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Procrustean entanglement concentration of continuous-variable states of light
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We propose a Procrustean entanglement concentration scheme for continuous-variable states inspired by the
scheme proposed in J. Fiurasek et al. [Phys. Rev. A 67, 022304 (2003)]. We show that the eight-port homo-
dyne measurement of J. Fiurdsek et al. [Phys. Rev. A 67, 022304 (2003)] can be replaced by a balanced
homodyne measurement with the advantage of providing a success criterion that allows Alice and Bob to
determine if entanglement concentration was achieved. In addition, it facilitates a straightforward experimental

implementation.
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I. INTRODUCTION

High quality implementation of protocols such as quan-
tum teleportation, superdense coding, and entanglement
swapping require maximally entangled pure states [ 1-4]. Un-
fortunately, processes such as decoherence and dissipation
mean that maximally entangled states are potentially difficult
to generate and then maintain [1-3,5]. In a continuous-
variable (CV) setting, one faces the additional problem that
the maximally entangled states, the so-called EPR states, are
unphysical and therefore unobtainable [6-8]. Such pure
states correspond to simultaneous eigenstates of the opera-
tors [8,9]
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where {£,,%,,p,,p,} are the position and momentum opera-
tors of the subsystems 1 and 2. Consequently, the quality of
any protocol using entangled CV states is always limited by
the physical mechanism producing these states.

This is where entanglement concentration or distillation
protocols come in, with the aim to convert a large number of
copies of weakly entangled states into a small number of
highly entangled states via local operations and classical
communication (LOCC)[4]. There have been many different
methods proposed to achieve this entanglement concentra-
tion [10], however, only the Procrustean method seems to
work for CV states. In this method the Schmidt coefficients
of the input state are modified while preserving the Schmidt
basis. Symbolically, this procedure may be expressed as
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such that the entanglement content of (4) is greater than the
entanglement content of (3).

In quantum optics, one readily obtains continuous-
variable entangled states from nondegenerate parametric
down conversion [7,8,11-14], called two mode squeezed
vacuum states (TMSS). Such states have the following
Schmidt decomposition:
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where r is the squeezing parameter. Furthermore, it is useful
to introduce A=tanh r which allows a more convenient rep-
resentation of (5):

10=(1=N)"22 (=N)|nny= 2 e lnny.  (6)
n=0 n=0

These two mode squeezed states allow nonlocal correlations
in the uncertainties of the quadratures of each mode but they
do not correspond to the maximally entangled EPR states.
However, they do asymptotically coincide with these states
in the limit r—oo [8,15]; a fact that can be easily demon-
strated via the Duan separability criterion [16], where en-
tangled states obey the condition:
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Applying this to (5) (with a=-1) gives
0<e?<1, (8)

where the lower bound of the above is satisfied only by the
maximally entangled states.

The goal here is entanglement concentration of the two
mode squeezed vacuum state |{) via the Procrustean method,
which will result in the modification A —\’ where A <\'.
Entanglement concentration on Gaussian states can only be
achieved by implementing some non-Gaussian operation in
addition to local Gaussian operations and classical commu-
nication, a result that was proved in the no-go theorem pro-
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FIG. 1. This scheme involves interaction between Bob’s beam
(one-half of |£)) and an additional coherent state |a) via the cross
Kerr effect. This is followed by balanced homodyne detection
(BHD) and compensating phase shifting (PS).

vided by Eisert et al. [17]. Consequently, any Procrustean
CV entanglement concentration scheme must include a non-
Gaussian operation to be successful. Three possible schemes
have been suggested so far: the first requires quantum non-
demolition measurements of photon number [9] and the sec-
ond utilizes single photon subtraction measurements [18,19]
while the third employs a nonlinear medium [20].

Here we propose a modification of a Procrustean en-
tanglement concentration scheme suggested in [20]. In the
setup of [20], Alice and Bob initially share |/) before an
additional auxiliary coherent state |@) is introduced. The co-
herent state and Bob’s half of the squeezed state are fed into
a nonlinear medium that exhibits the Kerr effect. This inter-
action results in entanglement between the coherent beam
and Alice and Bob’s beams. A local eight-port homodyne
measurement is then performed on the coherent state, which
ultimately projects onto a random coherent state |3). How-
ever, this measurement process does not allow the construc-
tion of a success criterion; instead all that one can say is that
the entanglement content of the output state may have in-
creased if the output |8) was within a certain range. Finally,
a feed forward phase shift is required in Bob’s beam to re-
move any undesirable oscillatory terms. In our scheme, we
show that by measuring one of the quadratures of |a), via
balanced homodyne detection, we can also have Procrustean
entanglement concentration that has the added advantage
of producing a success criterion. Furthermore, the experi-
mental implementation of the homodyne detection is consid-
erately simpler to execute than the eight-port homodyne de-
tection.

