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Hitting times are the average time it takes a walk to reach a given final vertex from a given starting vertex.
The hitting time for a classical random walk on a connected graph will always be finite. We show that, by
contrast, quantum walks can have infinite hitting times for some initial states. We seek criteria to determine if
a given walk on a graph will have infinite hitting times, and find a sufficient condition, which for discrete time
quantum walks is that the degeneracy of the evolution operator be greater than the degree of the graph. The set
of initial states which give an infinite hitting time form a subspace. The phenomenon of infinite hitting times
is in general a consequence of the symmetry of the graph and its automorphism group. Using the irreducible
representations of the automorphism group, we derive conditions such that quantum walks defined on this
graph must have infinite hitting times for some initial states. In the case of the discrete walk, if this condition
is satisfied the walk will have infinite hitting times for any choice of a coin operator, and we give a class of
graphs with infinite hitting times for any choice of coin. Hitting times are not very well defined for continuous
time quantum walks, but we show that the idea of infinite hitting-time walks naturally extends to the continu-
ous time case as well.
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I. INTRODUCTION

Quantum walks have been defined and analyzed in the
hope that they will lead to new quantum algorithms, as clas-
sical random walks have for classical algorithms. Classically,
many probabilistic algorithms have the structure of a random
walk; for instance, the most efficient algorithm for 3-SAT is
based on a random walk �1�. The search for new types of
quantum algorithms is spurred by the fact that the use of
quantum Fourier transform as an algorithmic tool—used in
Shor’s algorithm and related algorithms—seems to be re-
stricted to Abelian groups and certain classes of non-Abelian
groups for the hidden subgroup problem �2�. Quantum walks
may provide a new approach. So far they have been applied
to the element distinctness problem �3�, and an alternative
search algorithm �4� that has been shown to have a quadratic
speed-up �the same as Grover’s algorithm�. In Ref. �5�, it
was shown that the quantum walk on the so-called “glued
trees” graph reaches the final vertex from the initial vertex
exponentially faster that a similar classical walk.

There are two kinds of quantum walks: discrete time and
continuous time. They are defined differently, and unlike the
classical case, there is no natural limit which leads from one
to the other. Discrete time quantum walks on regular graphs
require an extra system, called the “coin,” whose Hilbert
space dimension equals the degree of the graph. Quantum
walks have been analyzed extensively for the line, the con-
tinuous time case in Refs. �5–7� and the discrete time case in
Refs. �8–12�. Quantum walks on the hypercube have been
studied in Refs. �4,13–15�. Quantum walks have been de-
fined for general �irregular� undirected graphs in Refs.
�16,17�, and for directed graphs in Ref. �18�. Certain proper-
ties of quantum walks, such as mixing time and sampling

time, were defined by analogy to classical random walks and
discussed in Ref. �19�. Hitting times were defined in Ref.
�14�, where an upper bound was found for the walk on the
hypercube. A different definition of hitting time was defined
in Ref. �15�, where the usual definition of a quantum walk as
a unitary evolution has been replaced by a measured walk. In
this walk, a measurement is performed at every step after the
application of the unitary, to see if the particle has reached
the final vertex or not. Reviews of quantum walks can be
found in Refs. �16,20�. A recent review of quantum walks
focussing on decoherence can be found in Ref. �21�. In this
paper, we will primarily concentrate on discrete time walks,
but will show that our results extend naturally to continuous
time walks as well.

It was shown in Ref. �15� that for a certain initial state, the
hitting time for a discrete quantum walk on the hypercube
using the so called “Grover” coin has a hitting time that is
exponentially faster than the classical hitting time on the
same graph. By contrast, for the same initial condition with
another coin—the discrete Fourier transform �DFT� coin—
the hitting time was infinite, something that never occurs in a
classical walk on a connected graph. In this paper, we study
this phenomenon of infinite hitting times in quantum walks,
and show that it is generally caused by degeneracy of the
evolution operator, and hence is linked to the symmetry.
Symmetries in the automorphism group of the graph lead to
symmetries in the evolution operator, which in turn induce
degeneracies in its eigenvalues. If the degeneracy is suffi-
ciently great, some of these degenerate eigenvectors will
span a subspace that has no overlap with the final vertex. The
projector onto this subspace commutes with both the evolu-
tion operator and the measurement. So, a walk whose initial
state is in this subspace will never leave the subspace and
will continue to have zero overlap with the final state for all
times. A measurement performed at any time will never find
the particle in the final state, leading to an infinite hitting
time. Thus, infinite hitting times are a natural phenomenon
for graphs that have certain kinds of symmetries.
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We use the theory of irreducible representations to esti-
mate the amount of degeneracy that a given group of sym-
metries produces. The use of representation theory to explain
aspects of quantum walks on certain classes of graphs was
also done in Ref. �22�, where the behavior of mixing times of
Cayley graphs on the symmetric group is explained based on
its irreducible representations. We will also use Cayley
graphs to produce examples of quantum walks with infinite
hitting times.

This paper is organized as follows. In Sec. II, we discuss
quantum walks—both discrete time and continuous time—
and then define Cayley graphs and their automorphism
groups. In Sec. III, we review hitting times for discrete time
quantum walks, and give examples where they can become
infinite. We discuss what properties of a quantum walk lead
to infinite hitting times, and derive a sufficient condition
based on the degeneracy of the evolution operator. In Sec. IV
we briefly review group representation theory, and use it to
show that there exist graphs which have infinite hitting times
for both discrete and continuous walks. We provide examples
in each case. In Sec. V we discuss the symmetry of the graph
and its influence on the quantum walk.

II. RANDOM WALKS ON GRAPHS

A. Quantum walks: discrete and continuous

Quantum walks are primarily of two types. Depending on
the way the evolution operator is defined, they can be either
discrete time or continuous time. These two definitions of
quantum walks are not exactly equivalent to the two types of
classical random walks. While they are both based on the
classical definitions, unlike the classical case the discrete
quantum walk does not reduce to the continuous walk when
we let the time step between repeated applications of the
unitary tend to zero. This is because discrete time walks need
an extra Hilbert space, called the “coin” space �from the idea
that one flips a coin at each step to determine which way to
walk�, and taking the limit where the time step goes to zero
does not eliminate this Hilbert space. �However, see Ref.
�23� for a different treatment of this limit.� Therefore, the
properties of discrete and continuous walks are different.
Though there is no obvious reason why one should be pre-
ferred, in some cases it has been shown that coins make these
walks faster �24�.

