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We study the relation between energy and entanglement in an entanglement transfer problem. We first
analyze the general setup of two entangled qubits �“a” and “b”� exchanging this entanglement with two other
independent qubits �“A” and “B”�. Qubit “a” �“b”� interacts with qubit “A” �“B”� via a spin-exchange-like
unitary evolution. A physical realization of this scenario could be the problem of two-level atoms transferring
entanglement to resonant cavities via independent Jaynes-Cummings interactions. We study the dynamics of
entanglement and energy for the second pair of qubits �tracing out the originally entangled ones� and show that
these quantities are closely related. For example, the allowed quantum states occupy a restricted area in a phase
diagram entanglement vs energy. Moreover, the curve which bounds this area is exactly the one followed if
both interactions are equal and the entire four qubit system is isolated. We also consider the case when the
target pair of qubits is subjected to losses and can spontaneously decay.
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I. INTRODUCTION

Entanglement is one of the most studied topics at present.
The large interest for this issue relies mainly on the fact that
entangled systems can be used to perform some tasks more
efficiently than classical objects �1�. It is then natural to look
for a good understanding of this resource not only from a
purely mathematical point of view, i.e., formalizing the
theory of entanglement, but also from a more practical ap-
proach, i.e., studying its role and manifestations in realistic
systems. For example, recent works have been able to con-
nect entanglement to thermodynamical properties of macro-
scopic physical systems �2�. In a distinct venue, other works
study physical manifestations of quantum correlations by
suitably choosing particular purity and entanglement quanti-
fiers and restricting allowed quantum states according to
these quantities �3�. In these studies, concepts like maximally
entangled mixed states �MEMS� are discussed. A very recent
study also adds energy to entanglement and purity as a third
parameter to characterize certain quantum states �4�. In par-
ticular, the authors discuss the physically allowed states ac-
cording to the possible values of entanglement, purity, and
energy for a system composed of two qubits or two Gaussian
states, and also study the entanglement transfer between
them.

In the present paper, we study the connection between
entanglement and energy that appears naturally in a swap-
ping process involving two systems of two qubits. In the
model investigated, we consider a simple form of interaction
between two pairs of qubits labeled as aA and bB. The sys-
tem ab is prepared in an entangled state while the pair AB is
prepared in a factorable state. We analyze the dynamical re-
lations between energy and entanglement of qubits AB when

exchanging energy and coherence with qubits ab. In particu-
lar, for any given time t, we calculate the full quantum state
of qubits abAB and then we trace out qubits ab to calculate
energy and entanglement of the remaining pair AB. We show
that this dynamics yields paths in an entanglement-energy
diagram, and that these paths are contained in a very re-
stricted region. Moreover, we identify the frontiers of this
region from the general form of the density operator that
represents the state of the subsystem AB. We also propose a
physical system to realize such entanglement transfer and
investigate how the dynamics of the entanglement swapping
is modified if the AB system is open and allowed to dissipate
energy to an external reservoir. In some sense, this work is
complementary to the sequence �5� in which the authors
study the problem of entanglement transfer from continuous-
variable entangled states to qubits, although in those works
the authors do not pay particular attention to the relation
between energy and entanglement.

The paper is organized as follows. In Sec. II we introduce
the general physical system that we will study and the basic
setup from which we will approach it. We also define the
quantities that will be analyzed throughout the paper and
finally we discuss the dynamics of this system. Section III is
devoted to study the entanglement and the energy of system
AB under a particular unitary evolution. We then propose a
physical implementation for the studied Hamiltonian, and
generalize the time evolution in Sec. IV by considering the
problem of a dissipative, nonunitary evolution. In Sec. V we
conclude by reviewing the main points we have discussed
and suggesting possible extensions of this study.

