This means that using quantum physics, one can dis-
tribute correlations which allow �at least against individual
attacks� the extraction of a secret key without any further
assumption about the details of the physical realization.

3. Reaching the Bell limit

Another interesting example deals with the following
question: Can one find one-parameter families of probability
distributions for which RCK�0 as soon as pNL�0, that is,
distributions for which one can extract a secret key out of
one-way processing, down to the limit of the local polytope?
The answer is yes, and this can be achieved even without
preprocessing. Here is an example: set p1

0= p2
0, p1

1= p2
1, and

p3,4
r =0. For both x=0 and x=1 we have p�a=0�= p�a=1�

= 1
2 . For x=0, Alice and Bob make no errors �eAB�0=0�, and

Eve’s information is I�B :E �x=0�= pL; for x=1, the errors of

Alice and Bob are eAB�1=
pL

2 and Eve has no information. In
summary, even neglecting preprocessing,

rCK = 1 −
1

2
h�pL/2� −

pL

2
, �26�

which is strictly positive in the whole region pL
1.
Note that the distributions described here cannot be

broadcasted using quantum states. The reason is that the
quantum intersection with the nonlocal region is strictly in-
side this region, where inside means that as soon as pNL�0,
all the pj

r must be nonzero, because the Lj
r are linearly inde-

pendent. On the contrary, here we have set p3,4
r =0. Anyway,

in spite of the fact that we are not able to broadcast this
distribution with known physical means, it is interesting to
notice that there exists a family of probability distributions
that can lead to a secret key under one-way postprocessing,
for any amount of nonlocality.

F. Two-way classical postprocessing

1. Advantage distillation (AD)

Contrary to the one-way case, no tight bound like the
Csiszár-Körner bound is known when two-way classical
postprocessing is allowed, nor is the optimal procedure
known. The best-known two-way postprocessing is the so-
called advantage distillation �AD�. Forgetting about prepro-
cessing, one can see the effect of AD as follows: starting
from a situation where I�A :B�
 I�B :E�, one makes a pro-
cessing at the end of which the new variables satisfy

I�Ã : B̃�� I�B̃ : Ẽ� and at this point, one applies the one-way
postprocessing.

In AD, Alice reveals N instances such that her N bits are
equal: ai1

= ¯ =aiN
=�. Bob looks at the same instances and

announces whether his bits are also all equal. If indeed bi1
= ¯ =biN

=�, which happens with probability �1−eAB�N

+eAB
N , Alice and Bob keep one instance; otherwise, they dis-

card all the N bits. Bob’s error on Alice’s symbols becomes

ẽAB =
eAB

N

�1 − eAB�N + eAB
N 
 � eAB

1 − eAB
�N

. �27�

Notice that ẽAB→0 in the limit N→. This means that
�=� almost always, for N sufficiently large. This remark is
used to estimate Eve’s probability of error �see below for
concrete applications�. Typically, one finds that Eve’s error
on Bob’s symbols goes as

ẽE 	 C�f�eAB��N, �28�

with f�·� some function which depends on the probability
distribution under study. Now, as long as the condition

f�eAB� �
eAB

1 − eAB
�29�

is fulfilled, Eve’s error at the end of AD is exponentially
larger than Bob’s for increasing N. There exists always a
finite value of N such that Eve’s error becomes larger than
Bob’s. The bound on the tolerable error after AD is then
computed by solving Eq. �29�.
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FIG. 2. �Color online� Achievable secret key rate for the CHSH
protocol after one-way postprocessing against a no-signaling Eve
for individual attacks, isotropic distribution �Sec. III E 2�, and
against a quantum Eve, in a two-qubit implementation �Sec. III G�.
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We apply this procedure to the isotropic correlations de-
scribed above �Sec. III E 2�, first without preprocessing and
then by allowing Alice and Bob to perform some bit flip
before starting AD. We anticipate the result. We find that a
key can be extracted for pNL	0.09, that is, even with two-
way postprocessing we are not able to reach the Bell limit for
isotropic correlations. It is an open question whether the Bell
limit can be reached by a better two-way postprocessing for
the isotropic distribution.

2. AD without preprocessing

We refer to Table III. We have, as above, eAB=
pL

4 . We
must now estimate Eve’s error on Bob’s symbol after AD.
Eve knows � as soon as she knows one of Alice’s symbols
aik

and recall that asymptotically the guess �=� is correct.
The only situation in which Eve is obliged to make a random
guess is therefore the case in which all the N instances cor-
respond to Eve’s symbol �?,?�. The probability that Eve’s
guess of Bob’s symbol is wrong is therefore

ẽE 	
1

2
� pNL

1 − eAB
�N

, �30�

where the denominator comes from the fact that we must
condition on the bit’s acceptance. Using �29�, we obtain that
secrecy can be extracted as long as pNL� pL /4 that pNL
�1/5. This is lower than the bound obtained for one-way
postprocessing, as expected.

3. AD with preprocessing

The previous bound can be further improved by allowing
Alice and Bob to preprocess their lists before starting AD.
For two-way postprocessing, it is not known whether bitwise
preprocessing is already optimal, but we restrict to it in this
work. Specifically, we suppose that Alice flips her bit with
probability qA, Bob with probability qB. By inspection, one
finds that the probability distribution obtained from Table III
after this preprocessing is the one of Table IV, where we
have written q̄=1−q. Just by looking at the table, one can
guess the interest of preprocessing. The five possible sym-

bols for Eve are now spread in all the four cells of the table.
For instance, Eve’s symbol as �0,0� was present only in the
case a=b=0 in Table III, that is, whenever she had this
symbol Eve had full information; this is no longer the case in
Table IV. Note also that the roles of qA and qB are not sym-
metric, because only qA mixes the strategies for which Eve
does not know Bob’s symbol.

The distribution of Table IV is such that

eAB� = �pNL +
pL

2
��qAq̄B + q̄AqB� +

pL

4
. �31�

The estimate of Eve’s error requires some attention. As be-
fore, we assume that as soon as Eve guesses correctly Alice’s
symbol �, she automatically guesses also �. So the question
is, when is Eve uncertain about �, in the asymptotic regime
of large N? Of course, inequality �30� still holds with
eAB� replacing eAB, but this condition is too weak here. It does
not make any use of the uncertainty introduced on Eve’s
knowledge by the preprocessing.

Eve’s situation now is such that even if she has a symbol
�a ,b� or �a,?�, she cannot be completely sure whether �=a
or not. Suppose that among her N symbols, Eve has n0 times
the symbol �?,?�, n1

0 times the symbol �0,?�, n1
1 times the

symbol �1,?�, n2
0 times the symbol �0,0�, and n2

1 times the
symbol �1,1�. Eve cannot avoid errors when p�a=0 �e�= p�a
=1 �e�, that is, when n1

0=n1
1�n1 and n2

0=n2
1�n2. We have

therefore the bound

ẽE� 	
1

2 �
n0,n1,n2

N!

n0!�n1!�2�n2!�2��?,?�
n0 �1

2n1�2
2n2, �32�

where the sum is taken under the constraint n0+2n1+2n2
=N, �e is the probability that Eve has symbol e conditioned
on the bit’s acceptance, and �1�	��0,?���1,?�,
�2�	��0,0���1,1�. By using �n!�2��2n�! /22n and summing
the multinomial expansion, we obtain

ẽE� 	
1

8
���?,?� + 2�1 + 2�2�N. �33�

Now we must find the expressions for the �e in Table IV.
Suppose for definiteness that Alice and Bob have accepted

the bit �=�=0. This happens with probability
1−eAB�

2 . The
probability that this happens and that Eve has got the symbol

�?,?� is
pNL

2 �q̄Aq̄B+qAqB�; whence ��?,?�=
pNL�q̄Aq̄B+qAqB�

1−eAB�
. Simi-

larly, the probability that Alice and Bob accept the bit 0 and
that Eve has got �0,?�, respectively �1,?�, is

pL

8 q̄A, respectively
pL

8 qA; whence �1=
pL

	q̄AqA

4�1−eAB� � . In a similar way, one computes �2.

