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Open quantum system model of the one-dimensional Burgers equation
with tunable shear viscosity
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Presented is an analysis of an open quantum model of the time-dependent evolution of a flow field governed
by the nonlinear Burgers equation in one spatial dimension. The quantum model is a system of qubits where
there exists a minimum time interval in the time-dependent dynamics. Each temporally discrete unitary
quantum-mechanical evolution is followed by state reduction of the quantum state. The mesoscopic behavior of
this quantum model is described by a quantum Boltzmann equation with a naturally emergent entropy function
and H theorem and the model obeys the detailed balance principle. The macroscopic-scale effective field
theory for the quantum model is derived using a perturbative Chapman-Enskog expansion applied to the
linearized quantum Boltzmann equation. The entropy function is consistent with the quantum-mechanical
collision process and a Fermi-Dirac single-particle distribution function for the occupation probabilities of the
qubit’s energy eigenstates. Comparisons are presented between analytical predictions and numerical predic-
tions and the agreement is excellent, indicating that the nonlinear Burgers equation with a tunable shear
viscosity is the operative macroscopic scale effective field theory.
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I. INTRODUCTION

The purpose of this paper is to theoretically and numeri-
cally analyze the dynamical behavior of a quantum model of
the classical nonlinear Burgers equation in one spatial di-
mension. The quantum model is a particular construction or
example of an open quantum system with a minimum time
step allowing for interleaved nonunitary measurement and
unitary evolution. The measurement steps are dispersed pe-
riodically in time and across all the elements of the quantum
system. At the microscopic scale, the equation of motion is a
quantum-mechanical wave equation with localization. That
is, the Schrodinger equation is modified in such a way that
long-range quantum coherence is destroyed whereby the
physical behavior of the system at the macroscopic scale
effectively becomes a nonlinear classical field theory with
dissipation, the Burgers equation for shock formation.

The state reduction of a phase-coherent quantum system
may either be induced by measurement or be intrinsic to the
quantum system’s unitary evolution. The subject of the mea-
surement apparatus as an open quantum-mechanical system
has been studied as a means for understanding the reduction
of a quantum state following observation of the system
[1-3]. Alternatively, there have been proposals [4-9] that
modify the fundamental quantum theory to include micro-
scopic processes that inherently cause the reduction of the
quantum state as a way to naturally give rise to macroscopic-
scale dissipative behavior. One approach due to Milburn for
modifying the Schrodinger equation is to introduce a mini-
mum time step for the quantum-mechanical evolution where
at each time step there is a randomization of the unitary
phase generated by the system Hamiltonian [4,5]. The result-
ing evolution is a sequence of unitary transformations in-
stead of being continuous and this evolution sufficiently de-
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scribes decoherence in open quantum systems [10]. At
“laboratory” time scales much larger than this minimum time
step, the evolution appears continuous; the Schrodinger
equation is recovered at zeroth order and the decay of coher-
ence in the energy eigenstate basis is recovered at first order.
Caves et al. have developed models of continual quantum
measurements distributed in time [11,12] and have devel-
oped a path-integral formulation of a one-dimensional quan-
tum system governed by two rules: (1) unitary evolution be-
tween measurements and (2) collapse of the wave function at
each measurement.

We begin in Sec. I A by summarizing the dynamical equa-
tions of motion of the open quantum system and we do this
for three spatial scales. The microscopic scale equation is a
Schrodinger wave equation modified to allow for localiza-
tion. The open quantum system comprises a set of two-level
qubits (e.g., spin-% nuclei). The Hamiltonian that generates
the phase-coherent part of the evolution is engineered in such
as way that the quantum system effectively models a kinetic
many-particle system. The open quantum system acts as a
kind of analog simulator.

Each qubit in the system is assigned a unique position and
momentum-space coordinate pair. The moduli squared of the
probability amplitude of a qubit’s logical |1) state (e.g., ex-
pectation value of its excited state) is equated to an element
of a “single-particle” distribution associated with the position
and momentum-space coordinate of a modeled particle in a
many-body system. There can be as many particles in the
emulated kinetic system as there are qubits in the quantum
system. Let us denote a qubit’s quantum state as |g)=a|0)
+B|1), where |af?+|B|*>=1. We shall refer to the state |0) as
the qubit’s ground state and the state |1) as the qubit’s excited
state. If |a|=0 and |B|=1, we say that the qubit encodes the
presence of a “particle” of unit mass. If |[a|=1 and |3|=0, we
say that the qubit encodes a ‘“hole,” or the absence of a
particle. Hence, we shall sometimes refer to |8]* as an occu-
pation probability. The quantum system dynamics comprises
both qubit-qubit interaction and motion of the qubits. Some-
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times the terms qubit and particle are used interchangeably.

Further details about the qubit encoding are given in Sec.
IT A. For reasons of reducing computational expense when
simulating the quantum model, the mesoscopic-scale single-
particle distribution is highly resolved in position space but
minimally resolved in momentum space. The mesoscopic-
scale equation of motion of the effective kinetic many-
particle system is a quantum Boltzmann equation that gov-
erns the time-dependent behavior of the single-particle
distribution function. A derivation of the quantum Boltzmann
equation from the modified Schrodinger equation is given in
Sec. II B. The quantum Boltzmann equation has an uncon-
ventional collision function with a unique analytical form
that is derived from the microscopic Hamiltonian that gener-
ates the locally coherent quantum-mechanical evolution.

A derivation of the collision function is given in Sec.
IIT A. Since the underlying quantum-mechanical system is
locally phase coherent, one can ask if there exists an eigen-
state of the unitary evolution operator that has a unity eigen-
value. The quantum evolution is stationary with respect to
this particular eigenstate: the probability of occurrence of
this eigenstate must be identical before and after the local
unitary quantum-mechanical evolution. Equating the analyti-
cal expressions for these probabilities allows us to uniquely
determine the mesoscopic local equilibria associated with the
single-particle probability distribution. This calculation is
carried out in Sec. III B and the result is that the equilibrium
values of the single-particle probability distribution are pa-
rametrized by Fermi-Dirac functions. This is consistent with
the fact that two-level qubits, or spin—% quantum objects, are
used to encode these mesoscopic occupation probabilities.
The energy eigenvalue of each qubit within a localized re-
gion of space is accordingly shifted. That is, the energy ei-
genvalues of local qubits are nondegenerate.