II. PHYSICAL SCENARIO

Let us start by describing the system we are interested in.
Suppose a system of four qubits a, b, A, and B interacting via
a spin-exchange-like Hamiltonian:*Electronic address: msantos@fisica.ufmg.br
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H = HaA + HbB, �1�

where

HaA =
��a

2
�z

a +
��A

2
�z

A + �gaA��−
a�+

A + �+
a�−

A� �2a�

and

HbB =
��b

2
�z

b +
��B

2
�z

B + �gbB��−
b�+

B + �+
b�−

B� . �2b�

For each qubit, the relevant Pauli operators are defined by

�z = �1��1� − �0��0� , �3a�

�+ = �1��0� , �3b�

�− = �0��1� , �3c�

and the interaction operators like �−
a�+

A, for example, can be
viewed as annihilating an excitation of subsystem a and cre-
ating an excitation in subsystem A. The constants gaA and gbB
give the strength of the interaction between these sub-
systems. One important feature in understanding such
Hamiltonians is that the total number of excitations is a con-
served quantity. The eigenvectors of Eq. �2a� �similarly to
Eq. �2b�� are given by �00�aA, with eigenvalue E00

aA=−��,
�11�aA, with eigenvalue E11

aA=��, and ��±�aA
= ��01�± �10�� /�2, with eigenvalue E±

aA= ±�gaA /2, where �
= ��a+�A� /2.

As the initial state, let us suppose that the entire abAB
system is prepared in the form

���t = 0�� = ������ab � �00�AB, �4�

where ������ab=sin ��01�+cos ��10�, which means that sub-
system AB is prepared in its ground state and subsystem ab
is usually prepared in some entangled state with one excita-
tion �except if �=n 	

2 , n�Z, when the state is factorable�.
Note that this initial state is pure and it is chosen so that the
bipartition ab � AB does not present any initial entangle-
ment. From now on, we will study the time evolution of this
initial state when subjected to Hamiltonian �1� for different
coupling constants gaA and gbB. We will concentrate our
analysis on the subsystem AB by tracing out the degrees of
freedom of systems a and b. Another simplifying assumption
we made is to consider the complete resonance condition
�a=�A=�b=�B=�.

A special case of this dynamics happens when gaA=gbB
=g, in which case state �4� evolves into state

���t�� = cos�gt����ab � �00�AB − i sin�gt��00�ab � ���AB.

�5�

Note that in this simple case, for t=n 	
2g , with n odd, the

subsystems exchange their states, the entanglement initially
present in subsystem ab is completely transferred to sub-
system AB and with respect to the bipartition ab � AB the
state becomes again separable. However, for t�n 	

2g , the
whole system is entangled �as long as ��n 	

2 � and subsystem
AB will be in some mixed state.

In a more general situation �different coupling constants�,
state �4� will evolve into

���t�� = cos ��cos�gaAt��1000� − i sin�gaAt��0010��

+ sin ��cos�gbBt��0100� − i sin�gbBt��0001�� . �6�

Note that for generic times t, state �6� presents, again, mul-
tipartite entanglement among all its individual components
�a, b, A, and B�. Studying this multipartite entanglement may
also prove intriguing and enlightening. However, this is not
the purpose of this paper where, as mentioned above, we will
concentrate our analysis in the subsystem AB.

Our goal is to investigate the relation between energy and
entanglement in subsystem AB as a function of coupling con-
stants and time. In order to study entanglement we will use
the negativity �N� which can be defined for two qubits as two
times the modulus of the negative eigenvalue of the partial
transposition of the state 
, 
TA �6�, if it exists. For short:

N�
� = 2 max	0,− �min
 , �7�

where �min is the lowest eigenvalue of 
TA. Our choice is
motivated by the facts that the negativity is easy to calculate
and provides full entanglement information for a two-qubit
system. For the energy of subsystem AB, U, we will consider
the mean value of the relevant restriction of the free Hamil-
tonian:

U = Tr	
HAB
 , �8�

where

HAB =
��

2
��z

A + �z
B� . �9�

III. ENTANGLEMENT AND ENERGY

After tracing out the degrees of freedom of systems a and
b in the global quantum state �6�, the reduced state for the
pair AB is described by


AB =�
a 0 0 0

0 b d 0

0 d* c 0

0 0 0 0
� , �10�

where a+b+c=1 �from the normalization of 
AB�, with a, b,
c, and d given by the following functions of the coupling
constants and time:

a = cos2 � cos2�gaAt� + sin2 � cos2�gbBt� , �11a�

b = sin2 � sin2�gbBt� , �11b�

c = cos2 � sin2�gaAt� , �11c�

d = cos � sin � sin�gaAt�sin�gbBt� . �11d�

Following Eq. �8�, the energy of state �10� is

U = − a , �12�

which, by means of Eqs. �11�, becomes
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U = − cos2 � cos2�gaAt� − sin2 � cos2�gbBt� . �13�

Note that −1�U�0, which means that there is at most one
excitation on the AB system. This is expected since the cho-
sen initial state contains only one excitation for the entire
abAB system and this set of qubits is isolated, i.e., it cannot
be excited by external sources. A simple calculation gives for
the entanglement �negativity� of state �10�

N = �a2 + 4d2 − a . �14�

A. Entanglement and energy versus time

In Fig. 1 we have plotted the temporal behavior of N and
U for several values of the coupling constants gaA and gbB.
The entanglement transferring process can be followed in
those pictures. The simplest one is for equal coupling con-
stants gaA=gbB, in which the state ��� is cyclically “bounc-
ing” between the two pairs of qubits. The chosen ratios be-
tween coupling constants indicate a very important behavior
of the system: the complete entanglement transferring pro-
cess can only happen if mgaA=ngbB for m and n odd integers.
Equation �11a� supports this conclusion, since both gaAt and
gbBt must be odd multiples of 	

2 simultaneously �remember
that cos2 � and sin2 � are positive numbers� in order for the
state ������ to be entangled. The physical picture is that each
pair aA and bB oscillates inside duplets �10� and �01�. The
situation is analogous to two classical harmonic oscillators
with distinct frequencies starting from a common extremal
point. The implied relation is necessary for them to meet
within an odd number of half oscillations, which is the con-
dition for a complete transfer of state. To insist on this point,
note that for gaA=2gbB, at time t= 	

gaA
, the pair aA �or, more

precisely, its analogous oscillator� has suffered a full oscilla-
tion, but the pair bB �respectively its analogous oscillator�
has undergone half an oscillation, so one could find entangle-
ment between a and B, but no entanglement can be found
between any other pair of qubits, including the studied pair
AB.

For other values of � we obtain similar pictures, with the
only important difference in the entanglement scale, since no
maximally entangled pair will be formed.

B. Entanglement versus energy

In this section we use time as a parameter to draw graph-
ics on an entanglement vs energy diagram. As we will show,
the paths followed in this phase diagram exhibit interesting
patterns.

The graphics for �=	 /4 �Fig. 2� and �=	 /3 �Fig. 3� are
qualitatively different. However, it can be seen through Fig.
4 that, independent of the available initial entanglement
�given by the value of ��, the accessible region in the param-
eter space NU is bounded by an upper curve. This bound
can be explained in the following way: using the fact that
U=−a in Eq. �14� we have

N2 − 2NU = 4�d�2. �15�

However, when gaA=gbB and �=	 /4 we have b=c=d, in
which case N2−2NU=4b2. Using the normalization condi-
tion a+b+c=1, we get
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FIG. 1. �Color online� Energy U and negativity N of the state

AB given by Eq. �10� vs time. The initial state is given by Eq. �4�
with �=	 /4, which means a maximally entangled pair ab is ini-
tially present, and its entanglement can be transferred to the pair
AB. Several values of m and n were used in the relation mgaA

=ngbB.
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�1 + U�2 = 4d2. �16�

Therefore in the ideal situation of equal coupling gaA=gbB
and maximally entangled initial ab state ��=	 /4�, we can
write

N2 − 2NU = �1 + U�2. �17�

As we will see now this equation is exactly the one that
limits the phase-space for quantum states in this problem.
The normalization condition yields b+c=1+U that allows us
to obtain

4bc = �U + 1�2 − �b − c�2,

which implies

4bc � �U + 1�2. �18�

At the same time, the condition for matrix �10� to be consid-
ered a true density matrix is that its eigenvalues are all posi-
tive, which is reached if and only if �d�2�bc. Therefore we
can conclude that

4�d�2 � 4bc � �U + 1�2, �19�

and, from Eq. �15�, we find

N2 − 2NU � �U + 1�2. �20�

As we saw in Eq. �17� the equality is reached for gaA=gbB
and �=	 /4. So Eq. �17� bounds the region that density ma-
trices of the form �10� can occupy in the diagram NU.