By writing �e��1−eAB� ��e, we have then

��?,?� = pNL�q̄Aq̄B + qAqB� ,

�1 =
pL

4
	q̄AqA,

TABLE IV. Probability distribution Alice-Bob-Eve, in the case
of isotropic distribution, after Alice’s and Bob’s preprocessing.

b=0 b=1

a=0 pNL�q̄Aq̄B+qAqB� /2 �?,?� pNL�qAq̄B+ q̄AqB� /2 �?,?�
pLq̄Aq̄B /4 �0,0� pLq̄AqB /4 �0,0�
pLqAqB /4 �1,1� pLqAq̄B /4 �1,1�

pLq̄A /8 �0,?� pLq̄A /8 �0,?�
pLqA /8 �1, ?� pLqA /8 �1,?�

a=1 pNL�qAq̄B+ q̄AqB� /2 �?,?� pNL�q̄Aq̄B+qAqB� /2 �?, ?�
pLqAq̄B /4 �0,0� pLqAqB /4 �0,0�
pLq̄AqB /4 �1,1� pLq̄Aq̄B /4 �1,1�

pLqA /8 �0,?� pLqA /8 �0,?�
pLq̄A /8 �1,?� pLq̄A /8 �1,?�
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�2 =
pL

2
	q̄AqA

	q̄BqB, �34�

and the condition for extraction of a secret key becomes

��?,?� + 2�1 + 2�2 � eAB� . �35�

The optimization over qA and qB can be done numerically.
The result is that a secret key can be extracted at least down
to pNL
0.09.

4. Positivity of intrinsic information

Given a tripartite probability distribution, P�a ,b ,e�, an
upper bound to the secret-key rate R is given by the so-called
intrinsic information I�A :B↓E�, denoted more briefly in
what follows by I↓. This function, introduced in �26�, reads

I�A:B↓E� = min
E→Ē

I�A:B�Ē� , �36�

the minimization running over all the channels E→ Ē. Here,
I�A :B �E� denotes the mutual information between Alice and
Bob conditioned on Eve. That is, for each value of Eve’s
variable e, the correlations between Alice and Bob are de-
scribed by the conditioned probability distribution P�a ,b �e�.
The conditioned mutual information I�A :B �E� is equal to the
mutual information of these probability distributions aver-
aged over P�e�. The exact computation of the intrinsic infor-
mation is, in general, difficult. However, a huge simplifica-
tion was obtained in �27�, where it was shown that the

minimization in Eq. �36� can be restricted to variables Ē of
the same size as the original one, E. This allows a numerical
approach to this problem.

The intrinsic information can be understood as a witness
of secret correlations in P�a ,b ,e�. Indeed, a probability dis-
tribution can be established by local operations and public
communication if, and only if, its intrinsic information is
zero �28�. It is then clear why the positivity of the intrinsic
information is a necessary condition for a positive secret-key
rate. Whether it is sufficient is at present unknown. Strong
support has been given to the existence of probability distri-
butions such that R=0 and I↓�0. These would constitute
examples of probability distributions containing bound infor-
mation �29�, that is, nondistillable secret correlations. The
existence of bound information has been proven in a multi-
partite scenario consisting of N�2 honest parties and the
eavesdropper �30�. However, it remains as an open problem
for the more standard bipartite scenario.

Using these tools, it is possible to study the secrecy prop-
erties of the probability distribution P�a ,b ,e� derived from
the previous CHSH protocol. A first computation of its con-
ditioned mutual information gives I�A :B �E�= pNL. This re-
sult easily follows from Table II. When e=??�, which hap-
pens with probability pNL, Alice and Bob are perfectly
correlated, so their mutual information is equal to one. In all
the remaining cases, e.g., e= �0,0�, Alice and Bob have no
correlations. Using this observation, one can guess the opti-

mal map E→ Ē. In order to minimize the conditioned mutual
information, this map should deteriorate the perfect correla-

tions between Alice and Bob when e= �? , ? �. A way of doing
this is by mapping �0,?� and �1,?� into �?,?�, leaving the other
symbols unchanged �31�. We conjecture that this defines the
optimal map for the computation of the intrinsic information.
Actually, all our numerical evidence supports this conjecture.
Thus, the conjectured value for the intrinsic information is

I↓ = �1 −
pL

2
��1 − h� pL

4 − 2pL
� . �37�

Interestingly, this quantity is positive whenever pNL�0. If
the conjecture is true, it implies that either �i� it is possible to
have a positive secret-key rate for the whole region of Bell
violation, using a new key-distillation protocol, or �ii� the
probability distribution of Table II represents an example of
bipartite bound information for sufficiently small values of
pNL.

G. Quantum cryptographic analysis of the CHSH protocol

It is interesting to analyze the CHSH protocol with the
standard approach of quantum cryptography. Alice and Bob
share a quantum state of two qubits and have agreed on the
physical measurements corresponding to each value of x and
y. Eve is constrained to distribute quantum states, of which
she keeps a purification. Recent advances have provided a
systematic recipe to find a lower bound on the secret key
rate, that is, to discuss security when Eve is allowed to per-
form the most general strategy compatible with quantum
physics �such bounds have been called “unconditional secu-
rity proofs,” but it should be clear by all that precedes that
this wording is unfortunate�.

The resulting bound on the achievable secret key rate is
plotted in Fig. 2. Since the formalism used to compute this
bound is entirely different from the tools used in the present
study, we give this calculation in Appendix A. It turns out
that the CHSH protocol is equivalent to the BB84 protocol
plus some classical preprocessing. In particular, the robust-
ness to noise is the same for both protocols. For low error
rate, BB84 provides higher secret-key rate; however, BB84
cannot be used for a device-independent proof, since �as we
noticed above� its correlations become intrinsically insecure
if the dimensionality of the Hilbert space is not known.

IV. LARGER-DIMENSIONAL OUTCOMES

In this section, we explore the generalization of the pre-
vious results to the case of binary inputs and d-nary outputs:
mA=mB=2, nA=nB=d, that is, x ,y� �0,1� and a ,b
� �0,1 , . . . ,d−1�. Below, all the sums involving dits are to
be computed modulo d.

For this study, it is useful to introduce a notation for prob-
ability distributions and inequalities �32�. While the full
probability space is 4d2-dimensional, one can verify that
only 4d�d−1� parameters are needed to characterize com-
pletely a no-signaling probability distribution—in other
words, D=4d�d−1� is the dimension of the space in which
the no-signaling and the local polytopes are embedded. We
choose the �P�a �x� ,a=0,1 , . . . ,d−2;x=0,1� �d−1 numbers
for each value of x�, the �P�b �y� ,b=0,1 , . . . ,d−2;y=0,1�
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�d−1 numbers for each value of y�, and the
�P�a ,b �x ,y� ,a ,b=0,1 , . . . ,d−2;x ,y=0,1� ��d−1�2 num-
bers for each value of x ,y�. This we arrange in arrays as
follows:

P =

A \ B P�b�0� P�b�1�
P�a�0� P�a,b�0,0� P�a,b�0,1�
P�a�1� P�a,b�1,0� P�a,b�1,1�

. �38�

Note that this array has 2�d−1� lines and as many columns.
Information on the values a ,b=d−1 is redundant for all in-
puts because of no-signaling. Of course, there is no problem
in working with the “full” array with 2d�2d if one finds it
more convenient, provided the additional entries are filled
consistently, because these parameters are not free.