II. THE PROTOCOL

Initially, we assume that Alice and Bob share the state |{)
and we introduce an additional mode C prepared in a coher-
ent state |@) with a € R. The input state to the protocol is
then |;,(0))=|{)| @). Both Bob’s beam and the additional
coherent state are fed into a nonlinear medium exhibiting the
Kerr effect (see Fig. 1).

This nonlinear interaction is employed for two reasons.
First, it is a non-Gaussian operation and is therefore abso-
lutely essential if entanglement concentration is to be
achieved. Second, this interaction allows the additional co-
herent state to become entangled with TMSS. This occurs
because |a@) picks up a phase shift ¢”¢ that is dependent on
the photon number of Bob’s half of the TMSS. In other
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words, the presence of the TMSS in the nonlinear medium
causes the coherent state to slow down. The mathematical
details of this interaction are encoded in the unitary operator:

Ug=1, ® exp(- ixth'bé'é), 9)

where « is the cross coupling constant of the medium that is
related to the y'* nonlinearity. Following [20], we define the
nonlinear phase ¢=—«t. After the evolution in the Kerr me-
dium, the state is

(D)) = 2 coln,n, ae™®). (10)

n=0

It is at this point where we diverge from [20] and instead
of projecting our additional coherent state onto another ran-
dom coherent state by eight-port homodyne detection, we opt
for a single balanced homodyne detection. So, the emerging
coherent beam (designated as beam C with mode operators
{¢,¢%}) is then directed into a balanced homodyne detector
that measures the quadrature f(ce). Following the treatment
presented in [7], the photocurrent is represented by the ob-
servable
i(;’é’r
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Note that || is the classical amplitude associated with the
local oscillator field. Clearly, this observable’s eigenstates
coincide with the quadrature eigenstates |x,). Hence, this
measurement projects onto one of these states with the prob-
ability density:

7(xg) = Tr(pelxp)(xgl). (12)

Pe=Trpl| W) h,,(1)|] is the state of the measurement de-
vice with the entangled pair traced out. The whole measure-
ment process is described by

(ap @ Po)xa[1(0) _
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Here (x,| ae™¢) represents the quadrature wave function of
the coherent state |ae™?), given by [11]

(x9—<)e<£>>)2)
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(14)

where
P =\2a cos(ng - 6), (15)
Gy = \Dasin(0- ne). (16)

At this point, we note that the phase shift attributed to the
coherent state by the nonlinear medium is typically very
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weak. Consequently, ng is very small for all terms (—=\)" that
differ significantly from zero as N <1 [20]. This approxima-
tion makes it appropriate to use a linear expansion of the sine
and cosine terms:

(xi.e)) ~ \Ea(cos 0+ nosin 6), (17)

&Py ~ \Da(sin 0- ne cos 6). (18)
Subsequently

(xg— \Ea cos 6)?

> + B(x,,)n)

(xglae™?y =~ 77114 exp(—

><exp(§{a2 sin 260 - 2\5x9a sin 0+ 2n ’)/(Xg)}> ,

where

B(xy) = \2axp sin - P sin 20, (19)

Y(xg) = \2aqx, cos O+ ae cos 20. (20)
0

After the measurement, we remove the oscillatory terms
€"*0" and the global phase terms il sin 20-2\2xgarsin 0) by
using a phase shifter as in [20]. We assume that the proper-
ties of the nonlinear medium ¢ and coherent state « are
known in advance, possibly through previous experiments
and that the result of the quadrature measurement x, is
stored. This is all the information required to perform this
phase shift. Also note that this operation is only possible
because the oscillating terms are linear in ne [20].

To reveal the form of the output state we calculate the
probability density of the quadrature measurement:

—(xp- \2a cos 0)2(1 _ )\2)

Va1 = (PN

ee]
) e
m(xg) = 2 Cﬁ|<x0|a€m¢>|2 =
n=0

(21)

Furthermore, if we assume that B(x,) is very small [since

B(xy) is proportional to ¢ which is typically very small and
<

B(\N2a cos 0xy)=0], then a linear approximation is appropri-

ate:

e—(xf,— \2a cos 0)2(1 _ )\2)
V{1 =[1+ Bl PAZ

Hence, for small values of B(x,), the probability density is
almost Gaussian.
Thus, the output state of the protocol is given by

7(xp) = (22)

) = V(1 =N"2) 2 (= N')"|n,n), (23)
n=0

where N'=[1+B(xg)]\. The success of the scheme can be
examined by comparing the entanglement of the input and
output states.