1. Discrete time walks

A discrete time quantum walk can broadly be defined as
the repeated application of a unitary evolution operator on a
Hilbert space whose size depends on the graph. This Hilbert
space usually consists of the space of possible positions �i.e.,
the vertices� together with the space of possible directions in
which the particle can move along from each vertex �the coin
space�. In this paper, we only consider d-regular, undirected
and d-colorable graphs. We will briefly review the definition
of these graph properties.

A “regular” graph is one where every vertex is connected
to the same number d of other vertices. This number is called
the “degree” of the graph. A graph is “undirected” if for
every edge between vertices A and B going from A to B, an
edge goes from B to A as well. In this case, we identify the
edge from A to B with the edge from B to A, and consider
them a single edge. A regular, undirected graph with N ver-
tices of degree d is considered “d-colorable” if the edges
incident on every vertex can be numbered 1 through d such
that every edge between two vertices has the same number at
either end. Not all d-regular and undirected graphs can be
d-colored. A simple example is the triangle graph where
N=3 and d=2. �See Fig. 1.�

For d-regular, undirected and d-colored graphs, the Hil-
bert space of the walk is Hp � Hc, i.e., the tensor product of
the position and direction �or coin� space. The evolution op-
erator Û is given by Û= Ŝ�Î � Ĉ�, where Ŝ is called the shift

matrix and Ĉ is the coin matrix. The shift matrix encodes the
structure of the graph and is very similar to its adjacency
matrix. The vertices, numbered �0� through �N−1�, are basis
states for the vertex Hilbert space Hp and the set of all di-
rections from each vertex, numbered �1� through �d�, are ba-
sis states for the coin Hilbert space Hc. In this basis, the shift
matrix for the graph can be given the explicit form

Ŝ = �
v

�
i

�v�i�,i��v,i� ,

where v�i� is the vertex connected to v along the edge
numbered i.

The coin matrix Ĉ acts only on the coin space, and “flips”

the directions before the shift matrix is applied. Then Ŝ
moves the particle from its present vertex to the vertex con-
nected to it along the edge indicated by the coin direction.

Though Ĉ can be any unitary matrix, usually coins with
some structure are considered. The coins that we used in our

previous analysis are the Grover coin Ĝ and the Discrete

Fourier Transform �DFT� coin D̂. The matrices for these
coins are given by

Ĝ = 2������ − I =	
2

d
− 1

2

d
. . .

2

d

2

d

2

d
− 1 . . .

2

d

] ] � ]

2

d

2

d
. . .

2

d
− 1

 �1�

and

FIG. 1. �Color online� Examples of two-colorable �square� and
non-two-colorable �triangle� regular graphs of degree 2, where the
colors are numbered 1 and 2.
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D̂ =
1

�d	
1 1 1 . . . 1

1 � �2 . . . �d−1

] ] ] � ]

1 �d−1 �2�d−1� . . . ��d−1��d−1�,

 , �2�

where ���= 1
�d�i�i� and �=exp�2�i /d�.

2. Continuous time walks

Continuous time quantum walks were defined by Farhi et
al. in Ref. �6�. For an undirected graph G�V ,E�, the unitary

evolution operator is defined as Û=exp�iĤt�, where Ĥ is
taken to be the adjacency matrix of the graph. Here again,
the vertices of the graph form a basis for the Hilbert space on

which Û is defined. This gives rise to the following
Schrödinger equation:

i
d

dt
�v���t�� = �v�Ĥ���t�� . �3�

Ĥ is a symmetric matrix �and hence Û unitary� if the graph is
undirected. This walk has a structure very similar to that of

continuous time Markov chains. The adjacency matrix Ĥ,
which acts as the Hamiltonian, is of the form

Hi,j = �1 if i and j share an edge,

0 otherwise.
 �4�

As can be seen, this walk has no coin and so the Hilbert

space on which Û acts is only the vertex space Hp.

B. Cayley graphs and automorphism groups

Cayley graphs are defined in terms of a group G and a set
S consisting of elements from G such that the identity ele-
ment e�S. Given G and S, the resulting �right�-Cayley
graph ��G ,S� is one whose vertices are labeled by the group
elements, i.e., there is one vertex for every group element,
and two vertices g and h are connected by a directed edge
from g to h if g−1h�S �see Ref. �25��. Another way to look
at this definition is that from any vertex g of a Cayley graph,
there are �S� outgoing edges, one to each of the vertices gs,
∀s�S. A Cayley graph will be connected if and only if the
set S is a generating set for G, and it will be undirected if
s−1�S, ∀s�S. The degree of such a graph is �S�, the cardi-
nality of the generating set. Finally, a d-regular Cayley graph
can be d-colored if s2=1, ∀s�S, i.e., s−1=s.

Examples of Cayley graphs on which quantum walks
have been studied include the line ��Z , �1,−1��; the cycle
��Zn , �1,−1��; the hypercube ��Z2

n ,X� where the set X is the
set of canonical generators ��1,0,0,…,0�, �0,1,0,…,0�,…,
�0,0,0,…,1��; and the graph on the symmetric group ��Sn ,Y�,
where Y is a generating set for Sn. Let us look at the hyper-
cube as an example of a Cayley graph where quantum walks
have been extensively studied.

Consider the hypercube, which has �Z2
n�=2n vertices each

with a degree of �X�=n. The vertices can be labeled by an
n-bit string from �0,0,…,0� through �1,1,…,1�. Two vertices
are adjacent if they differ only by a single bit. Vertex v� is

connected to n vertices given by v� � s�, ∀s��X, where �

stands for the bit-wise XOR of the bit strings v� and s�. One
important property of the hypercube is that it can be
n-colored, since s� � s�=e�, ∀s��X where e� = �0,0 , . . . ,0� is the
identity element. The unitary evolution operator for a dis-

crete walk on the hypercube becomes Û= Ŝ�Î � Ĉ�, where Ŝ
has the form

Ŝ = �
s�

�
v�

�v� � s���v� � � �s���s�� .

Since the vertices of the hypercube are bit strings, and adja-
cent vertices are those that differ by one bit, the shift matrix
of the discrete walk on the hypercube has a natural form
given by

Ŝ = X̂ � Î � ¯ � Î � �s1
� ��s1

� � + Î � X̂ � ¯ � Î � �̂�s2
� ��s2

� �

+ ¯ + Î � Î � ¯ � X̂ � �sn
� ��sn

� � , �5�

where X̂ stands for the Pauli �x operator. This structure of Ŝ
reflects the property of the hypercube that moving along an
edge from v� corresponds to flipping one bit of v� . This struc-
ture is also useful in determining its group of symmetries as
we shall see below.

