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We calculate the geometric phase for an open system �spin-boson model� which interacts with an environ-
ment �ohmic or nonohmic� at arbitrary temperature. However there have been many assumptions about the
time scale at which the geometric phase can be measured, there has been no reported observation of geometric
phases for mixed states under nonunitary evolution yet. We study not only how they are corrected by the
presence of the different type of environments but estimate the corresponding times at which decoherence
becomes effective as well. These estimations should be taken into account when planning experimental setups
to study the geometric phase in the nonunitary regime, particularly important for the application of fault-
tolerant quantum computation.
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I. INTRODUCTION

All real world quantum systems interact with their sur-
rounding environment to a greater or lesser extent. While
closed quantum systems are bound to have a unitary evolu-
tion in which the system’s purity is preserved and the super-
position principle can be applied, open quantum systems
show a different scenario. As they are in interaction with an
environment �defined as any degrees of freedom coupled to
the system which can entangle its states�, a degradation of
pure states into mixtures takes place. These mixture states
will often turn out to be diagonal in the set of “pointer
states’’ �1� which are selected by the crucial help of the in-
teraction Hamiltonian �Hint�. They are stable subjected to the
action of Hint, i.e., the interaction between the system and the
environment will leave them unperturbed. That is exactly
what makes them a “preferred” basis. No matter how weak
the coupling that prevents the system from being isolated,
the evolution of an open quantum system is eventually
plagued by nonunitary features like decoherence and dissipa-
tion. Decoherence, in particular, is a quantum effect whereby
the system loses its ability to exhibit coherent behavior.
Nowadays, decoherence stands as a serious obstacle in quan-
tum information processing.

Since the work of Berry �2�, the notion of geometric
phases �GPs� was shown to have important consequences for
quantum systems. Berry demonstrated that quantum systems
could acquire phases that are geometric in nature. He showed
that, besides the usual dynamical phase, an additional phase
that was related to the geometry of the space state was gen-
erated during an adiabatic evolution. The original idea,
framed within the context of adiabatic and cyclic evolutions
of isolated systems, has been generalized in various aspects.
While many of these propositions have been centered around
pure states, the need to address the issue of GPs for mixed
states rapidly gained prominence fueled by the promise of
realizing quantum logic gates under realistic physical condi-

tions. In that direction, Ref. �3� introduced an alternative
definition of GPs for nondegenerate density operators based
upon quantum interferometry. In Ref. �4�, a kinematic de-
scription of the mixed state GP was given and its definition
extended to degenerate density operators. Recently, in Ref.
�5�, GPs for an open quantum system were studied and, fi-
nally, it was shown that the above apparently different ap-
proaches were related in a unifying framework. The effect on
GPs of different types of decoherence sources, such as
dephasing and spontaneous decay, has been analyzed �6�.
Likewise, it has been shown how to generate a geometric
phase through modifications solely on the reservoir that in-
teracts with a small subsystem �7�.

GPs are useful in the context of quantum computation as
a tool to achieve fault tolerance. However, practical imple-
mentations of quantum computing are always done in the
presence of decoherence. Thus, a proper generalization of the
geometric phase for unitary evolution to that for nonunitary
evolution is central in the evaluation of the robustness of
geometric quantum computation. This generalization to non-
unitary evolution has been done in Ref. �8�, where a func-
tional representation of GP was proposed, after removing the
dynamical phase from the total phase acquired by the system
under a gauge transformation.

The GP for a mixed state under nonunitary evolution is
then defined as

� = arg��
k

��k�0��k�����k�0�	�k���
e−�0
�dt��k	�/�t	�k
� ,

�1�

where �k�t� are the eigenvalues and 	�k
 the eigenstates of
the reduced density matrix �r �obtained after tracing over the
reservoir degrees of freedom�. In the last definition, � de-
notes a time after the total system completes a cyclic evolu-
tion when it is isolated from the environment. Taking the
effect of the environment into account, the system no longer
undergoes a cyclic evolution. However, we will consider a
quasicyclic path P : t��0,�� with �=2� /� �� the system’s
frequency� �8�. It is worth noting that the phase in Eq. �1� is
manifestly gauge invariant, since it only depends on the path
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in the state space, and that this expression, even though it is
defined for nondegenerate mixed states, corresponds to the
unitary geometric phase in the case that the state is pure
�closed system� �3,4�.