The entanglement content of the input state can be deter-
mined by using the Duan criterion (7) as a measure:
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-2)-(2-w0)

(1-2%)

(A0 +((AV?) =

For simplicity we choose a=1 to give

'7\2 (7\2\ — _2(1—_)\)2
QO +(@V) =V, =T @9

The entanglement content of the output state is then

201 =[1+ Blxy) AP
A ={[1+ BN’

Consequently, the entanglement content of the output state is
dependent on the amplitude of the coherent state «, the phase
shift generated by the nonlinear medium ¢, and the measure-
ment result x,. Procrustean entanglement concentration will
only occur if A <<[1+ B(xg)]\, which is a condition that can
only be satisfied if B(xy) >0. This success criterion can then
be expressed as a condition on the measurement result x,

Vout([l + IB(XH)]}\) = (25)

Xg> \'Ea cos 6. (26)

Furthermore, we note that the assumption used to derive (22)
is supported by the Duan measure since the lower bound of
this criterion places an upper bound on the measurement
result from the homodyne detection:

(AD®) +((AV)? = 0. (27)
Substituting (25) into the above gives

Blxg) <1, (28)

which can also be expressed as an upper bound on the pos-
sible values of the measurement result x

(1-2)

XB$ [

0+ \60[ cos 0= xgi’”i’. (29)
V2N sin Qo

Accordingly, the probability of success of this protocol is
given by the expression

e—(xg— \2a cos 0)2(1 _ )\2)

Limit
p _ f dx,.  (30)
e = | o =1+ B D)

However, since the probability density is almost a Gaussian
and since B(xy) should be greater than zero, then the success
probability is approximately 50%.

In the actual implementation of this protocol, the observ-
ers Alice and Bob would discard any states which do not
obey this condition. Then, they would possess a collection of
entangled states with greater entanglement content than the
input. However, this collection will not have uniform en-
tanglement since there are many different values of x, that
satisfy the above condition. Instead, they could only ensure
that they had a collection of uniformly entangled states by
discarding any states which had a measurement result differ-
ent from the standard.
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FIG. 2. The homodyne measurement probability density is a
Gaussian centered around the mean value x4= V2« cos 6 in the re-
gime where ¢<<1. In the above #=7/2 and a=10* and ¢=10"10.

II1. DISCUSSION OF EXPERIMENTAL FEASIBILITY

To discuss the feasibility of our scheme we consider the
properties of the probability density (22) for various values
of x, corresponding to percentage improvements in the en-
tanglement of the TMSS. Such percentage improvements are
calculated from the ratio

Vout([l + ﬁ(xf))])\) _
Vin()\) - (31)

where entanglement concentration occurs only if v<<1 and
for a ratio v between the variances, we can expect a
(1-v)% improvement in entanglement content. In general,
the solution of (31) is given by

(=D -v)

B = S INr— D= 1]’

(32)

Consequently, we can relate the required measurement result
X4 to a desired percentage improvement of entanglement be-
tween the two field modes in the TMSS (remembering that
a efR):

. W-n-v)
" 2\2ag sin ONA(v—1) 1]

X + \Ea cos 6. (33)

The feasibility of this protocol is then dependent on the prob-
ability of obtaining such quadrature values from the mea-
surement. The probability density 7(x,) is a Gaussian cen-
tered at \2a cos 6 (see Fig. 2), so the most probable values
of x, are those where the first term of (33) is very small. In
other words, for nontrivial probability of success we require

0<—— (- D =) <1. (34)
2V2a@ sin ON[N(v—1) — 1]

Furthermore, if we regard the nonlinear phase shift ¢ and the
coherent amplitude « as physical resources in this protocol
then it is convenient to express (34) as
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FIG. 3. The probability density of achieving a 10% improve-
ment in entanglement of the two mode squeezed vacuum is depen-
dent on both & and ¢. One can compensate for a deficiency in one
by strengthening the other, but experimental feasibility is still out of
reach with current technology.

(N =1)(1-v)
242sin AIN(v=1) = 1]

ap > (35)

Using (35) we can draw a number of conclusions about fea-
sibility. First, the measurement of the phase quadrature )227/2)
is the optimal measurement since sin # is at a maximum
when 6=1/2.