An “automorphism” of a graph is a permutation of its
vertices such that it leaves the graph unchanged. The set of
all such permutations is the “automorphism group” of the
graph. When the edge labels or colors in the graph are im-
portant, as in the case of a discrete quantum walk, we restrict
ourselves to those automorphisms which preserve the edge
labels. In other words, an edge connecting two vertices has
the same label before and after the permutation. Such auto-
morphisms are called “direction-preserving.” In general, we
could consider automorphisms where we permute the direc-
tion labels along with the vertices to obtain the same graph
with the same coloring. This would form a larger group G of
which the direction-preserving automorphisms are a sub-
group H.

Since the vertex Hilbert space Hv has its basis elements in
one-to-one correspondence with the vertices of the graph,
and the coin Hilbert space has a basis in correspondence with
the direction labels, the automorphisms �which are just per-
mutations of vertices and directions� are permutation matri-
ces. In fact, these are all the permutation matrices on Hv

� Hc that leave Ŝ unchanged, i.e., �all P̂ � P̂ŜP̂†= Ŝ, where P̂
is a permutation matrix�. In this representation, any

direction-preserving automorphism has the structure P̂v � Îc,

where P̂v acts solely on Hv and Îc on Hc. Such automor-
phisms become important if we wish to consider the symme-

tries of Û� Ŝ�Î � Ĉ�. Clearly, any automorphism of this type

is a symmetry of Û, since

�P̂v � Îc��Ŝ�Î � Ĉ���P̂v � Îc�†

= ��P̂v � Îc�Ŝ�P̂v � Îc�†��Î � Ĉ� = Ŝ�Î � Ĉ� . �6�

Elements of G in general do not act trivially on the coin

space. Because of this, they need not be symmetries of Û
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unless the coin flip operator Ĉ respects these symmetries.
To illustrate all this, consider the example of a hypercube

in two dimensions �i.e., a square�. The vertex labels are
��00�, �01�, �10�, �11�� �which also form a basis for Hv�; the
edges connecting �00� to �01� and �10� to �11� are both la-
beled 1, and the edges connecting �00� to �10� and �01� to
�11� are both labeled 2. Thus, the transformation �00�↔ �01�
and �10�↔ �11�, or the transformation �00�↔ �10� and
�01�↔ �11�, or both together, are automorphisms of this
graph which need no permutation of the directions. Together
with the identity automorphism �which permutes nothing�,
these permutations form the direction-preserving subgroup
H. In a matrix representation on the Hilbert space Hv � Hc,
they are

	
0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 � Îc, 	

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 � Îc,

	
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 � Îc, 	

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 � Îc,

where Îc is the 2�2 identity matrix acting on the coin
space. These permutations can be easily seen to be

H= �Î � X̂ � Î , X̂ � Î � Î , X̂ � X̂ � Î , Î � Î � Î�. Just as in the rep-

resentation of Ŝ matrix in terms of the Pauli X̂ operators
given by Eq. �5�, this group denotes a bit flip in the first,
second or both bits of each vertex, together with the identity,
which gives no flip. �See Fig. 2.�

The permutation �10�↔ �01�, reflecting along the diago-
nal while keeping �00� and �11� fixed, will be an automor-
phism only if we interchange the directions 1↔2. Similarly,

the permutations �00�↔ �11�, �00�→ �01�→ �11�→ �10� and
�00�→ �10�→ �11�→ �01� are automorphisms when we inter-
change the two directions. If we view these permutations
along with those obtained above, we obtain a new group G
for which H is a subgroup. In a matrix representation, the
new automorphisms �clockwise starting from top left in Fig.
1� are

	
0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

 � X̂c, 	

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 � X̂c,

	
0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

 � X̂c, 	

0 1 0 0

0 0 0 1

1 0 0 0

0 0 1 0

 � X̂c,

where X̂c acts on the coin space and corresponds to an inter-
change of the two directions. �See Fig. 3.� These four ele-

ments of G need not be symmetries of Û, since the coin need

not be symmetric under conjugation with X̂c. However, for
the hypercube, if we use the Grover diffusion matrix as the
coin, then automorphism group G is indeed its group of sym-
metries, since the Grover coin is symmetric under any per-
mutation of its basis elements. The symmetry group of the
evolution operator would be H if the DFT coin is used, since
the DFT does not have permutation symmetry. It is important
to note that the symmetry group defined above is not the only
thing that influences the degeneracy of the evolution opera-

tor. Degeneracy of the coin flip operator Ĉ can also induce
degeneracy in the evolution operator, and the coin may be
degenerate even if it does not have permutation symmetry
�as with the DFT coin�. We discuss this in more detail in Sec.
IV B after describing the relationship between symmetry and
degeneracy.

It can be shown that the direction-preserving automor-
phism group H for any Cayley graph is isomorphic to the
group on which the graph is defined. This is because any
direction-preserving automorphism of a Cayley graph is a

FIG. 2. �Color online� The direction-preserving automorphism
group of the n=2 hypercube.

FIG. 3. �Color online� Automorphisms which interchange direc-
tions for the n=2 hypercube.
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left translation by a group element, and conversely all left
translations are direction-preserving automorphisms. The
first part of the statement is easy to see. Consider any left
translation La :G→G which has the action La�g�=ag, for all
g�G. Now, given vertices g and h in G, they are connected
by an edge from g to h if g−1h=s, where s�S. Clearly, after
the transformation we still have �ag�−1�ah�=g−1h=s and
hence this automorphism preserves the direction labels.
Since the group elements are basis states of the vertex Hil-
bert space, a left translation by a group element corresponds
to a permutation matrix on this Hilbert space. The fact that
every direction-preserving automorphism of a Cayley graph
is a left translation by a group element becomes important in
the discussion of regular and irreducible representations in
Sec. IV.