In Sec. III C, we linearize the quantum Boltzmann equa-
tion about its local equilibria and then use a Chapman-
Enskog perturbative expansion to derive the nonlinear mac-
roscopic scale equation of motion as the zeroth-order
moment of the single-particle distribution function. The mac-
roscopic equation of motion is effectively a diffusive and
convective nonlinear Burgers equation. The consequence of
this perturbative expansion is an analytically predictable
macroscopic-scale transport coefficient, which in this case is
the shear viscosity of the modeled fluid. The freedom we
have in choosing our local quantum-mechanical evolution
translates into our ability to choose any desired shear viscos-
ity in the model, from inviscid flow all the way up to highly
viscous flow. In other words, the rate of dissipation is arbi-
trarily tunable in the model.

Next, in Sec. IV we analyze the nonequilibrium mesos-
copic dynamics from the perspective of entropy consider-
ations. This is a way of understanding the numerical stability
of the quantum algorithm. The quantum-mechanical entropy
function is introduced in Sec. IV A. By extremizing this en-
tropy function, using a Lagrange multiplier to fix energy con-
servation, we again obtain the Fermi-Dirac function as the
local equilibrium for the qubit excited state’s occupation
probabilities. In Sec. IV B, we calculate an effective transi-
tion matrix, defined at the mesoscopic scale, of the quantum
system. The transition matrix recasts the quantum evolution

PHYSICAL REVIEW A 74, 042322 (2006)

as a Markov process at the mesoscopic scale. In Secs. IV B 2
and IV B 3, we demonstrate that the transition matrix of the
modeled kinetic system obeys the principle of detailed bal-
ance in its qubit-qubit interactions.

Finally, in Sec. V we present several numerical results
obtained from simulating the quantum model on a standard
classical computer. Shock front development is readily ob-
served. In Sec. V A, the consistency of the entropy function
description of the mesoscopic dynamics is compared with
the quantum Boltzmann equation description of the dynam-
ics. The entropy function and quantum Boltzmann equation
descriptions are found to be in perfect agreement. The quan-
tum collision function maps incoming local qubit configura-
tions into outgoing qubit configurations with higher entropy
in such a way that the trajectory of configurations always
follows contours on the entropy surface. The quantum model
manifests behavior that at the mesoscopic scale emulates the
second law of thermodynamics.

A. Multiscale dynamics descriptions

The open quantum system model numerically predicts the
time-dependent solutions of the one-dimensional Burgers
equation

Au(x,1) + udu(x,t) = v u(x,z), (1)

which is a simplified model of shock formation with flow
field u(x,#) and kinematic viscosity ». From a kinetic theory
perspective, (1) is the effective field theory for the macro-
scopic behavior of a system of qubits governed at the meso-
scopic scale by a quantum lattice Boltzmann equation:

folxxcot+ 8) =f.(x,0) £ Q(f,.fo). (2)

f+(x,1) are probability fields for the occupation at position x
and at time ¢ of a right-moving qubit (+ direction) and a left
moving qubit (— direction). Q(f,,f_) is a nonlinear collision
function for local qubit-qubit interaction. A qubit’s local
speed is ¢ = dx/ ot, where ox and ot are the cell sizes of the
space-time lattice.

Equation (2) is a statistical description of the Kkinetic
transport dynamics of the system of qubits on a lattice. It is
the effective finite-difference equation for the mesoscopic
behavior of the microscopic quantum system where the mo-
tion of the qubits and their quantum-mechanical interactions
are represented by two unitary operators, a streaming opera-

tor S and a collision operator C. respectively, according to
the quantum lattice gas paradigm [13]. The spatial displace-
ment of f, appearing on the left-hand side (LHS) of (2) de-

rives from the unitary streaming operator S. Taylor-
expanding f.(xxcdt,r+ &) about the space-time point (x,?)
gives rise to a parabolic partial differential equation. Hence,
(2) can be written in differential point form as d,f.(x,1)
=L.f.(x,0=(1/8)Qf..f.), where L,=d(Fc-Dyd,) is a
Fokker-Planck operator, ¢ is a constant drift coefficient, and
Dy=(1/2)(8x*/ &) is the diffusion coefficient. Here, the rea-
son the spatial derivatives occur at second order while the
temporal derivative occurs at first orcLer is that the diffusive
ordering of the fluctuations & ~ dx ~ \ & arises because of the
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microscopic random walk motion of the qubits. The form of
the nonlinear collision function (f,,f_) on the RHS of (2)

is derived from the unitary collision operator C in Sec. III A.
In Sec. III B the nonlinear collision function is linearized
about the equilibrium occupation probabilities f5%. Then us-
ing a perturbative technique in Sec. V C, corrections to the
drift and diffusion coefficients arise from the quantum-
mechanical qubit-qubit interactions, particularly nonlineari-
ties appearing in the drift. The result is a nonlinear parabolic
partial differential equation for the sum of the occupation
probabilities f,+f_.

Denoting the microscopic quantum state of the system at
time ¢ by |W(¢)), the microscopic quantum-mechanical evo-
lution equation is written as follows:

| (1 + o)) = SGC|W (1)). 3)

Equation (3) reduces to the Schrodinger wave equation when

the operator G is the identity operator. A quantum-
mechanical evolution, such as 1is governed by the
Schrodinger wave equation, is both linear and nondissipa-
tive. The reason for employing the unconventional operator

G is to induce both nonlinearity and dissipation into the ef-
fective dynamics. There are various alternatives for the op-

erational form of G. As mentioned above, one representa-

tional choice for G is the nonunitary process of quantum
measurement that effectively erases local phase information
contained in the wave function upon its collapse. Another

representational choice for Gisasa unitary operator that
randomly alters the local phase of the wave function. In ei-
ther case, the result is similar and local in its effect at the

space-time point where Gis applied: coherent phase informa-
tion, and entanglement, is lost. It is this essential projective

property of the G operator to which we ascribe the nonlin-
earity and dissipation of the model and to which we refer by
using the terms wave function localization or open quantum
system.

B. Application to quantum computing

The type of open quantum model treated in this paper
may be viewed as a parallel quantum algorithm designed for
implementation on a quantum computer with periodic state
reduction. Equation (3) comprises a four-step quantum algo-
rithm: (1) initialization step [state preparation of |W(7))], (2)

collision step (entanglement of the quantum state by C), (3)
localization step (long-range decoherence or reduction of the

quantum state by G), and (4) streaming step (interchange of
amplitudes by S).
The Hamiltonian 7 that generates the unitary quantum

evolution in (3), when formally expressed as eiH‘s’/ﬁES'(:’,
may be called a quantum lattice-gas Hamiltonian (type-I

case). Quantum models of the form given by (3), when G is
the identity, are known as quantum lattice-gas algorithms and
include models by Riazanov [14], Feynman and Hibbs [15],
Jacobson and Schulman [16], Bialynicki-Birula [17], Succi
et al. [18-21], Meyer [22-26], Boghosian er al. [27-29],
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Yepez and Boghosian [30], and Vahala et al. [31-34]. How-
ever, for (3) to give rise to a macroscopic dissipative effec-
tive field theory, such as (1) with viscous dissipation propor-

tional to the curvature of the flow field, Q can be chosen to
be a projection operator that commutes with the number op-
erator (type-II case).