It is expected that GPs can be only observed in experi-
ments carried out in a time scale slow enough to ignore
nonadiabatic corrections, but rapid enough to avoid the de-
struction of the interference pattern by decoherence �9�. So
far, there has been no experimental observation of GPs for
mixed states under nonunitary evolutions. The purpose of
this paper is to study how GPs are affected by decoherence.
Not only shall we analyze the effect of the environment on
the GPs and their robustness against decoherence, but also
under which conditions GPs can be measured. With these
motivations, we shall introduce a “simplified’’ spin boson
model and calculate the corrections to the unitary geometric
phase for different physical environments. In the end, we
shall estimate the decoherence times after which GPs can be
no longer measured because they, literally, disappear.

The paper is organized as follows. In Sec. II we introduce
the spin-boson model and we show the exact master equation
for the reduced density matrix. We explicitly evaluate, in
Sec. III, the corrections to the GPs induced by different types
of environment and Sec. IV contains the calculation of the
decoherence times. Finally, in Sec. V, we make our final
remarks and comments.

II. THE SPIN-BOSON MODEL

Hereafter, we shall study an exact model for a two-state
quantum system �or quantum bit �qubit�� coupled to a ther-
mal bath of harmonic oscillators, where decoherence is the
only effect on the system particle. This is a particular case of
the spin-boson model of Ref. �10� �where the tunneling bare
matrix element is 	=0� and has been used by many authors
to model decoherence in quantum computers �11� and, in
particular, it is extremely relevant to the proposal for observ-
ing GPs in a superconducting nanocircuit �12�. We will con-
centrate on ohmic and supraohmic environments �at high,
low, and zero temperature� coupled to the system spin. The
Hamiltonian that describes the complete evolution of the
two-state system interacting with the external environment is

HSB =
1

2

��z +

1

2
�z�

n

�nqn + �
n


nan
†an, �2�

where the environment is described as a set of harmonic
oscillators with a linear coupling in the oscillator coordinate.
The interaction between the two-state system and the envi-
ronment is entirely represented by a Hamiltonian in which
the coupling is only through �z. A coupling of this form
indicates that the state of the environment will be sensitive to
the values of �z, which means that the environment can “ob-
serve’’ the value of �z �i.e., where the system is 	↑
 or 	↓
�.
The reason for this type of coupling is that the effects of a
coupling proportional to �x and/or �y can be completely
taken into account by the renormalization of the natural fre-
quency of the system. However, in this particular case,
��z ,Hint�=0 and the corresponding master equation is much

simplified, with no frequency renormalization and dissipa-
tion effects. If we assume that �i� the system and the envi-
ronment are initially uncorrelated and �ii� the environment is
initially in thermal equilibrium at temperature T �or the
vacuum for zero temperature�, the master equation for the
reduced density matrix is

�̇r = − i���z,�r� − D�t���z,��z,�r�� . �3�

In other words, the model describes a purely decohering
mechanism, solely containing the diffusion term D�t�, where
no energy exchange between system and bath is present. The
diffusion coefficient is given by

D�t� = 
0

t

ds
0

�

dJ��cos�s�coth��


2
� , �4�

where �=1/kBT �kB is Boltzmann’s constant� and J�� is the
spectral density of the environment defined by the expression
J��=�n�n

2��−n� /2mnn. One assumption we shall make
throughout this paper is that J�� is a reasonably smooth
function of , and that is of the form n up to some fre-
quency � that may be large compared to �. In particular, the
case with n=1 is the “ohmic” case and the one with n�1 is
the “supraohmic” case. It is easy to see in Eq. �4� that the
system’s dynamics depends crucially both on the external
temperature and on the type of environment.