Before we conclude this section, let us explicitly construct
the representation of the automorphism group for the hyper-
cube, which has H�Z2

n and G�HSn. In terms of the Pauli

operators the representation of H is �ÎÎÎ¯ Î � Îc , X̂ÎÎ¯ Î

� Îc , X̂X̂Î¯ Î � Îc , . . . , X̂X̂X̂¯ X̂ � Îc�, where the tensor prod-

uct symbol has been dropped in the vertex space, and Îc is
the identity operator in the coin space. In fact, the represen-

tation of H for any Cayley graph will be of the form P̂ � Î,

where P̂ is a permutation matrix on the vertex space and Î is
the identity on the coin space. The group G will become
HSn= �h� �h�H ,��Sn�, where Sn is the permutation group
on n elements which is assumed to act on the direction
labels.

III. HITTING TIMES

A. Definition for quantum walks

The hitting time �h of a classical random walk is defined
as the average time for the walk to hit a designated
“final” vertex v f given that the walk began with some initial
distribution pi:

�h = �
t=0

	

tp�t� , �7�

where p�t� is the probability of being in the final vertex for
the first time at time step t. In order to carry this notion of
hitting time over to the quantum case, we need to make the
meaning of p�t� more precise. In particular, we need to de-
fine clearly what “for the first time” means for a quantum
walk. As described in Ref. �15�, we do this by performing a
measurement of the particle at every step of the walk to see
if the particle has reached the final vertex or not. The

measurement M which is used has projectors P̂f and

Q̂f = Î− P̂f representing the particle being found or not found
at the final vertex, respectively. The projector is

defined P̂f = �xf��xf� � Îc, where �xf� is the final vertex state

and Îc is the identity operator on the coin space. Using this
definition, each step of the measured walk consists of an

application of the unitary evolution operator Û followed by
the measurement M.

Now we can use the same expression �7� for the hitting
time, where the probability p�t� becomes

p�t� = Tr�P̂fÛ�Q̂fÛ�t−1
0�U†Q̂f�t−1U†P̂f� . �8�

To explicitly sum the series �7� using the expression for p�t�
in Eq. �8�, we rewrite the expression in terms of superopera-
tors �linear transformations on operators� N and Y, defined
by

N
 = Q̂fÛ
U†Q̂f ,

Y
 = P̂fÛ
U†P̂f . �9�

In terms of N and Y, p�t�=Tr�YNt−1
0�. We introduce a new
superoperator O�l� which depends on a real parameter l:

O�l� = l�
t=1

	

�lN�t−1, �10�

which is a function of a parameter l. The hitting time now
becomes

�h = � d

dl
Tr�YO�l�
0��

l=1
. �11�

If the superoperator I− lN is invertible, then we can
replace the sum �10� with the closed form

O�l� = l�I − lN�−1. �12�

�The case when I− lN is not invertible is discussed in detail
in the next section.� The derivative in Eq. �11� is

dO
dt

�1� = �I − N�−1 + N�I − N�−2 = �I − N�−2. �13�

This gives us the following expression for the hitting time:

�h = Tr�Y�I − N�−2
0� . �14�

To evaluate Eq. �14�, we write these superoperators as
matrices using Roth’s lemma �26�. As shown in Ref. �15�, we
can then vectorize the density operators and operators on
states, and write the action of superoperators as simple ma-
trix multiplication. Any matrix can be vectorized by turning
its rows into columns and stacking them up one by one, so
that a D�D matrix becomes a column vector of size D2. For
example,

�a11 a12 a13

a21 a22 a23

a31 a32 a33
� →	

a11

a12

a13

a21

a22

a23

a31

a32

a33


 .
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Consequently the superoperators become matrices of size
D2�D2. This method of vectorization takes operators on one
Hilbert space H to vectors in another Hilbert space H�=H
� H* and so superoperators in H are operators in H�. Note
that a basis ��uij�� for H� can be obtained from a basis ��vi��
for H by defining

�uij� = �vi� � �v j�*. �15�

For our superoperators N and Y we then get

�N
�v = ��Q̂fÛ� � �Q̂fÛ�*�
v,

�Y
�v = ��P̂fÛ� � �P̂fÛ�*�
v. �16�

Let N= �Q̂fÛ� � �Q̂fÛ�* and Y= �P̂fÛ� � �P̂fÛ�*. The hitting
time becomes

�h = Iv�Y�I − N�−2
v� . �17�

Using this vectorization transformation, we treat the super-
operators as operators on a larger Hilbert space and thus can
find their inverses. But, the expression in Eq. �17� is not
always well defined, as we shall see below, because the ma-
trix I−N may not be invertible. We will show that when it is
not invertible, it means that the hitting time becomes infinite
for some initial states, and vice versa. This property of quan-
tum walks having infinite hitting times does not have a
classical analog.

B. Infinite hitting times

We will now show that it is possible for hitting times to be
infinite, and derive a sufficient condition for the unitary evo-
lution operator to allow infinite hitting times. We begin by

forming the projector P̂ onto the subspace spanned by all

eigenstates of Û which have no overlap with the final vertex.
This projector is orthogonal to the projector onto the final

vertex, P̂P̂f = P̂fP̂=0, and commutes with Û, �Û , P̂�=0. We
assume �for the moment� that this projector is nonzero; later,
we will find a sufficient condition for this to be true, and
exhibit quantum walks which satisfy this condition. We can
write any initial state as a superposition of a state in the

subspace projected onto by P̂ and a state orthogonal to it,
giving the decomposition

��� = P̂��� + �Î − P̂���� . �18�

It is easy to see that if ��� lies entirely inside P̂, i.e.,

P̂���= ���, then under the evolution the subsequent states
will never have any component in the final state and the
probability defined in Eq. �8� will be zero. Indeed, since

�P̂ , Û�=0 and �P̂ , Q̂f�=0,

p�t� = Tr�P̂fÛ�Q̂fÛ�t−1
0�Û†Q̂f�t−1Û†P̂f� �19�

=Tr�P̂fÛ�Q̂fÛ�t−1P̂
0P̂�Û†Q̂f�t−1Û†P̂f� �20�

=Tr�P̂fP̂Û�Q̂fÛ�t−1
0�Û†Q̂f�t−1Û†P̂†P̂f� �21�

=0, �22�

where 
0= ������. Therefore, the hitting time for this initial
state is infinite. More generally, if ��� has nonzero overlap

with P̂, P̂����0, then that component of ��� can never
reach the final vertex. The probability of ever hitting the final
vertex if one starts with this initial state is

p = �����Î − P̂�����2 � 1, �23�

and the hitting time is again infinite.
To construct this projector, we look at the spectral decom-

position of Û. If Û has at least one sufficiently degenerate
eigenspace, then we can construct a subspace of this
eigenspace which has a zero overlap with the final state.
For instance, consider one such degenerate eigenspace which
has a degeneracy of k. Since the vector space at the final
vertex is d dimensional �i.e., it has d coin degrees of free-
dom�, we would be solving the following d�k system of
homogeneous equations:

a1	vN−d+1
1

]

vN
1 
 + a2	vN−d+1

2

]

vN
2 
 + ¯ + ak	vN−d+1

k

]

vN
k 
 = 0.