Parallel quantum algorithms of this sort for computational
physics have been developed to numerically predict time-
dependent field solutions of the classical wave equation
[13,35], the diffusion equation [36,37], the Navier-Stokes
equation [38], the nonlinear Burgers equation [39,40], and
the one-dimensional equations for magnetohydrodynamic
shocks [41]. Such parallel quantum algorithms do not fully
exploit the computational complexity of the underlying
quantum computer because of the imposed state reduction.
Hence, any quantum-mechanical complexity that provides an
algorithmic speedup can only be harnessed locally over a
relatively limited spatial region. So long as the spatial local-
ization limits phase coherence to less than a few dozen qu-
bits, implementation of the parallel quantum algorithms is
straightforward using present-day classical computers; other-
wise these parallel quantum algorithms could only be imple-
mented on type-II quantum computers that may be built
some day [42]. The first parallel quantum algorithms for the
diffusion and Burgers equations have with success been ex-
perimentally tested on quantum-information-processing pro-
totypes of parallel quantum computers, or type-II quantum
computers [43], using spatial nuclear magnetic resonance
(NMR) spectroscopy on a linear array (in both position-
space and momentum space) of segmented ensembles of
two-qubit labeled chloroform molecules [44—-46]. The ex-
perimental implementation details and results from a recent
NMR-based quantum-information processing experiment of
the open quantum model presented in this paper are dis-
cussed in the following paper [46].

II. MODEL CONSTRUCTION
A. Qubit encoding

We consider a quantum system with Q number of qubits
used to encode (3). A quantum lattice-gas system with L
=(Q/2 number of nodes is depicted in Fig. 1 where, at the
microscopic scale, two qubits |¢,) and |g_) per node are used
to encode the mesoscopic probabilities f, and f_ of the qubit
excited-state occupations at that node:

|g.(6,0)) = V1 = fu(x,0)[0) + Vfu(x,0)[1), (4)

for 0<f.=<1, and where |0) and |1) denote the ground state
and excited state, respectively, of a qubit. Each qubit in the
system is independently set; the on-site ket |¢(x,?)) is a ten-
sor product over the qubits residing at site x,

(. 0) = |q.(x,1)) ® [g_(x,1), (5)

for all x. At time ¢, the quantum state of the entire micro-
scopic quantum lattice-gas system in (3) is the tensor product
of all the on-site kets:

042322-3



JEFFREY YEPEZ
macro:  (p,u) (p,u) (p,u)  Burgers
meso:  (f+,f-)  (f+,f-) (f+,f-) Boltzmann
micro: |g4) ® |g-) |g+) ®q¢-) -+ |g+) ® [q-) Schrédinger
node 1 node 2 node
To zTo+ox zo+(L—1)6z

FIG. 1. A type-II quantum lattice gas with L nodes and two
qubits per node depicted at three spatial scales. The array is one
dimensional with periodic boundary conditions. The coordinate x
refers to the location of the first node. The symbol ® represents the
tensor (or outer) product operation. At the lowest level are micro-
scopic field quantities (i.e., amplitudes of qubit states) governed by
the modified Schrodinger equation (3) with a “programmed” Hamil-
tonian. At the middle level are mesoscopic field quantities (i.e.,
occupation probabilities f.) governed by the quantum Boltzmann
equation (2). Finally, at the highest level are macroscopic field
quantitites (i.e., p or u) governed by the nonlinear Burgers equation

(1).

L-1
(0= © g+ o). ©)

Since the qubits can be thought of as containers for encoding
the quantum particle occupation probabilities according to
(4), the particle number operator is equivalent to the qubit
number operator. Let 71, where a=1,...,Q, denote the qubit
number operator for the ath qubit at site x. The occupancy
probability of a particle located at the ath qubit at time ¢ is
the matrix element

fal,t) = (U (0] |V (1)) ™)

Because the quantum state (6) is separable over the nodes of
the lattice, (7) can be rewritten using the on-site ket at node
x:

fCet) = (lx, 0| plx,0)), (8)

where we have assumed the on-site kets are normalized
((x,t) | p(x,))=1 for all x, and where A, =A®1 and 7A_
=1®1 are defined in terms of the singleton number operator

A

n.

B. Quantum Boltzmann equation

Here we shall derive (2) from (3). The application of S
causes the amplitudes associated with the |g,) qubits to move
to the right by x and the amplitudes of the |g_) qubits to the

left. In particular, say |¥')=8|W) causes the amplitudes of
the ath qubit to be transferred to the «’th qubit. Then, by
streaming, the occupation probabilities shift so that we must
have the equality f,»=f,. By (7), this equality is expressible
directly in terms of the operators:

A

S'hyS=4,. )

The identity (9) will allow us to derive (2) from (3). We
include collisional scattering and write
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™

For =Wt + 80)| e [V (2 + 50)) (10)
(3) N R
= (W()|CTG 8, SGCIW (1) (11)
) N
= (W(0)|CT G, GO (1) (12)

Since Q commutes with 7, for all «, and GT§=1, we have
For = fa= (¥ (0)|CT,C - A1), (13)

where we have subtracted f,={(W(1)|#i,|¥(¢)) from both sides
of (13). In the continuum limit, as the lattice resolution be-
comes infinite (&x— 0 and &f— 0), the occupation probabili-
ties form a continuous and differentiable field in position
space. Defining its total time derivative as (f,—f,)/ o, we
obtain the general form of (2):

% _ émf(r)lé%é AP, (14)

Because of the diffusive ordering of the temporal and spatial
fluctuations of f,, we expand the LHS to first order in time
and second order in space. Furthermore, since the collisions
are separable over the nodes of the lattice, ¢ =®/L=_0l U, where
U is the on-site collision operator, we recover (2) where the
type-1I collision function is

QLx,0)] = (Y, 0| U2, U = it | ihlx, 1)) (15)

C. Macroscopic field assignment

The mesoscopic probabilities f, in turn are used to calcu-
late the macroscopic variables using the Chapman-Enskog
perturbative expansion given in Sec. III C. The number den-
sity field p(x,?) is

p(x7t) Ef+(x’t)+f—(x7t)’ (16)
and the flow field u(x,?) in (1) is
u(x,t) = c[f.(x,0) + f_(x,0) = 1], 17)

where the propagation speed of the qubits is the ratio of the
lattice cell size to the time step interval, c=dx/ &t, as is char-
acteristic of lattice-gas models.’