This notation will also be used for inequalities. In this
case, the numbers in the arrays are the coefficients which
multiply each probability in the expression of the inequality.
Examples will be provided below.

A. Polytopes and the quantum region

1. Known characterization

As one might expect, characterization of the local and the
no-signaling polytopes are an increasingly hard task, as the
dimensions of the output increase.

Numerical studies �17� have provided an unexpectedly
simple structure for the local polytope for small d: as it hap-
pened for d=2, all the nontrivial facets appear to be equiva-
lent to the Collins-Gisin-Linden-Massar-Popescu �CGLMP�
inequality �33,34,17,35�

Id =

A \ B − 1 − 1 . . . − 1 0 0 . . . 0

− 1 1 1 . . . 1 1 0 . . . 0

− 1 0 1 . . . 1 1 1 . . . 0

] ] � ] ] � ]

− 1 0 0 . . . 1 1 1 . . . 1

0 1 0 . . . 0 − 1 0 . . . 0

0 1 1 . . . 0 − 1 − 1 . . . 0

] ] � ] ] � ]

0 1 1 . . . 1 − 1 − 1 . . . − 1

� 0. �39�

It is conjectured that all nontrivial facets are equivalent to the
CGLMP inequality for all d. Anyway, our work is indepen-
dent of the truth of this conjecture. We are going to study the
possibility of secret key extraction for nonlocal distributions
which lie above a CGLMP facet, irrespective of whether in-
equivalent facets exist or not.

The no-signaling polytope appears to have a richer struc-
ture than in the case d=2. All the extremal nonlocal points
are generalizations of the PR box �10�. We are interested in
those that lie above our representative CGLMP facet. The
highest violation of CGLMP is provided by the extremal
point

PPR2,d
=

1

d
��b − a = xy� , �40�

whose corresponding array is

PPR2,d
=

1

d

A \ B 1 1 . . . 1 1 1 . . . 1

1 1 0 . . . 0 1 0 . . . 0

1 0 1 . . . 0 0 1 . . . 0

] ] � ] ] � ]

1 0 0 . . . 1 0 0 . . . 1

1 1 0 . . . 0 0 1 . . . 0

1 0 1 . . . 0 0 0 � ]

] ] � ] ] � � 1

1 0 0 . . . 1 0 0 . . . 0

.

�41�

Its violation of the inequality can be rapidly calculated by a
term-by-term multiplication �a formal scalar product� of the
two arrays �39� and �41�, yielding

�Id,PPR2,d
� =

d − 1

d
. �42�

However, PPR2,d
is not the only nonlocal extremal point

which lies above a CGLMP facet. In fact, for all d�
d, there
is at least one PPR2,d

above the facet. For instance, a possible
version of PPR2,2

� PPR reads �boldface 0 standing for matri-
ces filled with zeros�

PPR =
1

2

A \ B 1 1 0 1 1 0

1 1 0 1 0

0 0

1 0 1 0 1

0 0 0 0 0

1 1 0 0 1

0 0

1 0 1 1 0

0 0 0 0 0

, �43�

whence a violation �Id , PPR�= 1
2 . For d=3, we shall give be-

low �Sec. IV C� some additional elements on the structure of
the no-signaling polytope.

The boundaries of the quantum region are basically un-
known to date; it is not even clear whether they coincide
with all possible results of measurements on two-qutrits
states.

2. A slice in the nonlocal region

As we said, a no-signaling probability distribution is char-
acterized by 4d�d−1� parameters. However, when one re-
views the results obtained for the CGLMP inequality in the
context of quantum physics �see Appendix B for all details�,
one finds that the probability distributions associated to the
optimal settings belong to a very symmetric family. Specifi-
cally, these distributions are such that �i� for fixed inputs x
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and y, P�a ,b �x ,y� depends only on �=a−b, and �ii� the
probabilities for the different inputs are related as
P�� �0,0�= P�−� �0,1�= P�−� �1,0�= P��−1 �1,1�. Com-
pactly,

P�a,b = a − ��x,y� =
1

d
pf , �44�

with f = �−1�x+y�+xy and pf =�aP�a ,b=a− f �0,0�. The cor-
responding array is

P =
1

d

A \ B 1 1 . . . 1 1 1 . . . 1

1 p0 p−1 . . . p2 p0 p1 . . . p−2

1 p1 p0 . . . p3 p−1 p0 . . . p−3

] ] � ] ] � ]

1 p−2 p−3 . . . p0 p2 p3 . . . p0

1 p0 p1 . . . p−2 p1 p0 . . . p3

1 p−1 p0 . . . p−3 p2 p1 . . . p4

] ] � ] ] � ]

1 p2 p3 . . . p0 p−1 p−2 . . . p1

.

�45�

This family defines a slice in the no-signaling polytope. Note
that all the marginals are equal, that is, P�a �x�= P�b �y�= 1

d .
Moreover, the d numbers pf define uniquely and completely
a point P in the slice; thus, given the constraint � fpf =1, the
slice defined by �44� is �d−1�-dimensional. A single extremal
nonlocal point belongs to the slice, namely, PPR2,d

, obtained
by setting p0=1 �40�; in fact, none of the PPR2,d�

with d�

d has the correct marginals.

As it happened for the isotropic distributions for d=2,
there exists a depolarization procedure that maps any prob-
ability distribution onto this slice by local operations and
public communication, while keeping the violation �Id , P�
constant. The procedure is given in Appendix C. As a con-
sequence, Eve’s optimal individual eavesdropping, for a
fixed value of the violation of the inequality, consists in
distributing a point in the slice.

B. Cryptography

1. The protocol

We suppose from the beginning p�x= i�= p�y= j�= 1
2 . The

protocol is the analog of the CHSH protocol described in
Sec. III C above. When Alice announces x=1 and Bob has
measured y=1, Bob corrects his dit according to b→b−1. In
other words, the pseudosifting implements �→�−xy. The
Alice-Bob distribution after pseudosifting, averaged on
Bob’s settings, becomes independent of x �as in the case of
isotropic distribution for d=2�:

P�a,a − ��x� =
1

d
�

y=0,1
p�− 1�x+y� =

p� + p−�

2d
. �46�

In a protocol with d-dimensional outcomes, Alice and Bob
can estimate not just one; but several error rates, one for each
value of �. We have just found that these error rates exhibit
the symmetry

eAB��� = eAB�− �� =
p� + p−�

2
. �47�

As in the case of bits, we think of Eve as sending either a
local or a nonlocal probability distribution. Let us discuss in
some detail the points which lie on and above a CGLMP
facet.

2. Eve’s strategy: Local points

To understand what follows, we do not need a full char-
acterization of the deterministic strategies that saturate the
CGLMP inequality. Some facts are, however, worth noting.
The proof of these statements and some other features are
given in Appendix D.

The first fact is that for d�2, the number of deterministic
points on the CGLMP facet is strictly larger than D=4d�d
−1�, the dimension of the local and the no-signaling poly-
tope. This implies that for some points on the facet, several
decompositions as a convex combination of extremal points
are possible.

The second fact is that no extremal deterministic strategy
belongs to the slice �44�. To see it, just recall that the mar-
ginals in the slice are completely random. Since we require
the final distribution to belong to the slice, Eve must manage
to send deterministic strategies with the suitable probabili-
ties. As a consequence of the previous remark, at least one
local point on the slice can be obtained by several different
decompositions on extremal points. We’ll have to choose the
decomposition that optimizes Eve’s information.