IV. OPEN SYSTEM

Up to this moment we have considered any two pairs of
qubits. Now we will adhere to one specific physical realiza-
tion, namely: two atoms resonantly coupled to two indepen-
dent cavity modes. If the cavities are initially in the ground
state �vacuum, no photon� and the usual approximations are
valid �7�, the Jaynes-Cummings Hamiltonian

HJC =
��

2
�z + ��a†a +

1

2
� + ���a†�− + a�+� �21�

essentially reduces to the form �2�, with the lower case qubit
representing the two-level atom and the capital one, the first
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FIG. 2. �Color online� Negativity �N� vs energy �U� for 
AB given by Eq. �10� with �=	 /4, i.e., the initial ab state is maximally
entangled. Parameter relation gaA=ngbB with n=1 �left upper panel�, n=2 �right upper panel�, n=7 �left lower panel�, and n=53 �right lower
panel�.
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two energy levels of the field mode. Hence the situation here
studied models an experiment where previously entangled
atoms transfer such entanglement to independent cavity
modes. One nice point when considering this particular situ-
ation of atoms transferring entanglement and energy to reso-
nant cavities is that those systems can have very different
dissipation times. In fact, atomic levels can be selected so
that their dissipation time scale is much larger than those of
typical resonant cavities. In this case, one can ask what hap-
pens if the system that receives the energy and the entangle-
ment dissipates it to an external reservoir. In order to answer
this question, the unitary analysis considered up to now has
to be abandoned and we must change from a Hamiltonian
approach to a master equation one.

We will consider that the qubits AB, now represented by
the cavity field modes, are in contact with independent res-
ervoirs and interact with them. Since atomic lifetimes �for
the atomic transitions used in cavity QED experiments� are
usually much greater than cavity decay times, we will not
couple the lower case qubits to any external device.

To address this problem we consider the time evolution of
the global system described by the master equation in the
Lindblad form �8�:
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FIG. 3. �Color online� Negativity �N� vs energy �U� for 
AB given by Eq. �10� with �=	 /3, i.e., the initial ab is partially entangled.
Parameter relation gaA=ngbB with n=1 �left upper panel�, n=2 �right upper panel�, n=7 �left lower panel�, and n=53 �right lower panel�.
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FIG. 4. �Color online� Negativity �N� vs energy �U� for 
AB

given by Eq. �10� with �=	 /4 �red �left��, �=	 /3 �blue �middle��,
and �=3	 /8 �black �right��. Parameter relation gaA=53gbB.
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d

dt

aAbB�t� =

1

i�
�H,
aAbB�t�� +

1

2�
�

i

��V̂i
aAbB�t�,V̂i
†�

+ �V̂i,
aAbB�t�V̂i
†�� , �22�

where H is given by Eq. �1� and the operators V̂i and V̂i
†

describe the effects of the coupling to the reservoirs. For
simplicity, we will model only the dissipation of energy in
the cavities coupled to null temperature reservoirs, which can
be done using

V̂1 = �2��A�−
A

� IabB, �23a�

V̂2 = �2��BIaAb � �−
B, �23b�

V̂i = 0, ∀ i � 2. �23c�

The constants �A and �B are directly given by the decay rates
of each cavity mode.

Starting from the special case of the initial state �4�, given
by �= 	

4 �a Bell state for the donor pair of qubits�, after a
somewhat lengthy calculation we find that the state of both
cavities can still be written in the form of Eq. �10�, but now
with the matrix elements given by

a = 1 − ���2gaA

�aA
sin�aA

2
t�e−�At/2�2

+ ��2gbB

�bB
sin�bB

2
t�e−�Bt/2�2� , �24a�

b = ��2gbB

�bB
sin�bB

2
t�e−�Bt/2�2

�24b�

c = ��2gaA

�aA
sin�aA

2
t�e−�At/2�2

, �24c�

d = ��2gaA

�aA
sin�aA

2
t�e−�At/2���2gbB

�bB
sin�bB

2
t�e−�Bt/2� ,

�24d�

with the definitions

�aA = �4gaA
2 − �A

2 , �25a�

�bB = �4gbB
2 − �B

2 . �25b�

Since the state of the system AB is still described by density
matrices of the form �10� we expect the existence of the
same bounds in the energy-time diagram �17�. Also note that
energy and negativity are still, respectively, described by
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FIG. 5. �Color online� Energy U �red �bottom curve�� and negativity N �blue �top curve�� of the cavity modes state �10� with matrix
elements given by Eq. �24� vs time. The initial state of the system is given by Eq. �4� with �=	 /4, i.e., a maximally entangled ab state.
Parameter relations: �aA=�bB=0.1gaA and gbB /gaA=n. Left-above: n=1. Right-above: n=2. Left-below: n=3. Right-below: n=�2.