III. GEOMETRIC PHASE FOR THE COMPOSITE
SYSTEM

We shall compute the geometric phase for the spin-boson
model. It is easy to check that �r01

�t�=e−i�t−��t��r01
�0� is

solution of the master equation �Eq. �3�� with ��t�
=�0

t dt�D�t�� and �r01
�0� a constant determined by initial con-

ditions. Here we are implying that the diagonal terms do not
evolve in time, i.e., �rii

�t�=�rii
�0�, for i=0,1 �the spin state

basis�, assuming the population dynamics of the system is
essentially frozen on the time scales of interest �11�. The
decoherence factor is then given by

��t� = 4
0

�

dJ��coth��


2
� �1 − cos�t��

2 . �5�

When a specific choice turns out to be useful, we shall as-
sume the following functional form for the spectral density
J��=�0 /4n�n−1e−/� �10�, where �0 is the dissipative con-
stant �in suitable units� and � is the cutoff frequency.

As the factor � is real, unitarity requires �r01
�0�=�r10

�0�
since �r10

=�r01

* . For a spin-1 /2 system, the state space con-
sists of all points on and inside the Bloch sphere. Then, we
assume that the system is initially in the Bloch state

	��0�
 = cos��0/2�	e
 + sin��0/2�	g
 .

The constants are determined so that �r�0�= 	��0�
���0�	.
Then, for times t�0, the reduced density matrix is

�r�t� = � cos��0/2�2 1/2 sin��0�ei�t−��t�

1/2 sin��0�e−i�t−��t� sin��0/2�2 � .
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The eigenvalues of the above reduced density matrix are
easily calculated,

�±�t� = 1
2 ± 1

2
�cos��0�2 + exp�− 2��t��sin��0�2. �6�

In order to estimate the geometric phase, we only need the
eigenvector 	�+�t�
 since �−�0�=0, and, hence, the only con-
tribution to the phase comes from that eigenvector and its
corresponding eigenvalue �see Eq. �1��. Then, we write it
here as

	�+�t�
 = e−i�t sin��t/2�	e
 + cos��t/2�	g
 , �7�

with tan��t /2�=exp�−��t��cot��0 /2�. It is easy to check that,
when �=0, we reobtain the results for the unitary case.
Hence, once we have the eigenvalues and eigenvectors, we

can calculate the factor ��k 	�̇k
 of Eq. �1�. Performing the

time derivatives, we get ��k 	�̇k
=−i� sin��t /2�2, therefore,
the geometric phase is

� = arg���+����+�0���+���	�+�0�
ei��0
�dt sin��t/2�2� .

This result holds for any density matrix that has these eigen-
values and eigenvectors, independently of the exact expres-
sion of �, as long as �−�0�=0. By inserting Eqs. �6� and �7�
into the above expression, the geometric phase related to a
quasicyclic path P : t��0,�� �with �=2� /� �8�� is �assuming
cos��0 /2��0�

� = �
0

�

dt sin��t

2
�2

. �8�

In order to evaluate this integral, we will perform a serial
expansion in terms of powers of the dissipative constant �0,
and, consequently, the unitary phase �U is corrected by the
presence of the environment as

� = �U + �� � ��1 − cos��0��

+ �0
�

2
sin��0�2 cos��0�

0

�

dt�� ���t�
��0

��
�0=0

,

where we can see that the first term of the expansion is the
solution we would have obtained if the evolution would have
been unitary, i.e., �U=��1−cos��0��. If, for example, we
assume an ohmic �n=1� environment at high temperature,
then the spectral density takes the particular form J��
=�0 /4e−/�. In that case, 
�2kBT, we can approximate
coth��
 /2� in Eq. �4� by 2kBT / �
� and the decoherence
coefficient � becomes �= ��0�kBT�t /
. Then, the geometric
phase is corrected by

�� = �2�0��kBT


�
�sin��0�2 cos��0� . �9�

This correction to the unitary phase is proportional to
�0kBT /
�. Then, it is bigger for hotter environments and
cannot be neglected. It is worth mentioning that, formally,
our solution is similar to the one proposed by the authors in
Ref. �13� where they made no a priori assumption about the
dynamics of the system. On the contrary, our solution is ob-
tained from scratch and can be applied to different environ-

ments at any temperature. Furthermore, this correction is
more realistic since they assumed a very much simplified
environment.

If we were to assume the same ohmic environment but at
zero temperature, then the phase would be corrected in a
significantly different way, as one would expect since there is
one time scale lost. In that case, the factor coth��
 /2�, in
the definition of ��t� �Eq. �4��, can be approximated by 1 and
the correction obtained is

�� = ��0�− 1 + log�2��

�
��sin��0�2 cos��0� . �10�

It is worth noting that this correction comes from the zero
point fluctuations of the environment.