As a third fact, we elaborate on the same idea that led to
the uncertainty relations in Sec. III D. We know that all de-
terministic strategies are not equally interesting for Eve. In
fact, two kinds of local points are of special interest for her:
�i� those for which b�0�=b�1�, because Eve knows Bob’s
symbol when Alice announces x=0, and which we denote by
the set L0; and �ii� those for which b�0�=b�1�−1, because
Eve knows Bob’s symbol when Alice announces x=1, and
which we denote by the set L1. In all the other cases, Eve
does not learn Bob’s symbol with certainty. Now, in the com-
plexity of the list of deterministic points on the CGLMP
facet, a remarkable feature appears:

�i� There are exactly d2 points in L0, namely, those for
which a�0�=b�0�=b�1� and a�1� can take any value. In other
words, there are no points on the CGLMP facet such that
b�0�=b�1� but a�0� is different from this value. Whenever
Eve learns Bob’s symbol for x=0, Alice and Bob make no
error for x=0.

�ii� There are exactly d2 points in L1, namely, those for
which a�1�=b�0�=b�1�−1 and a�0� can take any value. This
has a similar interpretation as the statement above, in the
case x=1.

Now, since the error rate Alice-Bob depends only on
P�a ,b �x ,y� and not on the particular decomposition chosen
by Eve to realize this distribution, it is obvious that Eve’s
interest lies in distributing local points that belong to L
�L0�L1 as often as possible. For d=3, we shall prove that
she can prepare any point in the slice by distributing only
these kinds of local points. Finally, we want to introduce a
further distinction within L, which appears explicitly in the
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study of d=3 but may play a more general role. We shall call
L3 the subset of L, whose points satisfy three out of the four
relations a�0�=b�0�, a�0�=b�1�, a�1�=b�0�, and a�1�=b�1�
−1. The complementary set, containing the points that satisfy
two of the relations �a�0�=b�0�=b�1� or a�1�=b�0�=b�1�
−1�, is written L2.

3. Eve’s strategy: Nonlocal point

We have said that, among the extremal nonlocal points
which lie above the CGLMP facet, the only one on the slice
�44� is PPR2,d

. However, it may be the case that mixtures of
other extremal nonlocal points lie as well in the slice. For
d=3, this is not the case �see Appendix E�, but we have not
been able to generalize this statement. In this study, we sup-
pose tentatively that Eve sends a unique nonlocal strategy,
namely PPR2,d

. Under this assumption, we can define pNL

as the probability that Eve sends PPR2,d
. To find the expres-

sion of pNL, we notice that �Id , PPR2,d
�= d−1

d should corre-
spond to pNL=1, and that �Id ,L�=0 for all local points on the
CGLMP facet should correspond to pNL=0. Moreover, pNL
measures the geometrical distance from the facet and is
therefore an affine function of the violation of CGLMP.
Thus, for a generic distribution P of the form �45� we have

pNL =
d

d − 1
�Id,P� = − 2 + �

�=0

d−1 �1 −
�

d − 1
��3p−� − p�+1� .

�48�

Now we can present the results for the possibility of ex-
tracting a secret key, starting from a detailed study of the
case d=3 �Sec. IV C�, then generalizing some results for
arbitrary d �Sec. IV D�.

C. Secret key extraction: d=3

1. The slice of the polytope

The slice �44� is two-dimensional for d=3, and we choose
p0 and p1 as free parameters. This gives p2=1− p0− p1 and

pNL = 2�p0 − p1� − 1. �49�

The full slice has a form of an equilateral triangle �Fig. 3�,
whose vertices V� are defined by p�=1. As mentioned,
V0= PPR2,3

. The vertex V2 is also a PPR2,3
, the one defined by

b−a= x̄ȳ+1 with z̄=1−z. On the contrary, V1 is a mixture of
deterministic strategies. The middle of the triangle, p0= p1

= p2= 1
3 , is the completely random strategy �obtained, e.g.,

when measuring the maximally mixed quantum state, the
“identity”�.

We are going to focus on the nonlocal region close to V0
�Fig. 4�. The intersection with the CGLMP facet is the seg-
ment p0− p1= 1

2 , whose ends are the points labeled M2 �p0

= 1
2 , p1=0� and M3 �p0= 3

4 , p1= 1
4

�. The decompositions of
these mixtures on the extremal deterministic strategies are

M2 = �
L�L2

1

6
L, M3 = �

L�L3

1

12
L , �50�

where the sets of local points L2 and L3 have been defined
above. In fact, the decomposition of M3 is unique.

Conversely, M2 can be decomposed in an infinity of ways
�see Appendix E�, but all the others involve also the points
that do not belong to L and are therefore suboptimal for Eve.

The quantum-mechanical studies �see Appendix B for
more details� have singled out two nonlocal probability dis-
tributions in this region. The first one corresponds to the
maximal violation of CGLMP using two qutrits, pNL


0.4574, noted Qmv and defined by �B6� with �=
	11−	3

2 . The
second one corresponds to the highest violation achievable
with the maximally entangled state of two qutrits, pNL

0.4365, noted Qme and defined by �B6� with �=1.

2. One-way, classical postprocessing

To write down the table for the correlations Alice-Bob-
Eve, one needs to list explicitly the deterministic points that
saturate the CGLMP and the corresponding information Eve
can extract. This is done in Appendix E. The result is Table
V. It can be verified easily that all the probabilities in a
row/column sum up to 1

3 ; moreover,

FIG. 3. �Color online� The slice �44� of the no-signaling poly-
tope, for d=3. As explained in the text, the full extent of the quan-
tum region is not known and is represented by the dotted line with
question marks. The full line is the part of the quantum region we
can certainly reach and that we consider in this paper. See text for
all the other details.

FIG. 4. �Color online� Zoom of Fig. 3 on the nonlocal region
close to V0. For clarity, only the part of the quantum region that we
consider is represented here. The transverse lines define the limits
down to which secrecy can be extracted for one-way postprocessing
�without and with preprocessing� and for two-way postprocessing
without preprocessing. In the shaded region, the intrinsic informa-
tion I↓ is zero. We stress that this figure is an exact plot, not just an
artist view. See text for the other details.
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eAB�+ 1� = eAB�− 1� =
1 − p0

2
, �51�

as expected from �47�. We have introduced the symbol ?2 to
describe the situation where Eve is uncertain of Bob’s sym-
bol, but only among two possibilities: this is clearly the case
whenever the uncertainty derives from a deterministic strat-
egy. In all that follows, information is quantified in trits, and
we write h��v1 ,v2 ,v3��=−� jv j log3 v j.

In the absence of preprocessing, Eve has no information
with probability pNL, full information with probability

pL

2 ,
and information 1−h��1/2 ,1 /2 ,0��=1−log3 2 with

probability
pL

2 . Therefore the estimate for the CK bound is

RCK�q = 0� � rCK = 1 − h��p0,
1 − p0

2
,
1 − p0

2
�

− pL�1 −
1

2
log3 2� . �52�

The curve rCK�q=0�=0 is shown in Fig. 4; it clearly cuts the
quantum region.

A natural question is, which is the point that maximizes
rCK�q=0� under the requirement that the correlations should
belong to the quantum region? In the slice under consider-
ation, we find a rate rmax�q=0�
0.09 trits 
0.144 bits for
the correlations defined by p0=0.8286, p1=0.1093. These
correlations can be obtained by measuring the quantum state

������ =
1

	2 + �2
��00� + ��11� + �22�� �53�

for �
0.9875. This state is close to, but certainly different
from, the maximally entangled state. Thus, the secret key
rate exhibits the same form of anomaly as all the other mea-
sures of nonlocality known to date �45�; maximal nonlocality
is obtained with nonmaximally entangled states.