�24�

Here, we use a labeling where the final vertex in some coin
state occupies the last d entries of the eigenvectors. The sub-
script refers to the component of the eigenvector, and the
superscript distinguishes the eigenvectors in the degenerate
eigenspace. This system is under-determined if k�d, and it
will always have a nontrivial solution—in fact, it will have a
space of solutions of dimension k−d. Therefore, it is suffi-

cient that there exist at least one eigenspace of Û with di-
mension greater than the dimension of the coin, in order to

have a nonzero projector P̂. If there is more than one degen-
erate eigenvalue with multiplicity greater than d, the sub-

space projected onto by P̂ will include all the eigenvectors of

Û which have no overlap with the final vertex.
The condition derived above is closely related to the ques-

tion of invertibility of I−N in Eq. �17� of the previous sec-
tion. Here we show that I−N is not invertible if and only if

the projector P̂ is nonzero. Furthermore, in the case when
I−N is not invertible, the hitting time for a state or density

matrix whose support has no overlap with P̂ is calculated by
replacing the inverse of I−N with its pseudoinverse in Eq.
�17�.

Assume that the projector P̂ is nonzero. Then there is at

least one eigenvector �v� of Û such that P̂f�v�=0. Therefore,

�Q̂fÛ � Q̂f
*Û*���v� � �v�*� = �Q̂f � Q̂f

*���v� � �v�*�

= �v� � �v�*, �25�

since Û�v�=exp�i��v� and Û*�v�*=exp�−i��v�*, and P̂f�v�
=0 implies that Q̂f�v�= �v�. Therefore, �I−N��v� � �v�*=0, I
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−N has a nonzero nullspace, and hence is not invertible. This
proves the “if” direction.

To prove the “only if” direction, assume that I−N is not
invertible. This implies that there exists a normalized vector
�u��H � H* such that

�Î − Q̂fÛ � Q̂f
*Û*��u� = 0 ⇒ Q̂fÛ � Q̂f

*Û*�u� = �u� . �26�

The vector �u� is an eigenvector of Q̂fÛ � Q̂f
*Û* with eigen-

value 1. Since Q̂f � Q̂f
* is a projector, the vector �u� must

therefore lie in the eigenspace of eigenvalue 1 of both

Q̂f � Q̂f
* and Û � Û*. This can only be true if �u� is of the

form

�u� = �
i,j

aij�vi� � �v j�*, �27�

where the ��vi�� are eigenvectors of Û, and aij is only non-

zero if �vi� and �v j� lie in the same eigenspace of Û and

P̂f�vi�= P̂f�v j�=0. Note that the vector �u� need not corre-
spond to a physical state in the Hilbert space of the walk. But

the existence of such a �u� means that the projector P̂ is
nonzero, since there must exist at least one �vi� which has a

zero overlap with P̂f. This proves the “only if” direction.
We have shown that if I−N is not invertible then the

projector P̂ is nonzero and vice-versa. Now we will see that

if a density operator 
 is orthogonal to P̂, 
P̂= P̂
=0, its
corresponding vector 
v lies outside the null space of I−N. If


 is orthogonal to P̂, then when written in the eigenbasis

��vi�� of Û, the diagonal components �vi�
�vk� are nonzero if

and only if P̂f�vi��0. This implies that for the corresponding
vectorized quantity 
v, we have

Iv . �P̂f � P̂f
*�
v � 0. �28�

For any 
v,

Iv . �P̂f � P̂f
*��Q̂fÛ � Q̂f

*Û*�
v = 0. �29�

Therefore, N
v�
v, i.e., 
v does not lie in the null space of

I−N. Moreover, if 
 is orthogonal to P̂, then so are N
 and
YNt
. This is easy to see, since from Eq. �9� we get

P̂N
 = P̂�Q̂fÛ
Û†Q̂f� = Q̂fÛP̂
Û†Q̂f = 0, �30�

since P̂Q̂f = P̂ and �Û , P̂�=0. Similarly, we obtain P̂Y
=0,
since

P̂Y
 = P̂�P̂fÛ
Û†P̂f� = 0. �31�

Therefore, if 
 is orthogonal to P̂, then all the terms of the
type YNt−1
 for all t and hence all the terms inside the trace

of Eq. �11� are orthogonal to P̂, which means that the vec-
torized versions of all terms inside the trace in Eq. �11� lie
outside the null space of I−N. Thus, for states that do not

overlap with P̂, the hitting time is finite as would be ex-
pected, and is given by the same formula Eq. �17� with the
inverse replaced by a pseudoinverse.

We focus on the discrete time quantum walk for the re-
mainder of this section, considering the walk on the hyper-
cube in particular. It was observed in numerical simulations
�15� that for a walk on the hypercube with the DFT coin, an
initial state given by

��� = �00 ¯ 0� �
1

�d
�

i

�i� �32�

has an infinite hitting time. The phenomenon of infinite hit-
ting times is not restricted to the walk with the DFT coin,
however. Numerical simulations, followed by analytical cal-
culations, have shown that it also occurs with the Grover
coin, but for different initial states. In fact, it turns out that
for the Grover coin, the symmetric initial state �32� is the
only initial state localized at the vertex �00¯0� that has a
finite hitting time. Any other superposition of the coin states
for that vertex will give an infinite hitting time, because all

such states have a nonzero overlap with P̂.
Given any vertex v on a graph, it is natural to ask if there

exists any superposition of its coin states which overlaps

with P̂, and for which coin state the overlap is maximum and
for which it is minimum �or zero�. We can write the projector

P̂ in the form

P̂ = �
i,j,k,l

Aijkl�xi��xj� � �k��l� , �33�

where ��xi�� are the vertices and ��k�� are the directions.
Suppose the initial state is

��� = �v� � �
i

�i�i� � �v� � ��� . �34�

Its overlap with the projector P̂ is given by

���P̂��� = �
k,l

Avvkl�k
*�l. �35�

To find the superposition of coin states such that the overall

initial state has the least �or greatest� overlap with P̂, define
the matrix

Ĉv = Trvertices�P̂��v��v� � Îcoin��, �Ĉv�kl = Avvkl. �36�

The overlap of the initial state with P̂ can be written in terms
of this matrix as