D. Summary of the four-step quantum algorithm

Equation (3) is encapsulated in the following four steps.

(1) Initialization step. The state of the quantum lattice gas
is set as specified in Fig. 1, where |g.(x,7))=\f.(x,0)|1)
+T=£.(,1)[0),

(2) Collision step. Apply the collision operator simulta-
neously to all sites,

'Here we have taken the mass of a particle encoded in a qubit to
be unity, m=1.
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| (x,1)) = Ul gx, 1))

(3) Localization step. This step may be implemented in a
nonunitary or unitary way. In the nonunitary way, the outgo-
ing occupancy probability distribution is represented by the
following matrix element:

filx,t) = (' (e n)liy (x,0). (18)

To recover the Burgers equation, f,. can be determined by
observation of a single system repeated enough times to re-
cover the distribution (18) by equating to the frequency of
occurrence of outcomes (“nonunitary read”). Alternatively,
the phase of each qubit in the system can be periodically
randomized by application of a unitary rotation of the qubits.

(4) Streaming step. Reinitialize (“write”) the state of the
quantum lattice gas as a separable state where each qubit is
set as follows:

lg.(x,t+ 7)) = \r’/f;(x F ox,0)|1) + V1 — filx ¥ &x,0[0)
(19)
for all x. Note that qubit |g,) is shifted to its neighboring
node at the left while |g_) is shifted to its neighboring node at
the right. This step requires nearest-neighbor communication

between all lattice nodes. At this point, one time-step update
is completed.

III. ANALYTICAL TREATMENT
A. Quantum collision function

Here we shall derive (1) from (2). We begin with the
outgoing occupation probabilities
fo= Wl = U1y (20)
The initial on-site ket |q,)®|q_) is
[~ 7 | [ 71 7\ |
) = NFfITD) +NF(1 = fO10) + V(1 = £,)f-|01)
—_—
+(1 = f)(1 = £2)|00) (21)

\*"(1 _f+)(1 _f—)

—_—
\"(1 _f+)f—
= —_— . 22
\”f+(1 _f—) 22
Vff-

We use a conservative quantum logic gate to represent the
collision operator:

1 0 0 0

. 0 e%cosf —esinh 0

U= i . (23)
0 e*“sinf e'Ccosd O
0 0 0 1

The qubit number operators are
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0000 0000
~loooo o100
n+: ,n—: (24)
0010 0000
0001 0001

Substituting Egs. (22)-(24) into Eq. (20) gives us explicit
update rules for the probability occupancies:

fo=fuf-+ e cos ONf (1= f) + e sin V(1 = f)f |

(25a)
fl=ff+]|-e“sin Of, (1 - f) + e cos (1 = f)f|P,
(25b)

where the double vertical bars denote the norm or absolute
value of the enclosed quantity. After some algebraic manipu-
lation, this pair of equations can be reduced to the standard
form

sz <¢,|ﬁi|¢,>=.f:iﬂ(f+’f—)- (26)

On the RHS of (26), the quantum collision function
Q(.f+ ’f—) iS

Qfy.f) =- sin’ 0|—f+(1 -f)-0 _f+)f—]

+5in 26 cos({ — OVf (1 = ff (1= f2).
(27)

Other than the dependence of the Euler angles, there appears
an unusual dependence on the square root of the occupation
probabilities. This type of additional term is a consequence
of the microscopic-scale quantum nature of the model which
remains evident at the mesoscopic scale. This term gives rise
to nonlinearity in the macroscopic equation of motion. The
reason the square root term arises in (27) has its origin in the
fundamental qubit encoding, described in Sec. II D, where
the square root of the occupation probabilities is employed to
generate the initial probability amplitudes of a qubit’s two-
level states. In turn, the local on-site ket appearing in (21)
and (22) depends on the square root of the occupation prob-
abilities. Inserting (22) into (20), and after working through
some algebraic manipulations, we see that the mesoscopic
collision operator too must depend explicitly on the value of
a probability amplitude, and not just on classical probabili-
ties. The fact that the square roots of probabilities are em-
ployed in the algorithm is a characteristic feature of its
quantum-mechanical nature.
Equation (27) can be expressed a bit more simply:

Q(fwf—) = sin’ e(f— _f+)

+sin 26 cos({— ENf (1 - fOf-(1-f).
(28)

B. Local equilibria

Let d.. denote the local equilibrium values of the occupa-
tion probabilities. The equilibrium condition Q(f,,f) |z
=d,=0 becomes
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Occupation Probability

Number Density

FIG. 2. A plot of the equilibrium occupancy probabilities d..
versus the number density at that site. The upper solid curves are
d,(0,¢,0) and the lower dotted curves are d_(6) as specified by Eq.
(34) for O=/512,...,7w/2—m/512 in steps of Af=m/32 for £=L.
The abscissa and ordinate are both nondimensional probability val-
ues. O=m/2 is the diffusive case where d.=p/2.

d d_
| —+d+ - 1—_d_ =2 cot fcos({ - &)

d, d_
l-d.1-d_’
(29)

which is a statement of detailed balance of collisions at the
mesoscopic scale and which we analyze in Sec. IV B.

We take the equilibrium occupation probabilities to have
the following form:

and (30)

YTt T dy+l

Substituting (30) into (29) gives a quadratic equation in y
that has the solution

y=vVa?+1+a, (31a)
1 o
—=Va +1-a, (31b)

where a= cot 6 cos({—£). Next, substituting (30) into the to-
tal number density p=d,+d_, we obtain a quadratic equation
in z,

p12+()/+%/)(p—1)z+p—2=0. (32)

Substituting the positive root solution of (32) into (30), we
find after much algebraic manipulation

_ 17+ (1= Y)p- WUy + 9 (p= 1) +4(p-2)p
2(1-97) '

d,

(33)

Then substituting y=\a?+ 1 +a into (33) gives the result

1
=L —[1+-1+2(-1. (34
2 2«
The local equilibria d, are plotted in Fig. 2 for a range of
angles.
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C. Chapman-Enskog expansion for the Burgers equation

It is convenient to treat the occupation probabilities as a

two-component field

f= (f N ) (35)

f-

We expand f about its equilibrium value denoted d so that
f=d+ of+0(s?), where &€~ dx is analogous to what in the
literature on fluid dynamics is called the Knudsen number.*
The equilibrium condition Q|;4=0 leads to a tractable
polynomial equation for the components of d. The linearized
finite-difference quantum Boltzmann equation is

f(x = ox,t+ &) —£(x,1) = Jof(x,1), (36)

where the Jacobian of the collision term is

da I J,  J
= 3 . (37
- ﬁﬂ/ﬂa - ﬁﬂ/ﬁb f=d - J+ - J_
The left and right eigenvectors of J are
g=( 1, &=t ( " ) (38)
- T g \=0 )
&= e ) 5—(1 ) (39)
7 e VY

with associated eigenvalues ;=0 and Nr=J,—J_. §i§j= ;- J
may be rewritten as

Lo ) . (40)

J=\68= <—J+ _7

J is singular. Its Moore-Penrose generalized inverse [47] is
the following:

Ly (1)

J—l =L§ §2=
gen Az 2 ]+——J_ .