Second, both a and ¢ can be regarded as resources of this
protocol and it is possible to compensate for a deficiency in

one by strengthening the other. For example, suppose we
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wish to produce a 10% improvement in the entanglement
content of a TMSS with 4.5 dB squeezing (corresponding to
)x:%). Furthermore, if we chose to measure the phase
quadrature (6=1/2) then by (33), we get

0.03
X = a_(p N (36)

and the corresponding probability density is

0.0009
(X p) = 0.6 exp| — ——
a’e

(37)

Now consider how the probability density behaves in differ-
ent regimes (see Fig. 3).

(1) When the nonlinear coupling between the two radia-
tion modes inside the nonlinear medium is weak then ¢ is
extremely small. The performance of this protocol is then
determined by adjusting « in the ancillary mode. However,
the experimentally feasibility of this is questionable. For ex-
ample, using 1 m of a microstructured fiber to provide the
nonlinear interaction and a 10 fs pulsed coherent beam with
average power 1 mW and repetition rate 80 uHz for the an-
cillary state, then it is possible to achieve ¢~ 107 [21]. To
compensate for this tiny nonlinearity we would require
a=1.5X10" which is completely unrealistic with current
technology.

(2) If we could produce ¢= 107> then the scheme would
be feasible with a=1.5X10°.

(3) When the nonlinear coupling is strong then the scheme
becomes much more viable. For example, if we were able to
produce ¢= 1072 then we would only need a= 1.5 for non-
trivial probabilities of achieving a 10% improvement.

Thus, with current experimental technology restricted to
very small nonlinearities, this scheme is not feasible. How-
ever, future advancements may offer higher nonlinearities in
which case our scheme does become viable.

IV. CONCLUDING REMARKS

In conclusion, we have shown that Procrustean entangle-
ment concentration can be achieved on a TMSS state by
allowing a cross Kerr interaction with an additional coherent
state followed by a quadrature measurement on this coherent
state. We have found that in replacing the eight-port homo-
dyne measurement suggested in [20] with balanced homo-
dyne detection, it is possible to have an indication to the
success of the entanglement concentration. Indeed, it was
demonstrated that entanglement concentration is achieved if
X¢>2a cos 6, if this condition is not met then the entangle-
ment content of the TMSS has decreased.

It is useful to compare these two measurement processes
to understand why in spite of their differences, they lead to
similar results. First, eight-port homodyne or double homo-
dyne detection is designed to extract both total phase and
amplitude information from the input state [7,14] and from
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this information it is possible to construct a coherent state to
represent the state of the detector. Thus, double homodyne
detection acts to project the input state onto a random eigen-
state of the annihilation operator. Due to the non-Hermitian
nature of the annihilation operator, such a measurement must
be modeled by a positive operator valued measure (POVM)
[14]:

fi(0) = ~{B(@) @ D@ & ). 39

where [1))=2"_|n,n) and fdzaf[(a)=lf. In contrast, we pro-
pose a measurement of an actual observable of the field,
namely one of the quadratures of the auxiliary mode. Such a
measurement does not extract all the information from the
coherent state, instead only partial information is extracted
from about both the amplitude and phase and yet, entangle-
ment concentration can still be achieved.

Ultimately, this is because this scheme is dependent on
the entangling interaction due to the cross Kerr effect be-
tween the squeezed state and the coherent state. The Kerr
medium creates entanglement by inducing phase shifts in the
coherent state that are dependent on the photon number of
the TMSS. Thus, to transfer the entanglement from the co-
herent state and the TMSS to the two modes of the TMSS is
dependent on the amount of information gained from the
measurement about the nonlinear phase shifts. Hence, the
double homodyne measurement is, in a sense, excessive as it
extracts information about both the phase and amplitude of
the coherent state when only the former is required. This fact
is reinforced in our scheme since one finds that the optimal
measurement for entanglement concentration corresponds to
the choice #=m/2, i.e., extraction of the phase information
of the coherent state. This insight engenders another, namely
that optimal entanglement concentration in our scheme re-
quires a certain harmony between the entangling interaction
with the ancillary state and the subsequent measurement on
the ancillary.

The general feasibility of our entanglement concentration
scheme, and similar schemes, is dictated by the strength of
the high order nonlinear interaction between the ancillary
state and the state of interest. It is clear that one way to
generate these interactions is through the use of nonlinear
media such as fibers or photonic crystals. However, an alter-
native method would be the simulation of such effects via
measurement induced nonlinearities [22,23], where a deter-
ministic entangling interaction could be replaced by a condi-
tional effective entangling measurement scheme. It will be
the focus of future work to investigate this possibility.
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