���P̂��� = ���Ĉv��� . �37�

The matrix Ĉv is Hermitian and positive, and hence has a
spectral decomposition into a complete orthonormal basis of
eigenstates with non-negative eigenvalues. Assuming that

��i , �ei�� is the spectral decomposition of Ĉv, we can rewrite
the overlap as

���P̂��� = �
i

�i����ei��2. �38�

From the above expression, we see that the overlap is maxi-
mum �or minimum� if ��� is in the direction of the eigenvec-
tor with the largest �or smallest� eigenvalue, and zero if ��� is
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an eigenvector with zero eigenvalue. Therefore, if Ĉv does
not have a zero eigenvalue �i.e., is positive definite�, then for
that vertex every superposition of coin states will overlap

with P̂. In other words, the hitting time will be infinity if one
starts at that vertex no matter what coin state one chooses.
Numerical calculations for the Grover and the DFT coins on
the hypercube show that for the vertex �00¯0�, an equal
superposition of coin states is the only superposition that has

a zero overlap with P̂ for the Grover coin, and no superpo-
sition of coin states has a zero overlap for the DFT coin.

Moreover, Tr�P̂� for the Grover coin on the hypercube for
n=4 is 32, which is fully half the dimension of the total
space �dim=24�4=64�. These examples suggest that infi-
nite hitting times may be a generic phenomenon on graphs
with symmetry.

IV. SYMMETRIES AND DEGENERACY

A. Representations of finite groups

We saw in the previous section that degeneracy of the
evolution operator leads to infinite hitting times. One of the
main sources of degeneracy in quantum mechanics is sym-

metry. Since the Ŝ matrix which makes up part of the evolu-
tion operator encodes the connections of the graph, it is natu-
ral to expect that symmetries of the graph will produce
symmetries of the evolution operator. In this section, we
analyze this idea.

Is it sufficient to consider only the symmetries of the
graph? Apart from the symmetries induced from the graph,
the evolution operator may have additional symmetries of its
own which lead to additional degeneracy. But such symme-
tries are difficult to analyze in generality, and depend on the
details of how one defines the quantum walk. First, there is a
choice between the discrete and the continuous walk. Sec-

ond, for the discrete walk, if the structure Û= Ŝ�Î � Ĉ� that
was described Sec. II is used, there is still the freedom to use
any unitary matrix as the coin. In order to generalize our
discussion of symmetries to any walk, we restrict attention to
the symmetries induced by the graph alone. This naturally
leads us to the question: “Are there graphs with sufficient
symmetry such that, for any walk that is defined on the
graph, the resultant evolution operator will have enough de-
generacy to give rise to infinite hitting times?” It turns out
that such graphs do exist, and we give an example of such a
class of graphs. We will comment briefly on the effect of
additional symmetries of the coin for the hypercube later in
the paper.

First, let us briefly review linear representations of finite

groups, and describe how the symmetry group of Û affects
its degeneracy by determining the dimensions of the irreduc-
ible representations of the group. �For further details, see, for
example, Ref. �27�.� A linear representation of a finite group
G on a finite-dimensional vector space V is a map
� :G→GL�V�, such that ��gh�=��g���h�. GL�V� is the
space of invertible linear maps of V onto itself. If V is d
dimensional, and we choose a basis of d vectors in V,
then ��g� for g�G becomes a d�d invertible matrix.

The trace of this matrix is called the “character” of the rep-
resentation. Therefore, characters are maps � :G→C with
��g�=Tr���g��. Two representations �1 and �2 of the group
G on vector spaces V1 and V2, respectively, are considered
equivalent if there exists an invertible linear map
� :V1→V2 such that � ��1�g�=�2�g� ��, for all g�G. The
characters of equivalent representations are equal, a fact
which follows from the cyclic property of the trace operator.

Assume that the vector space V has an inner product de-
fined on it. Since the group G is assumed finite, it can be
shown that any representation � is equivalent to a unitary
representation—there exists a basis for V in which ��g� is a
unitary matrix for all g�G �see Ref. �28��. A vector space W
is said to be invariant or stable under the action of G if
x�W⇒��g�x�W for all g�G. If the vector space V has a
subspace W which is invariant under the action of G, then it
can be shown that its orthogonal complement W� is also
invariant under G, and so V can be decomposed

V = W � W�. �39�

This means that the representation � as a matrix on V can be
written in a block diagonal form consisting of two blocks as

� = ����W 0

0 ���W�
� , �40�

where ���W and ���W� are the restrictions of � to the sub-
spaces W and W�.

The linear map � :G→GL�V� is called an “irreducible”
representation �irrep�, if it is a representation and no non-
trivial subspace of V is stable under the action of G. Equiva-
lently, it is an irreducible representation if it is not a direct
sum of two representations. Any representation on V can, by
an appropriate choice of basis, be written as a representation
in block diagonal form, where each block corresponds to an
irrep. So V can be decomposed in the following way:

V = W1 � W2 � ¯ � Wk, �41�

where each of the Wi is stable under the action of ��G�. This
decomposition is unique, up to reordering of the spaces and
an overall equivalence transformation. By an abuse of nota-
tion, we will use the same labels �V or Wi� to refer both to the
vector space and to the group representation on that space.
Each component Wi of the decomposition in Eq. �41� is iso-
morphic to an irrep, and the number of such Wi isomorphic
to a given irrep does not depend on the details of the decom-
position.

If we define an inner product for characters,

����� = �1/�G�� �
g�G

��g���g�*, �42�

it can be shown that the number of times an irrep with char-
acter �i occurs in a representation with a character � is given
by �� ��i� �27�.

We now define a regular representation of a group G.
Suppose �G�=n, and let V be an n-dimensional vector space.
Define a basis for V �et� which is labeled by the group ele-
ments of t�G. A regular representation of G is a map
� :G→V such that ��g�et=egt. It can easily be seen that the
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action of G on the basis vectors is a left translation, and in
matrix form the representations of the group elements will be
permutation matrices. An important property of the regular
representation is that its decomposition into irreps contains
all the irreps of the group in it, and each irrep has a multi-
plicity equal to its dimension �27�. Therefore, we can write

V = n1W1 � n2W2 � ¯ � nkWk, �43�

where we use the notation nW to mean n copies of the space
W, nW=W � W � ¯W. The �Wi� are all the inequivalent ir-
reps of the group, and ni is the dimension of Wi.