We consider now Bob’s preprocessing. For one-way post-
processing, dit-wise preprocessing is already optimal. A pri-

ori, one can define two different flipping probabilities q+1
and q−1, associated respectively to b→b+1 and b→b+2.
But it turns out by inspection that the optimal is always
obtained for q+1=q−1=q, so we write down directly this case.
From �51� it is clear that after preprocessing

eAB� �+ 1� = eAB� �− 1� �
e�

2
=

1 − p0

2
+ q

3p0 − 1

2
, �54�

whence

I�A:B�� = 1 − h��1 − e�,
e�

2
,
e�

2
� . �55�

Eve’s information is computed by recalling that for any
local point she sends out, before preprocessing �i� for
one value of x, she knows perfectly Bob’s symbol b; �ii�
for the other value of x, she hesitates between two values
of b. Preprocessing leaves b unchanged with probability
1−2q, and sends it to b±1 with probability q each. There-
fore, in case �i�, Eve’s information is lowered from 1 to
1−h��1−2q ,q ,q���1−h1�q�; in case �ii�, Eve’s information
is lowered from 1−h�� 1

2 , 1
2 ,0�� to 1−h�� 1−q

2 , 1−q
2 ,q���1

−h2�q�. Since each case is equiprobable,

I�E:B�� = 1 −
1

2
�h1�q� + h2�q�� . �56�

From �55� and �56�, we can compute rCK by optimizing the
value of q. We did the optimization numerically. The
improvement due to preprocessing is clear in Fig. 4.

3. Two-way, classical postprocessing

We have also studied the possibility of extracting a
secret key from the correlations of Table V using AD �with-
out preprocessing�. Alice selects N of her symbols that are
identical, and Bob accepts if and only if his corresponding
symbols are also identical. The probability that Bob accepts
is p0

N+ �eAB�+1��N+ �eAB�−1��N, and consequently,

ẽAB�±1� =
�1 − p0

2
�N

p0
N + 2�1 − p0

2
�N 
 �1 − p0

2p0
�N

. �57�

As in the case d=2, Eve has to make a random guess if and
only if she has sent PPR2,3

for all the N instances,

ẽE�±1� 	
1

3
� pNL

p0
�N

. �58�

Thus, a secret key can be extracted using AD as long as
pNL�

1−p0

2 , that is as long as

5p0 � 4p1 + 3. �59�

The limiting curve is also plotted in Fig. 4. Its extremal
points are pNL�

1
5 for p1=0 �the same value as obtained for

d=2� and pNL�
1
9 for p2=0.

TABLE V. Probability distribution Alice-Bob-Eve for d=3, after
pseudosifting, assuming decomposition �50� for M2. We indicate by
?2 the case where Eve hesitates among two values of Bob’s symbol
�instead of three�.

b=0 b=1 b=2

a=0 pNL /3 �?,?�
pL/6 �0,0�

pL/12− p2 /6 �0,?2� �1− p0� /6 �0,?2� �1− p0� /6 �0,?2�

a=1 pNL /3 �?,?�
pL /6 �1,1�

�1− p0�/6 �1,?2� pL /12− p2 /6 �1,?2� �1− p0� /6 �1,?2�

a=2 pNL /3 �?,?�
pL/6 �2,2�

�1− p0� /6 �2,?2� �1− p0� /6 �2,?2� pL /12− p2 /6 �2,?2�
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4. Intrinsic information

It is straightforward to generalize the map used above in
the computation of the intrinsic information to the d=3 case.
Looking at Table V, one has to map all the symbols �i , ?2�
into �?,?�, where i=0,1 ,2. The obtained conditional mutual
information reads

I�A:B�Ē� = P�?,?��1 − h�2p0 − pL

2 − pL
,
1 − p0

2 − pL
,
1 − p0

2 − pL
� .

�60�

This is, of course, an upper bound to the intrinsic informa-
tion, since the employed map may not be the optimal one.
Contrary to what happens in the d=2 case, this quantity van-
ishes for some points inside the region of Bell violation.
Indeed, Eq. �60� is zero on the line 5p0−2p1−3=0; by
changing slightly Eve’s map �specifically, she applies the
map above only with a suitable probability and makes noth-
ing in the other cases�, it can be verified that the intrinsic
information is zero also below the line, that is, for

5p0 − 2p1 − 3 � 0. �61�

This region overlaps with the nonlocal region �Fig. 4�.

D. Secret key extraction: Generic d

For generic d, we want to prove that secrecy can be gen-
erated using quantum states. The statistics Alice-Bob can be
computed using quantum mechanics, in particular, the error
rates eAB��� of Eq. �47�. The question is, how to estimate
Eve’s information. To compute this quantity exactly, one
must describe the points in the CGLMP facet in some detail.
However, some interesting bound can be derived from what
we have already said and the intuition developed in the study
of d=3.

Consider first one-way postprocessing. The discussion of
Sec. IV B 2 implies the bound

I�B:E� � IE �
pL

2
+

pL

2
�1 − logd 2� . �62�

The bound is reached if and only if Eve distributes strategies
that belong to L, as it happened to be always possible for
d=3. Moreover, this bound can also be computed from the
Alice-Bob distribution only assuming �48�. Consequently, we
can estimate

RCK�q = 0� � r � 1 − h„�eAB�����… − IE �63�

with h the Shannon entropy measured in dits. We have
studied the right-hand side numerically for d�10, for
correlations in the quantum region obtained from states
that are Schmidt-diagonal in the computational basis,
���=�k=0

d−1ck�kk�. The general features that emerge are as
follows.

�i� The maximal value of R achievable in the quantum
region increases with d, reaching up to R
0.692 bits for
d=10.

�ii� The quantum state corresponding to the maximal
value of R is always such that ck=cd−1−k. It seems that the

overlap � of this state with the maximally entangled one
decreases with d, but the decrease is very slow �we have
�=1 for d=2, and for d=10 we still have �	0.998�.

A similar simple approach can be found to explore the
possibilities of two-way postprocessing. We have

ẽAB��� � �eAB����N � � max
�=1,. . .,d−1

eAB����N �64�

and Eve’s error is ẽE� 1
d pNL

N . Consequently, AD will certainly
work for

pNL � max
�=1,. . .,d−1

eAB��� . �65�

All the quantities in this relation can be computed from the
Alice-Bob correlations alone. As before, we have studied this
condition numerically for d�100. This time, we have con-

centrated on correlations of the form P=wPme+
�1−w�

d , where
Pme are the correlations obtained when measuring the maxi-
mally entangled state �this is, of course, a completely arbi-
trary choice, but seems interesting from the point of view of
quantum physics�. One observes that, as expected, the use of
two-way postprocessing significantly decreases the value
pNL�0� of pNL for which no secrecy can be extracted. More-
over, pNL�0� decreases when d increases, but very slowly; so
slowly, in fact, that it cannot be guessed from the numerical
results, whether ultimately pNL�0�→0 for d→.

In summary, we have obtained a few results for generic d.
In spite of a large number of assumptions and approxima-
tions �not least the choice of the protocol�, we can conjecture
that secrecy can be extracted from quantum nonlocal corre-
lations for any d, and more precisely, that the amount of
extractable secrecy increases with increasing d.

V. CONCLUSIONS AND PERSPECTIVES

In conclusion, we have presented a first approach to a
device-independent security proof for cryptography, expand-
ing and generalizing the work of Ref. �3�. Under the assump-
tion of individual attacks, we have proved that a secret key
can be extracted from some no-signaling probability distri-
butions, using only the very fact that they violate a Bell-type
inequality and cannot therefore originate from shared ran-
domness. In particular, noisy quantum states can be used to
distribute correlations that are nonlocal enough to contain
distillable secrecy: so our result is also of practical interest.

We would like to finish by raising some of the questions
and perspectives that are opened by this work.

�i� A first objective is to extend our analysis beyond the
assumption of individual attacks, proving ultimately the se-
curity against the most general attacks by an eavesdropper
limited by no-signaling. A first step in this direction has been
recently derived �36�.