CAVALCANTI et al. PHYSICAL REVIEW A 74, 042328 �2006�

042328-6



equations of the forms �12� and �14�. In Fig. 5 we have
plotted some curves of negativity and energy vs time, for the
system AB considering the temporal evolution of the matrix
elements given by Eq. �24�. Note that the graphics are quali-
tatively similar to the ones displayed in Fig. 1 for unitary
evolutions. However, as expected, both entanglement and en-
ergy decay exponentially to their lowest values as a function
of time. This can be understood from the fact that the envi-
ronment drives the system exponentially to the state �00� �see
the matrix elements in Eq. �24�—the element �24a� goes to
unity while all the others go to zero�, which has no entangle-
ment and has the minimum energy value U=−1.

We have also plotted the negativity vs energy for the non-
unitary case for different values of gaA, gbB, �aA, and �bB.
This is displayed in Fig. 6. As commented before the fol-
lowed paths are still bounded by the same limits of the uni-
tary case. However, as the dissipative mechanisms get stron-
ger �i.e., coefficients �A and �B get closer to the coupling
constants gaA and gbB�, less and less entanglement is trans-
ferred to subsystem 
AB.

A different phenomenology can be anticipated for the case
of non-null temperature. Since thermal photons can now be

captured by both cavities, the state �11� will be populated and
the form �10� will not be valid anymore. One consequence is
that one can expect the phenomenon known as entanglement
sudden death �9�, since it will not be necessary to nullify the
elements d in order to have a positive partial transpose, and
hence no entanglement.

V. DISCUSSIONS

In this paper we have addressed the problem of entangle-
ment and energy transfer between pairs of qubits. We con-
sidered the particular example of two atoms interacting with
two cavities in the Jaynes-Cummings model. This evolution
can be seen as a state transferring process and, for specific
coupling constants, a dynamical entanglement swapping. If
the atoms are initially in an entangled state, this entangle-
ment is fully or partially transferred to the cavities depending
on coupling constants and time. This entanglement swapping
process is accompanied by an energy transfer as well, and we
have shown that entanglement and energy in the cavities sys-
tem are strictly related.
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FIG. 6. �Color online� Negativity �N� vs energy �U� of the cavity modes state �10� with matrix elements given by Eq. �24� for fixed decay
rates and different couplings. The initial state of the system ab is given by Eq. �4� with �=	 /4. Parameter relations: �aA=�bB=0.1gaA and
gaA=ngbB with n=1 �left upper panel�, n=2 �right upper panel�, n=7 �left lower panel�, and n=53 �right lower panel�.
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To clarify this relation we studied these quantities in vari-
ous scenarios. First we considered the whole system as iso-
lated, and investigated its time evolution for several coupling
constants and different initial atomic entanglement. In each
case, we traced out the atoms �as we now refer to the lower
case qubits�, we drew an entanglement vs energy phase-
diagram for the cavity modes, and we found an upper-limit
for all the possible paths in these diagrams. This bound cor-
responds to maximally entangled atoms transferring its en-
tanglement and energy to independent cavities at exactly the
same rates.

We also considered the possibility of dissipation in the
cavities. In this case, while the atoms are transferring exci-
tations and entanglement to the cavities, some energy is lost
to the environment. The cavities state goes asymptotically to
state �00�. In the dissipative regime, the evolution of en-
tanglement and energy of the cavities state exhibits the same
characteristics pointed out for the unitary case, i.e., the paths
followed in the entanglement-energy diagram are limited to a
restricted region whose frontier is identified by the trajectory
described when the couplings are identical and the initial
entanglement of the atomic state is maximum. However, as

expected, neither entanglement nor energy can be fully trans-
ferred unless the dissipative times are much larger than the
inverse Rabi frequencies involved. Fortunately, this regime is
usually achieved in cavity QED experiments.

We only analyzed the entanglement between qubits AB
�the modes, in the physical realization proposed�. However,
most of the time the whole system presents multipartite en-
tanglement which may provide interesting new results if fur-
ther studied. Other important continuations of this work in-
clude the treatment of noncompletely resonant systems �e.g,
�a=�A��b=�B, which corresponds to two distinct atoms
resonantly coupled to cavity modes, as well as the case of
dispersive coupling� and also other couplings to reservoirs,
like including temperature in the scenario here presented and
also considering spontaneous decay for the atoms.
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