Now we invoke the continuum limit where 6x—0 and
ot—0 so f is a continuous and differentiable two-component
field. We obtain a first-order equation by Taylor-expanding
(36) in x and r and keeping only terms first order in &:

o.0xdd = J ot + O(&?), (42)
where (TZ=(01_01). Multiplying (42) on the left by J gives
Jo. 8o d=(J, - J)Jot+O(&?), (43)

which has the nontrivial solution

St =
J

+

1
"y, 0,09, d + O(&?) (44)
consistent with (41). Taking the difference of the respective
components gives

’In this one-dimensional quantum model, the flow speed is pro-
portional to the number density, u=c,(1—p). Therefore, requiring
e~ 6p be small implies a low-Mach-number constraint. The ana-
Iytical development is guaranteed to be valid only in the subsonic
limit where u<<c;.
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S — Of = xdyp+ 0(&?). (45)

J.—J_

Similarly from (36), we obtain the second-order equation

&2 3 Q
Stdd + o.6xd (d + &) + 7‘9’”“1 +0(e) = q)

(46)
We now take the sum of the respective components:

& 5
Stdp+ oxd(d, —d_+ Of, — Of_) + Taxxp +0(e”)=0.

(47)

Inserting (45) into the above equation gives the general ef-
fective field theory for any one-dimensional two-qubit-per-
site lattice gas conserving particle number,

&, =)

dp+cild,—d_)+ N
ip+ci(d,—d) o (-T2 P

5x2< 2 )
+— +1]d,p+0(e¥)=0. 48
25\ T~ P+ O(&”) (48)

Equation (34) implies that

1 /
d,—d_=-—[V1+a>-\1+2(p-1)7]. (49)
o

Again, we compute the components of J:

(2d, - 1)d;(1-d-) )
a0 -d)d(1-d))

0
Jiza—zsm ol +1-

P+
(50)

And this implies
J,—J_=-2sin’ (1 + &’R), (51)

where the factor R=R(a,p) is too complicated an expres-
sion to write out here but has the important property that
R(a,p)=1+0(a). Finally, substituting the two results (49)
and (51) into (48) gives the effective field theory

dp+ccotbcos({—&(l—p)dp
_cot® 6 8¢

Syt 0(e’,ea?), (52)

which becomes identical to (1) for u=cy(1-p) with sound
speed c,=ccot fcos({—&) and kinematic viscosity v
=%cot20 ?/t. ¢y and v are “programmable” by appropri-
ately choosing the Euler angles in (23).

IV. STABILITY CONSIDERATIONS
A. Quantum-mechanical entropy function

The unconditional numerical stability of the quantum al-
gorithm can be understood from another vantage point which
clarifies the statement of the unitarity of the quantum-
mechanical collision process. There exists an entropy func-

PHYSICAL REVIEW A 74, 042322 (2006)

tion, denoted here as H, that is consistent with the unitary
collision operator (23), the Fermi-Dirac equilibrium for the
occupation probabilities of the qubit’s eigenstates (30), the
quantum Boltzmann equation (20), and the nonlinear quan-
tum collision function (28). The quantum-mechanical en-
tropy function is

H==2 [fuIn(yf) + (1= f)n(1=£)],  (53)

a==x

where y,=Va?+1+a, y_=1/y,=Ja*+1-a. Let E, denote
the qubit energy eigenvalues. If we calculate the maximum
of the entropy function, dH/df,=0, where we add the Lagra-
nian multiplier BE.f. to H as a conserved energy constraint,
we find that the solution for f, is (30). That is,

JH

¥=—ln(7¢f¢)—1+1n(1—ft)+1+BE¢, (54)
from which we can solve for the nonequilibrium distribution
function,

1

Loned = . 55
73 (1/y,)ePE= 4 1 (53)

The equilibrium point occurs at d; H=0, so from (55) we
obtain the Fermi-Dirac function

P

—_—. 56
= (y)ePE+ 1 (56)

We can also check whether (53) is consistent with the quan-
tum collision function (28). To do this, we express (28) in
terms of the macroscopic variables p=f,+f_ and v=f,—f_
as follows:

— 12
Qqu(p,v) ==sin” dv

+ % sin 26 cos f\/(pz— vz)(l -p+ i(pz— vz)>.
(57)

The equilibrium contours of constant v, the kinetic mode
defined by (49), are shown on the top of Fig. 3. Since p is
conserved, the quantum Boltzmann equation (20) reex-
pressed in terms of the macroscopic variables acts only on
the kinetic mode:

v =v+2Q(p,v). (58)

We can also express the entropy function in terms of the
macroscopic variables:

1 _
Hy<p,v>=21n2—5((p+v>1n[y<p+v>]+(p—v)ln" £
+(2-p+v)In(2-p+v)
+(2-p-v)In(2-p- v)) (59)

The entropy function H=" (p,v) is indirectly a function of
the Euler angles of the quantum logic gate since vy
=(6, ¢, ). Constant-entropy contours of the surface defined
by (59) are shown at the right of Fig. 3.
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FIG. 3. (a) equilibria contours of the kinetic mode v®

=d,—d_. (b) constant-entropy contours of H.(p,v) for #=1.5 rad.