It will be useful to note that all Abelian groups have one-
dimensional irreps. The converse of this statement is also
true: all groups which have only one-dimensional irreps are
Abelian. Finally, suppose �1 :G→V1 and �2 :G→V2 are two
linear representations of G on V1 and V2, then �1 � �2 :G
→V1 � V2 is a representation of G on V1 � V2. �The tensor
product Wi

1
� Wj

2 of two irreps Wi
1 and Wj

2 of V1 and V2,
respectively, need not be an irrep of V1 � V2, however.�

Now consider the unitary operator Û on a finite dimen-
sional vector space V which has a group of symmetries G.
This means that the matrices ��g� representating the ele-

ments of g�G on V all commute with Û : ���g� , Û�=0.

Since Û is unitary, we can decompose V into a direct sum of

eigenspaces of Û:

V = U1 � U2 � ¯ � Um. �44�

We can also decompose V into a direct sum of irreps of G:

V = W1 � W2 � ¯ � Wk. �45�

It can be shown using Schur’s lemma �see Ref. �27�� that

since G is the group of symmetries of Û, each irrep of G

must lie entirely inside some eigenspace of Û. Therefore, for
some i and j, if Wi�Uj then the degeneracy of Uj is at least
equal to the dimension of Wi. Using this fact, we show now
that if a graph has sufficient symmetry �in a particular sense�,
then it will lead to quantum walks with infinite hitting times.

B. Discrete time walks on Cayley graphs

It was observed in Sec. II that the direction-preserving
automorphism group of a Cayley graph is the group of left
translations of the group elements. Since every group ele-
ment corresponds to a vertex of a Cayley graph and every
vertex corresponds to a basis element on the vertex Hilbert
space �Hv� of the walk, the automorphism group of a Cayley
graph is a regular representation of G on Hv. Every
direction-preserving automorphism of a Cayley graph will
induce a representation on this Hilbert space which looks

like ��g� � Îc, where ��g� is the regular representation of G

on Hv and Îc is the identity on the coin space. �Note that

��g� � Îc is not a regular representation of G.� In order to
prove that this walk has an infinite hitting time for certain

initial states, we need to show that Û has at least one degen-
erate eigenspace whose dimension is greater than the dimen-
sion of the coin. Since every irrep lies completely inside an

eigenspace, if one of the irreps occurring in � � Î has a di-
mension greater than the dimension of the coin, then we can
say that the eigenspace containing that irrep has a degen-
eracy greater than the dimension of the coin. We now show

that every irrep of G occurs in � � Î. We have,

Tr�� � Î� = d� , �46�

where �=Tr��� and d is the dimension of the coin. If �i is
any irreducible character of G, then

„Tr�� � Î���i… = d����i� . �47�

Since � is the character of the regular representation of G,
�� ��i��0 for any irreducible character �i. Therefore, all ir-

reps of G occur in � � Î, and if any irrep of G has a dimen-
sion greater than the dimension of the coin then there is an

eigenspace of Û whose dimension is greater than the dimen-
sion of the coin. So for Cayley graphs, a sufficient condition
for any discrete-time quantum walk to have infinite hitting
times for some initial conditions is that the group used to
define the graph have an irrep with dimension greater than
the degree of the graph.

For a regular graph which is not a Cayley graph, this can
be modified as follows. A discrete time walk defined on a
graph will have an infinite hitting time for certain initial
states if at least one irrep occurring in the induced represen-
tation �on the Hilbert space of the walk� of the direction-
preserving automorphism group of the graph has a dimen-
sion greater than the degree of the final vertex. This is a
somewhat more difficult to evaluate, since unlike a Cayley
graph, the induced representation of the symmetry group for
a general graph is not guaranteed to include every irrep. But
in principle it is not difficult to check.

For an example of a graph with infinite hitting times,
consider the Cayley graph on the symmetric group
Sn :��Sn ,X�, where X is a generating set for Sn. In order to

use the form Û= Ŝ�Î � Ĉ�, the graph needs to be �X�-colored
and so we chose a generating set whose elements x are such
that x2=e, where e is the identity element. For Sn, such a
generating set is a set of n−1 transpositions since all the
transpositions are not necessary to generate Sn. These trans-
positions �not unique� are �1,2� , �1,3� , . . . , �1,n�, where
�i , j� denotes the exchange of the ith and jth elements. These
form the basis for the coin space, and so the dimension of the
coin is the cardinality of the generating set �X�=n−1. There-
fore, a symmetric group Sn which has an irrep with a dimen-
sion greater than n−1 will have infinite hitting times for
some initial conditions for any coin matrix. It turns out that
for n�5 any symmetric group Sn possesses this property
�28�, and so the corresponding Cayley graph ��Sn ,X� will
have infinite hitting times.

All this indicates that it is not so much the size of the
symmetry group that matters for infinite hitting times, but
rather the kind of group, or more precisely the size and num-
ber of irreps of the group occurring in the induced represen-
tation. Consider the hypercube, which has the group
H�Z2

n as its symmetry group �if the coin has no permutation
symmetry such as the DFT coin�. This group is Abelian and
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hence has only one-dimensional irreps. So one would expect
the unitary evolution operator having this as its symmetry
group to have very little or no degeneracy. But when the
DFT coin is used the evolution operator has sufficient degen-
eracy to have infinite hitting times. This is because it is the
degeneracy of the DFT coin, rather than the symmetry group,
that makes the evolution operator degenerate. This is sup-
ported by numerical evidence which shows that when a ran-
domly generated nondegenerate or slightly degenerate uni-
tary coin is used instead of the DFT, the unitary evolution
operator has a very small or no degeneracy. The degeneracy
of the evolution operator with an Abelian symmetry group
seems to come only from the coin.

C. Continuous time walks

In the prior discussion of infinite hitting times we have
used the definition �7� for the hitting time, which is only
well-defined for discrete time quantum walks. We have not
described a suitable measurement process to define the hit-
ting time for a continuous time walk; nor is it obvious how to
do so in the quantum case, where the presence or absence of
measurements has a profound effect on the dynamics. Any
notion of hitting time for the continuous case, however, must
include a measurement performed on the final vertex at some
time which will verify if the particle has arrived there or not.
This leaves an ambiguity in the definition of hitting time for
finite hitting times, but the notion of an infinite hitting time
still has an intuitive definition: a continuous time quantum
walk has infinite hitting time if, for any set of measurements
on the final vertex at any sequence of times, there is always
a bounded, nonzero probability that the particle will never be
found at the final vertex.