�ii� One can make a step further: Can one make a device-
independent proof of security against an eavesdropper which
would be limited by quantum physics? On the side of Alice
and Bob, nonlocality should still be the physical basis for
security, because there exists no other entanglement witness
which works independently of the dimension of the Hilbert
space. On the side of Eve, the requirement that she must
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respect quantum physics is a limitation, compared to the
power we gave her in this paper; so one can hope to obtain a
device-independent proof with better bounds.

�iii� In this paper, we have defined protocols which look
as “natural” for the CHSH and the CGLMP inequalities. But
there is no claim of optimality. In fact, it is not even proved
that the pseudosifting that we have used is the best way of
extracting secrecy from the raw correlations of CHSH-like
measurements �Table I�. Other protocols may be better suited
for cryptographic tasks, as discussed in Ref. �37�.

�iv� A particular consequence of the previous item is
worth mentioning in itself. On the one hand, it has been
proved that all nonlocal probability distributions have posi-
tive intrinsic information �25�. On the other hand, as men-
tioned several times in this paper, we have not been able to
find an explicit procedure for extracting a secret key in the
whole nonlocal region. This means either that a better pro-
cedure does exist, or that nonlocal distributions close to the
local limit provide examples of bipartite bound information
�29,30�.

�v� A technical open point, which we mentioned and
would be very meaningful for the present studies, is the char-
acterization of the quantum region in probability space for a
given number of inputs and outcomes.
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APPENDIX A: LOWER BOUND FOR A QUANTUM
IMPLEMENTATION OF THE CHSH PROTOCOL

In this appendix, we study the security of the CHSH pro-
tocol in the standard scenario where Eve is limited by the
quantum formalism, and Alice and Bob have a perfect
knowledge on their quantum devices. More precisely, Alice
and Bob know their Hilbert spaces are two-dimensional and
they apply the spin measurements that produce the largest
Bell violation for the noiseless state ��+�= 1

	2
��00�+ �11��. For

instance, Alice and Bob measure in the xz plane, their spin
measurement being defined by the angle � with the z axis on
the Poincaré sphere. Alice measures in the �=� /2 and
�=0 bases, corresponding to x=0,1, respectively, while Bob
does it in the �=� /4 ,3� /4 directions, corresponding to
y=0,1.

As shown in Refs. �38,39�, the bound for security against
the most general attacks �unconditional security� can be
computed by focusing on collective attacks, where Eve pre-
pares the same two-qubit state �AB on all instances, but is
allowed to make a coherent measurement of her ancillae
after error correction and privacy amplification.

By inspection, or by using the formalism developed in
Ref. �38�, it can be proved that Eve’s optimal strategy uses a
Bell-diagonal state of the form

�AB = �1�+ + �2��− + �+� + �4�−, �A1�

where �± and �± denote the projectors onto the Bell basis

��±� =
1
	2

��00� ± �11�� ,

��±� =
1
	2

��01� ± �10�� . �A2�

By assumption, Eve holds a purification of each pair: before
any measurement, the quantum correlations among Alice,
Bob, and Eve are described by the pure state ��ABE��N where
�AB=trE������ABE.

In the CHSH protocol, Alice and Bob’s bases do not per-
fectly overlap. Their outcomes are therefore not perfectly
correlated even in the case �1=1 �perfect channel, no Eve�.
Actually, the quantum bit error rate �QBER� in this case is
Q0=sin2�� /8�= 1

2
�1− 1

	2
�. For the same channel, the BB84

protocol has zero QBER. In the light of this, the meaningful
parameter to compare the two protocols should not be the
QBER but a measure of the quality of the channel. We use
the disturbance, that is, the probability that measurement out-
comes in the same basis agree. In our case, D= �+z ,−z��AB�
+z ,−z�+ �−z , +z��AB�−z , +z�=�2+�4.

Now, Alice and Bob measure their local systems, while
Eve keeps her quantum state. In this scenario, a lower bound
to the key rate distillable using one-way communication
protocols has been obtained in �40�,

R→ � RDW = I�A:B� − ��B:E� . �A3�

Here, I�A :B� denotes the standard mutual information be-
tween Alice and Bob’s classical outcomes, while ��B :E� is
the Holevo quantity for the effective channel between Bob
and Eve. Indeed, Bob’s measurement outcome prepares a
quantum state on Eve’s site �see �40� for more details�. Con-
trary to the more standard situation, Eve does not know
which measurement Bob has applied, so she has to sum over
the two possibilities. Her states read, up to normalization,

�E
i = trAB�1 � ��i��i��/4 + �i��i�3�/4� � 1������ABE� , �A4�

where i=0,1 and �i�� denote the basis elements in the direc-
tion specified by �, as above. It is straightforward to see that
for the CHSH protocol

I�A:B� = 1 − h�1 + ��1 − �4�/	2

2
� . �A5�

The computation of ��B :E�=S��E�− �S��E
0�+S��E

1�� /2,
where S��� denotes the von Neumann entropy for a state �, is
slightly more involved. However, after some patient algebra
one can see that the maximum of this quantity is obtained,
for fixed disturbance, when
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�1 = �1 − D�2, �2 = D�1 − D�, �4 = D2, �A6�

which defines Eve’s optimal attack. Not surprisingly, this at-
tack corresponds to a phase covariant cloning machine �see
for instance �41�� that optimally clones all the states in the xz
plane. This attack is also optimal for the standard BB84
protocol.

The obtained critical disturbance for CHSH is D
12%.
This is larger than the well-known Shor-Preskill bound D

11% for security of BB84 �42�. This bound, however, has
recently been improved by allowing any of the parties, say
Alice, to introduce some preprocessing of her outcome be-
fore the reconciliation �38�. Alice then flips her bit with prob-
ability q. This local noise worsens the correlations between
Alice and Bob, but it deteriorates in a stronger way the cor-
relations between Alice and Eve. For any value of the distur-
bance there exists an optimal preprocessing q�D�, depending
on the protocol, which maximizes the key rate. This explains
the improvement on the critical disturbance that moves up to
D
12.4% both for BB84 and for the CHSH protocol
described here.

Actually, the close relation between the CHSH protocol
and the BB84 protocol is made clear by this preprocessing.
Let QB�D and qB be, respectively, the QBER and the pre-
processing rate for BB84, and QC and qC denote the same
quantities for the CHSH protocol. Note first that the channel
defined in �A6� induces a QBER QB=D in BB84, and a
QBER QC=Q0+ D

	2
for the CHSH protocol; whence,

QB = 	2�QC − Q0� . �A7�

It can then be shown that RDW
CHSH�QC ,qC�=RDW

BB84�QB ,qB�
when the QBERs are related as �A7� and when

qB = Q0 +
qC

	2
. �A8�

These two relations imply

Q� = QC�1 − qC� + �1 − QC�qC = QB�1 − qB� + �1 − QB�qB.

�A9�

Consider first for clarity the case qC=0. The error in
CHSH due to the nonperfect overlap of the bases can be
attributed to the application of a preprocessing qB=Q0 onto
the correlations obtained with perfectly overlapping bases
�indeed, the errors Q0 are intrinsic to the protocol, and Eve
cannot gain anything from them�. In general, the rates ob-
tained for the CHSH protocol in the standard quantum sce-
nario coincide with those derived for the BB84 protocol
when the preprocessing is optimized under the constraint
qB�Q0. If we now compare RDW

CHSH�QC� and RDW
BB84�QB� for a

fixed value of D �that is, �A7� holds� and choosing the opti-
mal preprocessing in each case, we find the following. For
small error rates, the optimal preprocessing on BB84 is
smaller than Q0; in other words, even for qC=0 CHSH cor-
responds to BB84 with an excessive preprocessing, whence
RDW

CHSH�QC�
RDW
BB84�QB�. The optimal preprocessing on BB84

becomes equal to Q0 for D
11.7%; from this point on, the
optimal qC is larger than zero, and the rates for the two

protocols become identical: RDW
CHSH�QC�=RDW

BB84�QB�. In
particular, as announced, both become zero for D
12.4%.