B. Detailed balance
1. Transition matrix and detailed balance
With two qubits located per lattice node, there are four

basis states:

S0=|OO>’ f+=0 f_=0, PO:(I_d+)(1_d—)’

Sl=|01>’ f+=05 f_=1, P1=(1—d+)d_,
32=|10>’ f+=1’ f—=03 P2=d+(l_d—)’
sy=[11), fo=1, f.=1, Py=d.d_. (60)

In (60), the configuration probabilities P;, for i=0,1,2,3, are
mean-field estimates neglecting qubit-qubit correlations. Us-
ing Q qubits to encode up to Q fermions, there are 2¢ quan-
tum states. We shall consider the Q=2 case:

Py Too Tor Too Tos \ [ Po
Pil| | Tw Ty T T || P
Py N\ T Toy Ty Toy || Py
P; Ty T3 T3 T3 Py
transition matrix (61)

Conservation of probability condition is

PHYSICAL REVIEW A 74, 042322 (2006)

201 20-

1
> Pl=2> P, (62)
i=0 i=0

which implies

201 (291 20-1 21 20-1
E E TIJP]_Pl =E P] ETU —E Pj=0’
=0\ j=0 =0\ i=0 j=0

(63)

provided the columns of the transition matrix sum to unity.
Hence, to conserve probability, we require

29-1

i=0

2. Conservative transition matrix
The detailed balance condition is stated as follows:

for i #j. To conserve particle number, the transition matrix
for the Q=2 case is constrained to have the form

1 0 0 0
0 1-A-C A+D 0

T conservative = 0 B+C 1-B-D 0 |’ (66)
0 0 0 1

where the rows sum to unity according to (64) to preserve
probability (P|+P5=P,+P,), so we have
Pl+P,=(1-A-C)P,+(A+D)P,+(B+C)P,
+(1-B-D)P,. (67)

This implies
P,+P,=(1-A+B)P,+(1+A-B)P, (68)
or
(B=A)(P,-P,)=0. (69)
The detailed balance condition (65) for i=1 and j=2 is
(A+D)P,=(B+C)P,. (70)

The set of equations (69) and (70) admits two solutions. The
first solution (diffusion case) is the following: A=B and C
=D with identical local equilibria P;=P,. In the mean-field
limit, we can write P;=(1-d,)d_ and P,=d,(1-d_), so the
equality P;=P, implies that the equilibrium occupation
probabilities are equal as well, d,=d_. This solution can be
parametrized by an angle 6 where in (66) A=B=sin>#:
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1 0 0 0
0 cos?’§—-C sin®>0+C 0
Tdoubly stochastic = 0 sin29+C cos2—C 0O
0 0 0 1
(71)

Equation (71) leads to the constraint (P,/P,—1)(sin’6+C)
=0, which in turn gives P;=P,.

The second solution (Burgers case) of (69) and (70) is the
following: A=B and C# D with nonequal local equilibria
P, # P,. In this case, the transition matrix is not doubly sto-
chastic. There is no transition matrix that is doubly stochastic
that gives rise to a situation where P, # P,. We will see in
Sec. IV B 3 that the transition matrix of the quantum model
has this second form:

1 0 0 0
0 cos?f-C sin>6+D 0
Tqm: .2 2 , (72)
0 sin“@+C cos“6-D 0
0 0 0 1

where the particular values of C=C(60,&,,4,,¢,) and D
=D(0,¢,¢, ¢, ,) will be determined by the Euler angles in
the unitary collision operator (23) and the probability ampli-
tudes of the quantum state vector.

At equilibrium, using (30), P,/P,=197, so the detailed bal-
ance condition (70) in this case is

B sin® 6+ C (73)
“sin? 0+ D’
A solution is the following:
sin26 .
c=L22 e, (74a)
2
sin26 .
= - _e—l(§—§). (74b)
2y

Since C and D depend on v, this means the components of
the transition matrix will in turn depend on the state prob-
abilities because y=\P,/P,. The dynamics remains intrinsi-
cally nonlinear. Inserting (74) into (73) gives the following
quadratic equation for y:

sin? #y* — sin 26 cos(é - {) y—sin®> 6=0. (75)

This has a solution

y=neof? fcos? (€= )+ 1 +cot feos(é- 1), (76)

which is exactly (31). Hence, (74) is a consistent solution
since y=¢60,&,0).

3. Quantum transitions

Here we derive the mesoscopic stochastic transition ma-
trix (72) along with the parameters (74) by starting directly
from the quantum unitary evolution. To do this, we begin by
writing the quantum-mechanical collision transformation act-
ing on the microscopic quantum state as a general block-

PHYSICAL REVIEW A 74, 042322 (2006)

diagonal unitary matrix with complex coefficients:

o 10 0 0 o
d 0O U, U 0
lﬂ: _ n Un i (77)
i 0 Uy Uy O 1
A 0 0 0 Ux/\¥

The unitarity condition (lAfrlA] =) constrains the complex co-
efficients as follows:

UnP+|UnP =1, ULU,+UyUyp=0,

Up,Uyy + UyyUy; =0,

Upl*+ Uyl =1,

UpUgs=1. (78)

The quantum-state incoming probabilities are defined as fol-
lows:

2

)

Po=wl% Pi=wlh Pa=|h)h P3=|y;

(79)

and, likewise, the quantum-state outgoing probabilities are

Po=Iwl Pi=lwl Pr=lwl Pi=lul
(80)
From Eq. (77) we see that

2 (81a)
WP = (U1 + Unt) Uiy + Uinhy) . (810)
Y517 = (Usy ) + Unath)(Uay gy + Unaih), (81c)
[P =y, (81d)

which can be rewritten as a quantum transition map,
P6 = P(), (823.)

P =|U11|2P1 +|U12|2P2+U71U12l//7'/f2+ UTzUll'/’l‘//;’
(82b)

P)= |U21|2P1 + |U22|2P2+ U;Uzzl//T'/fz*‘ U;2U21¢’1‘//;’
(82¢)

Py=P;. (82d)

In matrix form this becomes
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JEFFREY YEPEZ

P 10
Pi | [0 [t
P, 0 |Uy
P; 0 0

PHYSICAL REVIEW A 74, 042322 (2006)

0 o0\/p,
Ul 0 || P,
[Un|* 0 || P,

0o 1/\p;

classical diffusive part

0

UnUnth s + U Ui
Us\Unpt iy + UppUy i

0

quantum-mechanical part

(83)

The classical part of (83) is exactly (71). The quantum-mechanical part gives rise to nondiffusive advective behavior, which
leads to nonlinear shock formation characteristic of the Burgers equation. Finally, from (83) we have a quantum transition

matrix:
1 0 0 0
T - 0 |UnP+UnUnglgn Ul + UpUngn/y 0 (84)
T\ O UNPH U Unsthth (Ul + UnUniihilipy 0
0 0 0 1
|
Equation (84) conserves probability (2’P;=3’P,) due to Y=\, (1-d) , (85¢)
unitarity, so its columns sum to unity owing to the unitary
condition (78). _ g
Now with the equilibrium probability amplitudes Y= Nd.d_, (85d)
and using (30), we see that
—_—
Po=VN(1-d,)(1-d), (85a) W \/( d ><l—d+>_
v V\i-a )\ a, )77
g =\(1-d)d_, (85b)  so that (84) becomes
J
1 0 0 0
€0 sin26 0 5in 20
0 cos? G—g sin? 0—76—
_— 2 2 (86)
am 5 &9 sin 20 5 ye &9 sin 26 ’
0 sin” 6+ cos” O+ ———
2y 2
0 0 0 1

where v is determined by (31). The equilibrium value of the quantum transition matrix (86) is identical to (72) with compo-

nents (74).