Continuous time quantum walks do not have a coin ma-
trix, and their evolution operator for undirected graphs is

Û�t�=exp�iĤt� where Ĥ is the adjacency matrix of the graph.
Since there is no coin, the degree of freedom at any given

vertex is one dimensional. Any eigenspace of Û with a
degeneracy greater than one can therefore contribute to the

projector P̂ having zero overlap with the final vertex and

commuting with Û. Whenever a measurement on the final
vertex is performed, the measurement operators will com-

mute with P̂ since P̂�xf��xf�=0, where �xf� is the final vertex

state. A nonzero P̂ necessarily means an infinite hitting time

for initial states that overlap with it. Therefore, only if Û is
completely nondegenerate, and none of its eigenvectors have
a zero overlap with the final state, will there be finite hitting
times for all initial states. This is a lesser degree of degen-
eracy than is needed in the discrete time case, and we there-
fore expect infinite hitting times to be even more common in
continuous time walks than discrete time walks.

Making the connection to symmetry again, for a continu-
ous walk to have infinite hitting times, a sufficient condition
is that at least one irrep with dimension greater than one
occurs in the induced representation of the automorphism
group of the graph. Consider once more the example of Cay-
ley graphs. As discussed in the case of discrete time quantum
walks above, the induced representation of the automor-

phism group G on the Hilbert space Hv is the regular repre-
sentation. Since there is no coin, Hv is the Hilbert space of
the walk. All the irreps of the group appear in this represen-
tation because it is regular. Therefore, if any of the irreps of
G has a dimension greater than one, then the walk will have
infinite hitting times for certain starting states. Since only
Abelian groups have all their irreps of dimension 1, any Cay-
ley graph defined on a non-Abelian group will have infinite
hitting times for the continuous walk.

A complementary approach demonstrating an exponential
suppression of motion of a continuous time quantum walk
using the theory of Anderson localization is given in Ref.
�29�. While the mechanism is quite different, it too is closely
connected to graph symmetry �or in this case, deviations
from symmetry�.

V. DISCUSSION

The role of symmetry is not restricted to producing infi-
nite hitting times. Symmetry can also be related to the expo-
nentially fast hitting times observed in Refs. �14,15�. For one
of the cases examined in Ref. �15�—the discrete walk on the
hypercube with the Grover coin—we observe an exponen-
tially smaller hitting time than the classical walk on the same
graph. But this happens only for the symmetric initial state
���= �00¯0� �

1
�d

�i�i�. Other superpositions of coin states
do not have this speed-up, but rather lead to infinite hitting

times, because their overlap with P̂ is nonzero.
In Sec. II we noted that the group of symmetries of the

n-dimensional hypercube is G=H ·Sn when one takes into
account the direction labels, where H is the normal subgroup
of direction-preserving automorphisms, and Sn is the permu-
tation group on n elements �in this case, the different graph
directions�, and is also a subgroup of G. It was observed in
Ref. �4� that ��� is the simultaneous eigenstate of eigenvalue
1 of the subgroup Sn �more precisely, the simultaneous eigen-
state of the representation operators of the subgroup�. Since

every element of Sn commutes with Û for the walk with the
Grover coin, a state that begins in an eigenspace of the
permutation group will remain in the same eigenspace at all
times. That is,

Ut��� = Ut��g���� = ��g�Ut��� , �48�

where � is the representation of G on the Hilbert space of Û

and g�Sn. Thus, Ût��� is an eigenstate of ��g� with eigen-
value 1. This eigenspace has dimension 2n. It turns out that
the final vertex with an equal superposition of coin states
�11¯1� �

1
�d

�i�i� also lies in this eigenspace. Since the walk
never escapes this subspace to explore other parts of Hilbert
space, it leads to an exponentially fast hitting time. For a
measured walk, if the symmetry subgroup commutes with
the measurement operators �as is true in this case�, then the
same argument holds. This shows that those symmetries of
the graph which are passed on to the evolution operator can
create subspaces to which the walk may be confined. If the
final vertex has no overlap with such a subspace for any coin
state, then a walk starting in that subspace will have an infi-
nite hitting time. Otherwise, the hitting time will be finite, or

HARI KROVI AND TODD A. BRUN PHYSICAL REVIEW A 74, 042334 �2006�

042334-10



even exponentially small depending on the dimension of this
subspace relative to the full Hilbert space.

Another way of seeing these exponentially fast hitting
times is as an interference effect. Due to the symmetry of the
graph, many possible classical paths through the graph arrive
at the final vertex with the same phase, leading to construc-
tive interference and an enhanced probability to be found in
the final vertex. Paths that lead to undesired states, by con-
trast, interfere destructively. Looked at from this point of
view, infinite hitting times represent the converse effect: for
some initial states, many paths through the graph arrive at
the final vertex �or its neighbors� with phases which exactly
cancel out. In this case, the particle will never be found in the
final vertex, and the hitting time is infinite.

We should also point out that the conditions derived
above for infinite hitting times are sufficient for a particular
graph to have infinite hitting times; but they are not neces-
sary conditions. For example, the symmetry group of the
hypercube is Abelian, and hence does not imply that the

evolution operator Û must be degenerate. Nevertheless, infi-
nite hitting times are observed for quantum walks on the

hypercube, due to the fact that the choices of coin flip opera-
tor �the Grover coin or the DFT� both have their own sym-
metries, which increases the total degeneracy of the evolu-
tion operator. Infinite hitting times are therefore likely to be
even more common than the conditions derived here would
suggest.

One can make very plausible intuitive arguments that both
infinite hitting times and exponentially fast hitting times are
related to symmetry. This makes it seem likely that the ideal
problem to be solved by a quantum walk would be a problem
with global symmetry, but in which this symmetry is not
apparent at the local scale. While we have precise conditions
for infinite hitting times, we have not yet found criteria for
the existence of exponentially faster hitting times. One pos-
sible approach would be to identify subspaces which are pre-
served by the evolution operator, because they are eigens-
paces of graph symmetries, and which include localized
initial conditions. But it is not clear how to find this for a
general graph. It is our hope that the analysis used in this
paper ay provide hints as to the right way to approach this
problem.
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