APPENDIX B: THE CGLMP INEQUALITY
IN QUANTUM PHYSICS

The CGLMP inequalities �33� have been the object of
several studies in the context of quantum physics. Here we
summarize the results without any proof.

One unexpected feature of CGLMP is the fact that the
maximal violation is not reached by measurements on the
maximally entangled state �43�. Also unexpected is the fact
that the settings that maximize the violation are the same for
a wide class of states �including the maximal entangled one
and the one which gives the maximal violation�. These are
the settings we consider here. We label them A0 and A1 for
Alice, B0 and B1 for Bob:

Ax � ��x�a��a=0
d−1, �x�a� = �

k=0

d−1
ei�2�/d�ak

	d
�eik�x�k�� ,

�B1�

By � ��y�b��b=0
d−1, �y�b� = �

k=0

d−1
e−i�2�/d�bk

	d
�eik�y�k�� .

�B2�

In operational terms, both Alice and Bob apply first global
phases in the computational basis, then make a quantum
Fourier transform �Bob makes the inverse as Alice�, and fi-
nally measure in the new basis and outcome the value a or b.

Consider quantum states that are Schmidt-diagonal in the
computational basis,

��� = �
k=0

d−1

ck�kk� , �B3�

with ck�R. On this family, one finds

P�a,b�x,y� =
1

d2 �
k,k�=0

d−1

ckck�cos��2�

d
� + �x + �y��k − k�� ,

�B4�

with �=a−b. The only freedom left is the choice of the four
angles �x and �y. The settings we are interested in are
defined by

�0 = 0, �1 =
�

d
; �0 = −

�

2d
, �1 =

�

2d
. �B5�

With these settings, �44� holds.
For the case d=3, all the interesting states found to date

are of the form �53�. For instance, �=1 is the maximally
entangled state; the maximal violation is obtained for
�=

	11−	3
2 
0.7923 �43�; the largest Kullback-Leibler distance

from the set of local distributions is obtained for
�
0.6529 �44�; and we have shown above �Sec. IV C� that
the maximal amount of secret key rate under one-way pro-
cessing is found for �
0.9875. For the states ������, the
p�= P�a ,�−a �0,0� are
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p0 =
1

3
�1 +

1 + 2	3�

2 + �2 � ,

p1 =
1

3
�1 −

2

2 + �2� ,

p2 =
1

3
�1 +

1 − 2	3�

2 + �2 � . �B6�

APPENDIX C: DEPOLARIZATION
FOR ARBITRARY D

1. The procedure

Suppose Alice and Bob share initially an arbitrary no-
signaling probability distribution P�a ,b �x ,y�. The depolar-
ization procedure that brings P in the slice defined by �44� is
very similar to the one described in Ref. �25� for d=2. It
consists of two steps.

Step 1. Alice chooses k�
R

�0, . . . ,d−1� with probability 1
d

and communicates it to Bob on a public channel. Both Alice
and Bob perform

a → a + k ,

b → b + k . �C1�

This implements P→P1, which is such that P1�a ,b �x ,y�
= 1

d�kP�a+k ,b+k �x ,y� and is consequently a function only
of �=a−b.

Step 2. With probability 1
4 , Alice chooses one of the fol-

lowing four procedures and asks Bob on the public channel
to act accordingly:

Proc1:
A: do nothing,

B: do nothing;

Proc2:
A: x → x̄,a → − a ,

B: b → − b + y;

Proc3:
A: a → − a − x ,

B: y → ȳ,b → − b;

Proc4:
A: x → x̄,a → a + x ,

B: y → ȳ,b → b + ȳ ,
�C2�

where we have written x̄=1−x. This implements P1→P2
such that

4P2�a,b�0,0� = P1�a,b�0,0� + P1�− a,− b�0,1�

+ P1�− a,− b�1,0� + P1�a,b + 1�1,1� ,

4P2�a,b�0,1� = P1�a,b�0,1� + P1�− a,− b + 1�1,1�

+ P1�− a,− b�0,0� + P1�a,b�1,0� ,

4P2�a,b�1,0� = P1�a,b�1,0� + P1�− a − 1,− b�1,1�

+ P1�− a,− b�0,0� + P1�a + 1,b + 1�0,1� ,

4P2�a,b�1,1� = P1�a,b�1,1�

+ P1�− a,− b + 1�0,1� + P1�− a − 1,− b�1,0�

+ P1�a + 1,b�0,0� .

Because of the symmetry of P1, this implies P2�a ,b �0,0�
= P2�−a ,−b �0,1�= P2�−a ,−b �1,0�= P2�a ,b+1 �1,1� which
is nothing but the definition of the slice �44�.

2. Examples

We said in the main text that none of the extremal points
of the form PPR2,d

, with d�
d, is on the slice. Let us then
consider a realization of PPR2,d�

, the one whose array is

P̂�d�� =
1

d�

A \ B 1 0 1 0

1 1d� 0 1d� 0

0 0 0 0 0

1 1d� 0 Ud� 0

0 0 0 0 0

�C3�

where boldface numbers indicate arrays containing all ones
or all zeros, 1d� is the identity matrix of dimension d��d�,
and where Ud� is the d��d� matrix

Ud� =�
0 1 0 0 ¯ 0

0 0 1 0 ¯ 0

0 0 0 1 0

] ] �

0 0 0 0 ¯ 1

1 0 0 0 ¯ 0

� . �C4�

The arrays �39� and �C3� allow us to compute immediately
the “scalar product”

�Id, P̂�d��� = 1 −
1

d�
�C5�

generalizing the results we gave in the main text for d�=2
and d�=d.

By following the steps of the depolarization protocol, one

finds that P̂�d�� goes to the distribution in the slice which is
given by

P̂�d�� → P̂2�d�� � �p0 = 1 −
1

4d�

pd� =
1

4d�
, � �C6�

and obviously all the other pf are zero. Using �48�, one can

verify that �Id , P̂2�d���=1− 1
d�

: the violation is preserved. As
we said in the main text, this is not peculiar to this example
but is a general feature, as we show in the next section.

3. Preservation of the violation of CGLMP

We want to prove that this depolarization preserves the
violation of the CGLMP inequality, that is
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�Id,P2� = �Id,P� . �C7�

The easiest way is to write down Id as it appeared in the

original paper �33�, namely, Ĩd�2 with

Ĩd = �
k=0

�d/2�−1 �1 −
2k

d − 1
���P�− k�0,0� + P�k�0,1� + P�k�1,0�

+ P�− k − 1�1,1�� − �P�k + 1�0,0�

+ P�− k − 1�0,1� + P�− k − 1�1,0� + P�k�1,1��� ,

where P�� �x ,y�� P�a−b=� �x ,y�. The link between Ĩd and
our definition of Id is provided by

Id =
d − 1

2d
�− 2 + Ĩd� . �C8�

Using the expression of Ĩd, the proof is straightforward. In
fact, Step 1 keeps by definition all the P�� �x ,y� constant,
while Step 2 keeps both sums in �¯� constant.

APPENDIX D: DETERMINISTIC STRATEGIES
THAT SATURATE CGLMP

We present here a more detailed study of the extremal
points that lie on the CGLMP facet, completing what has
been written in Sec. IV B 2.

Consider the array which represents the CGLMP inequal-
ity Id�0, Eq. �39�; here, it is more convenient to look at it as
having 2d�2d entries �35�. Let I�i , j� denote an entry of this
array. For the deterministic strategy �a�0� ,a�1� ;b�0� ,b�1��,
the value of CGLMP is simply

Id = − 2 + �
x,y=0

1

I�a�x�,b�y��

= − 2 + ��b�0� � a�0�� + ��a�0� � b�1��

+ ��a�1� � b�0�� − ��a�1� � b�1�� , �D1�

where the −2 comes from the marginals of a�0� and b�0�,
and where ��C� is equal to 1 if condition C is satisfied and to
0 otherwise. The inequality is saturated by all the strategies
such that Id=0.