V. SIMULATION RESULTS
A. Consistency of the entropy and collision functions

Figure 4 is a composite plot showing the H, function
constant-density contours graphed for p=0.7 and {=¢=0,
but each curve has a different Euler angle 6. The top curve is

for #=0.5708 rad, correspondings to a high-viscosity model
with v=2.425486x*/6t. The intermediate H, curves are
plotted with 6 incremented by A#=0.5 rad. The bottom
curve has #=1.5708 rad= /2, which is a nearly inviscid
contour of the entropy surface corresponding to an extremely
low viscosity of v=(1.34X 10711)5x?/ 5t. The abscissa is the
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FIG. 4. 'H, function constant-density contours of the entropy
surface (solid gray curves), which are vertically stacked over one
another for graphical clarity. The x axis is v=f,—f_ and the y axis
is entropy as defined by (59). The dynamical trajectories (black
dots) were computed using the nonlinear quantum collision function
Qqu(p,v) for different values of the shear viscosity for a relatively
high value of v=2.425488x%/ 5t (on the top) down to an extremely
low value of v=(1.34x 10~1")8x?/ &t (at the bottom). Viscosity val-
ues are labeled on the left of the corresponding ., contours, not
numerical values of the entropy.

kinetic mode v=f,—f_ plotted over the range —p=v=p for
p=0.7. The ordinate is the ., function plotted over the range
-0.5=H,=2.0. Each set of dynamical trajectory points
computed using (58) exactly lie on the respective A, func-
tion contour, demonstrating the consistency of the quantum
Boltzmann equation and the entropy function descriptions.
In the inviscid limit where §— /2, the quantum collision
function reduces to Qqu(p,v):—v, and in turn (58) reduces to
v'=-v. So, as the fluid’s viscosity is reduced, the collision
process causes the sign of the velocity field to alternate. This
is shown in Fig. 4, where for the lower-viscosity cases, the
value of the kinetic mode jumps from the left (-v) to the

right side (+v) of the entropy contour and back again.

B. Comparison to the Cole-Hopf solution

Choosing three sets of “Euler” angles in (23) to be 6
=17/12.8239 (case A), 7/6.77582 (case B), w/4 (case C) and
0=1/2.36955 (case D), and £=¢, then v=88x2/ &t (case A),
28x%/ 8t (case B), ox?/26t (case C), and &x>/326t (case D)
are the corresponding shear viscosity transport coefficients.
For these four cases, we compare the numerical prediction
that the macroscopic scale behavior of the quantum algo-
rithm is governed by the Burgers equation (1) with the exact
solutions obtained by analytical means. For the purposes of

PHYSICAL REVIEW A 74, 042322 (2006)

/ i
@) ‘///¢n—\\\ (h)

0 50 100 150 200 2500 50 100 150 200 250
Sites Sites

FIG. 5. Development of a shock front in the flow field u(x,7)
after the system is initialized with a sinusoidal profile on an L
=256 site lattice for four different viscosities: (A) v=8, (B) 2, (C)
1/2, (D) 1/32, where the viscosity is in lattice units ox?/é&t. The
curves are shifted vertically one from the other by Ap=1/2 to avoid
overlapping. Agreement between the numerical data (solid curves)
and the analytical solution (dashed curves) is excellent. The shock
fronts of the analytical solutions are slightly wider than the shock
fronts of the numerical simulations which have much sharper edges.
This is because these plotted analytical solutions are slightly over-
damped to help stabilize the series solution (89), so the quantum
model data are more accurate approximations of the time-dependent
solution to the Burgers equation. All four cases were initialized
using (87) with p,=1 and p,=0.4.

the numerical tests, the system is simulated directly at the
mesoscopic scale using (26), and all initialized with the same
sinusoidal profile in the number density field

2l
p(x,0) =p, cos<T> + Pps (87)

where p,=0.4 and p,=1, and L=256. A time history of the
dynamical evolution of the number density fields is plotted in
Fig. 5. The analytical solution of the Burgers equation is
obtained by application of the Cole-Hopf transformation’

t is possible to add an external noise term into the right-hand
side of the Burgers equation (1) of the form d#(x,)/dx. The poten-
tial field h(x,?) is defined as follows: dh(x,t)/dx=u(x,t). Then
h(x,t) satisfies the Kardar-Parisi-Zhang equation [59].
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2v oy
P=Put e (88)

where

=1y(z) + 2>, (= 1)l (A F (27bx + vet)e M,
=1

(89)

and where z=c,p,/47v, we=v(2m)%, vi=c,(1-p,)27L),
the 7,’s are modified Bessel functions, and the function F,
denotes the sine or cosine function when € is odd or even,
respectively,

(-D%+1 (-1'=1
S0+ R

Fy(x)

os(x) sin(x).  (90)
To match the numerical simulations, the parameters in the
analytical solution (89) were set to ¢=Lc,=256 cot 0 Sx/ St
and V=% cot? @ 6x*/ 8t. Also in (89) the size of the system is
set to unit length, O0<x=<1.

The agreement between the numerical prediction and the
analytical solution is excellent for all cases, as shown in Fig.
5. There is a slight discrepancy between the analytical and
numerical results after the shock front has developed in the
flow field. The discrepancy occurs at the corners or edges of
the shock. The analytical solution appears to be smoother
across the shock front than the numerical solution. To plot
the analytical solution, it was not possible to include all
terms in the series expansion (89) from €=1 up to €=c0.
Instead, an approximation was made using only the first 80
terms in the expansion (89). For cases when the shock front
is too steep, the analytical solution diverges at shock front
while the quantum algorithm remains unconditionally stable;
it becomes computationally difficult to compute the analyti-
cally predicted exact solution using (89). To avoid this situ-
ation, some additional damping was added to the analytical
series solution to ensure its convergence. This explains the
observed discrepancy.

C. Near-inviscid flow

Figure 6 shows the time evolution of the same quantum
lattice-gas system with L=256 nodes. There are two situa-
tions with the collision operators set with different values for
the Euler angles: v=0x?/26t (dotted curve) and v
=0.002 514 466x2/ 6t (solid curve) cases. The vertical axis is
p plotted in the range of %$pS % The time step is in the
upper left corner of each snapshot. The viscosity of the quan-
tum model is close to zero. The quantum algorithm is uncon-
ditionally stable and obeys the principle of detailed balance.
Having a variable transport coefficient that can be made
small, it is consistent with the inviscid Burgers equations
when the Euler angle 6= /2. The numerical simulation re-
sult plotted in Fig. 7 manifests a characteristic property of a
type-II quantum algorithm. The expected values of the occu-
pancy of the ground and excited states of a microscopic qubit
contained within a quantum-mechanical node of the lattice
are shifted. The expectation value of the excited state is plot-
ted in the blue curve shown in Fig. 7(b). Regardless of the

PHYSICAL REVIEW A 74, 042322 (2006)
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t=640

t=896 t=1920

FIG. 6. Two scenarios: the quantum lattice gas with #=1.5 rad
and {=£&=0 (solid curve) and O=7/4 and {=£&=0 (dotted curve).
This demonstrates a quantum lattice gas modeling a low-viscosity
fluid when 6= m/2.

dissipation regime (high or low viscosity), there is a gap in
the values of the occupation probabilities; hence, d, #d_.
The physical cause of this gap is the following. The micro-
scopic dynamics is interpreted as the motion of qubits mov-
ing left and right through a chain of quantum processors. If
the likelihood of a qubit exiting left or right from a quantum
processor is equal, then the excited-state energies encoding
the left- and right-going probabilities will be degenerate. The
equilibrium probabilities must overlap: d,=d_. The macro-
scopic effective field theory would be strictly diffusive as
any qubit would move up and down the one-dimensional
chain of quantum processors in an unbiased random walk
fashion. However, if the likelihood of a qubit exiting a quan-
tum processor to the left does not equal the likelihood it will
exit to the right, then the degeneracy in the distribution func-
tions is lifted and an energy gap appears as demonstrated in
Fig. 7. In this case, the macroscopic effective field theory
would not be strictly diffusive; there would be an overall net
advection of qubits in one direction (the symmetry of the
lattice is broken and this causes an energy gap in excited-
state energy levels). This net advection gives rise to the non-
linear terms in (1).

In regions of dv/dx<<0, shocks tend to form in the v
field. Asymptotically, v attains a constant slope with shock
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discontinuities. In Fig. 7, the extent of the Gibbs oscillations
at the shock front is greater at the mesoscopic than at the
macroscopic scale because of a fortuitous cancellation of er-
rors. In Fig. 8, we compare the analytically predicted values
of the equilibrium distribution to the numerically obtained
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FIG. 7. (Color online) Highly
underresolved simulation with 6
=1.5rad with L=2566x. (a) Six
successive snapshots of the flow
field data (black curve) and the
numerical prediction of the occu-
pancy probabilities f, (blue dots)
and f_ (red dots). The analytically
predicted equilibria, d, and d_, are
overplotted (black curves). There
is excellent agreement between
theory and simulation, with a de-
viation occurring at late times af-
ter the shock front is fully formed.
(b) An expanded view of the
shock front at r=2048dx/6t. The
width of the shock front is much
less than dx so a kind of Gibbs
oscillation emerges.

distribution. There is excellent agreement in the high-
dissipation regime, shown in the top graph in Fig. 8. How-
ever, a discrepancy emerges in the extremely low-dissipation
regime, shown in the bottom graph in Fig. 8, which corre-
sponds to the underresolved shock front.
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FIG. 8. (Color online) Analytical versus numerical equilibria:
(top plot) high viscosity #=1/4 rad, and (bottom plot) low viscos-
ity #=1.5 rad. The numerical data of the occupancy probabilities f,
(blue dots) and f_ (red dots) are shown for the flow field at ¢
=2048t. The analytically predicted equilibria, d, and d_, plotted as
well (black curves). In the low-viscosity case, the deviation of the
occupancy probabilities for the highest and lowest values of the
number density corresponds to the aberrant Gibbs oscillations seen
in Fig. 7 of the under-resolved flow.

VI. FINAL REMARKS

An open system quantum model for the nonlinear Burgers
equations was presented. A salient feature of this micro-
scopic quantum model is that at the mesoscopic scale the
model effectively behaves as a kinetic system of qubits ac-
curately governed by a quantum Boltzmann equation of mo-
tion. As a consequence of the microscopic unitarity of the
quantum-mechanical evolution operator, the mesoscopic-
scale qubit dynamics obeys statistical detailed balance in its
collisions. Furthermore, the dynamics obeys an entropy theo-
rem consistent with the second law of thermodynamics. A
feature of the model is that it allows for arbitrary tuning of
the macroscopic-scale shear viscosity transport coefficient.
Localization of the microscopic dynamics, for example
through state reduction via a measurement process, allows
for tuning the level of the consequent macroscopic scale dis-
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sipation. This feature is important from a computational
physics perspective because the model, seen as a quantum
algorithm, remains unconditionally stable at extremely low
dissipation regimes. This allows us to use the quantum algo-
rithm for modeling highly nonlinear shock formation, even
severely under-resolved shock fronts, without the model
breaking down. All numerical tests of the algorithm indicate
that the analytical treatment of the quantum model is correct.

The quantum lattice Boltzmann equation that represents
our quantum algorithm can be directly implemented on a
present-day classical computer (so long as the number of
qubits per quantum node is small) and constitutes a new
modeling tool for numerically predicting the time-dependent
behavior of hydrodynamic flow and shock formation. This
quantum Boltzmann equation method, which is akin to the
entropic lattice Boltzmann equation method [48-55], and
which in turn was an offshoot of the lattice Boltzmann equa-
tion method [56], when implemented on a present-day super-
computer can be generalized to model Navier-Stokes turbu-
lence. A subsequent paper on this subject will present recent
simulation results for turbulent fluid dynamics using the
quantum Boltzmann equation method.

The quantum Boltzmann equation method in this paper
has also been extended to handle magnetohydrodynamics in
one spatial dimension where the shear viscosity and resistiv-
ity transport coefficients are both arbitrarily tunable [57]. A
subsequent paper on this subject will present additional
simulation results for turbulent Burgers magnetohydrody-
namics [58].

It remains an open problem whether the method presented
here can be extended to directly recover the Burgers equa-
tion, the equations of compressible thermohydrodynamics,
and the equations of magnetohydrodynamics in two and
three spatial dimensions. These extensions will require using
the Chapman-Enskog technique presented in this paper but
for quantum models with significantly many more qubits per
lattice node, say several dozen per node. Therefore efficient
implementation of open quantum system models of classical
turbulence in higher spatial dimensions will require a quan-
tum computer. Fortunately, such an implementation on a fu-
ture quantum computer should be straightforward because
this quantum modeling method has a well-defined micro-
scopic quantum-mechanical dynamics generated by a Hamil-
tonian with only local qubit-qubit interactions.
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