Consider the points such that b�0�=b�1�: the last two con-
ditions become equal and the �’s compensate each other for
all a�1�, so the only way to saturate the inequality is to fulfill
both b�0��a�0� and a�0��b�1�=b�0�; whence, a�0�=b�0�
=b�1� as announced in the main text. The proof of the analog
statement in the case b�0�=b�1�−1 is similarly done by in-
spection. One first considers b�0�
d−1. In this case,
b�1��b�0�; therefore, the first two conditions cannot be both
fulfilled, whatever a�0� is. One can then easily verify that
only the choice a�1�=b�0� leads to a saturation of the in-
equality. The last remaining case is b�0�=d−1, b�1�=0. It
can be read directly from the array and leads to the same
conclusion.

So, we have proved the properties of sets L0 and L1,
which consist of d2 points each. We still have to prove
that the number of points on the facet is larger than

D=4d�d−1�. This is easily done by noticing the following:
the four “natural” relations associated to the CGLMP in-
equality, those that are simultaneously fulfilled by PPR2,d

, are

R00: a�0� = b�0� ,

R01: a�0� = b�1� ,

R10: a�1� = b�0� ,

R11: a�1� = b�1� − 1. �D2�

Because of the specific pseudosifting of our cryptographic
protocol, we grouped them by pairs according to Alice’s in-
put. But from the standpoint of the inequality, any pairwise
grouping is equally meaningful. It can indeed be easily veri-
fied using �D1� that all the points that fulfill at least two
among these relations saturate the inequality. There are
therefore 4d strategies that fulfill three relations and
6d�d−2� strategies that fulfill exactly two relations. In con-
clusion, by looking only at the points that fulfill at least two
among the four relations �D2�, we have already 6d2−8d de-
terministic points on the CGLMP facet, and this number is
larger than D for d�2. We note that the list is exhaustive for
d=3 �see Appendix E�, but not in general. For instance, for
d�5, the strategy �a�0�=4, a�1�=1; b�0�=5, b�1�=3� ful-
fills none of the relations �D2� but achieves, nevertheless,
Id=0.

APPENDIX E: EXPLICIT ANALYSIS FOR D=3

1. Deterministic strategies on the facet

We give here the explicit list of the 30 deterministic
strategies that saturate CGLMP. We note r=0,1 ,2.

The 12 strategies in L3 are

L0
3: �L3,1

r = �a�x� = r,b�y� = r� ,

L3,2
r = �a�x� = r − x,b�y� = r� ,

� �E1�

L1
3: �L3,3

r = �a�x� = r,b�y� = r + y� ,

L3,4
r = �a�x� = r − x,b�y� = r + y − 1� ,

� �E2�

The six strategies in L2 are

L0
2: L2,1

r = �a�x� = r + x,b�y� = r� , �E3�

L1
2: L2,2

r = �a�x� = r + x,b�y� = r + y + 1� . �E4�

The 12 strategies outside L are

Le,1
r = �a�x� = r,b�y� = r − y� ,

Le,2
r = �a�x� = r + x,b�y� = r − y� ,

Le,3
r = �a�x� = r + x,b�y� = r − y + 1� ,

Le,4
r = �a�x� = r − x,b�y� = r − y + 1� . �E5�

As we said in the main text, the decomposition of M2
given in �50� is only one possible decomposition, the one
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which optimizes Eve’s information on Bob’s symbol. It can
checked that the general decomposition is defined by

M2:

p3,j
r = 0,

p2,1
r = p2,2

r � p2
r free,

pe,1
r free,

pe,2
r =

1

6
− �p2

r + pe,1
r � ,

pe,3
r = pe,1

r+1,

pe,4
r =

1

6
− �p2

r + pe,1
r+1� .

�E6�

There are thus six free parameters �p2
r , pe,1

r �, constrained of
course by the positivity of probabilities �in particular, none
of these parameters can exceed 1

6 �. A possible realization of
M2 is the equiprobable mixture of the eighteen points which
are not in L3. The choice leading to �50� is the equiprobable
mixture of the six points in L2 �p2

r = 1
6 , implying automati-

cally pe,j
r =0�.

2. Alice-Bob-Eve correlations

Having the explicit deterministic strategies, it is a matter
of patience to derive the tables for the correlations Alice-
Bob-Eve. The result is given in Table VI, in which we have
introduced the notations

f�p� =
2p1

3
+ 2p2p, g�p� =

1 − p0

3
− 2p2p . �E7�

Note that in each of the nine cells, the sum of the probabili-
ties does not depend on the p2

r , as it should: the decomposi-
tion of M2 is known only to Eve. Eve is obviously interested
in maximizing the probability of knowing both symbols,

measured by f�p�; whence, the choice p2
r = 1

6 made in the
main text.

3. About nonlocal points that violate CGLMP

Here, we want to list some nonlocal points other than
PPR2,3

that violate CGLMP, and study their relation with the
slice �44�.

Consider first the nonlocal points equivalent to PPR2,2
� PPR. There are 24 such points in the no-signaling polytope:
in fact, there are three choices for the two outcomes ��0,1�,
�0,2� or �1,2�� and for each choice there are eight PR-like
points, obtained as usual by relabeling inputs and/or outputs.
By inspection, it can be seen that I3�0 �in fact, I3= 1

2 � for
our representative �39� of I3 is achieved only by three
PR-like points defined by

�a = b if xy = 0

a � b if xy = 1
� for �a,b� � ��0,1� ,

�0,2� ,

�1,2� .
� �E8�

It is readily seen that no mixture of these three strategies can
belong to the slice �44�. To obtain all the marginals equal to
1
3 , the only possible mixture is the equiprobable one. This
one reads

MPR =
1

3

A \ B 1 1 1 1

1 1 0 1 0

1 0 1 0 1

1 1 0 0
1

2

1 0 1
1

2
0

�E9�

and is clearly not of the form �45�. This negative result is
important for our study: had such a mixture belonged to the
slice, Eve would have sent these nonlocal points, for which
she would have gained some information �because in each
case one result is impossible�.

Actually, there is a mixture of nonlocal points on the slice.
It is a mixture of other PPR2,3

-like strategies, which optimize
the violation of different representatives of CGLMP, and vio-
late our representative by I3= 1

3 . The strategies are those in
which b−a is equal to −xy, x�2−y�, y�2−x�, and �x+y
+1�mod2. �Note that this last one is indeed a PR2,3

. The non-
locality is embedded on the fact that the right-hand side is
computed modulo 2 instead of modulo 3, as is the case for
the others.� The equiprobable mixture of these four strategies
is the point p0= 3

4 and p1=0 in the slice. Obviously, Eve has
no interest in sending these strategies instead of the PPR2,3
which gives the maximal violation. In all cases she is going
to learn nothing about the outcomes.

TABLE VI. Probability distribution Alice-Bob-Eve after pseu-
dosifting for d=3 and Alice’s setting x, for the general decomposi-
tion �E6� of M2.

x b=0 b=1 b=2

a=0 pNL /3 �?,?�
f�p2

0−x� �0,0�
g�p2

0−x� �0,?2� �1− p0� /6 �0,?2� �1− p0� /6 �0,?2�

a=1 pNL /3 �?,?�
f�p2

1−x� �1,1�
�1− p0� /6 �1,?2� g�p2

1−x� �1,?2� �1− p0� /6 �1,?2�

a=2 pNL /3 �?,?�
f�p2

2−x� �2,2�
�1− p0� /6 �2,?2� �1− p0� /6 �2,?2� g�p2

2−x� �2,?2�
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