Beyond the commonly assumed ohmic spectrum for the
bath, generic nonohmic environments can be studied with
this model. Owing to the ultrashort time bath correlations,
nontrivial short-time system dynamics enters. What is most
appealing about this case is the fact that the electromagnetic
field can be modeled by a supraohmic environment which
results in being very useful for quantum optics and trying to
measure the geometric phases. In the following, we shall
evaluate the correction of the geometric phases in the pres-
ence of this kind of environment.

For high temperature, we can still make the same approxi-
mation as in the ohmic case, and then, the estimation of the
� factor is straightforward. Using the spectral density with
n=3, the correction to the unitary phase is

�� = ��0�2kBT


�
�sin��0�2 cos��0� . �11�

We can also estimate the correction to the unitary phase in
the presence of a supraohmic environment but at zero tem-
perature as

�� = ��0 sin��0�2 cos��0� . �12�

As � is the maximum available frequency in the environ-
ment, a valid assumption is that ���. In that case, we can
see that the parentheses in Eq. �10� is of order one and, then,
both corrections at zero temperature �Eq. �10� and Eq. �12��,
for the ohmic and nonohmic cases, are similar. The same
occurs for high temperature in Eq. �9� and Eq. �11�. These
results are remarkably interesting and enhance the robustness
of the model �and of the geometric phase�.

IV. DECOHERENCE TIMES FOR THE COMPOSITE
SYSTEM

In this section we shall estimate the decoherence time,
i.e., the time scale when the nondiagonal terms of the re-
duced density matrix are suppressed. Therefore, it is a very
important time scale to take into account when planning an
experiment to measure the geometric phases.

Let us take, for example, an interference experiment. The
experiment starts by the preparation of two wave packets in a
coherent superposition, assuming each of the particles fol-
lows a well-defined classical path �C1 and C2, respectively�,
as ��t=0�= ��1�x�+�2�x�� � �0�y�, where �0�y�� represents
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the initial quantum state of the environment �whose set of
coordinates is denoted by y��. Due to the interaction between
the system and the environment, the total wave function at a
later time t is ��t�=�1�x� , t� � �1�y� , t�+�2�x� , t� � �2�y� , t�. It is
easy to note that the states �1 and �2 became entangled with
two different states of the environment. Therefore, the den-
sity matrix of the system at time t �for example, when inter-
ference pattern is examined� is

�r�x,x�� = �1
*�x��1�x�� + �2

*�x��2�x��

+ ��1
*�x��2�x�� + �2

*�x��1�x���F�t� .

The last two terms in the above expression represent the
quantum interferences. The overlap factor F�t� �14� encodes
the information about the statistical nature of noise since it is
obtained by tracing over the degrees of freedom of the bath.
Hence, it produces a decaying term that tends to eliminate
the interference pattern. Therefore, noise makes F�t� less
than one, and the goal is to quantify how it slightly destroys
the particle interference pattern. In the case of the exact sys-
tem we are studying here, F�t�=e−��t�. When � is big, the
off-diagonal terms �coherences� elements will vanish in a
short time scale, and hence, the open system will not acquire
GP. Then, in order to know the time scale at which the quan-
tum interferences are suppressed, we must estimate the “de-
coherence” time tD for each of the four cases studied above,
by setting ��tD��1.

For the ohmic environment, the decoherence factor is
�1T= �kBT��0 /
�t in the limit of high temperature. Then, the
decoherence time scale for this case is, in principle, ex-
tremely short, estimated as tD

1T=
 / �kBT��0� �see Fig. 1�. All
other cases depend explicitly upon the cutoff. For the ohmic
environment at zero temperature, the decoherence factor is
�10=�0 /2 ln�1+�2t2�. For times �t�1, the decoherence
time scales as tD

10=e1/�0 /�. Sooner or later, decoherence is
always present in this environment as well. As it is clearly
shown in Fig. 1, decoherence is delayed as �0 decreases �bot-
tom�. Things are slightly different for the supraohmic
environment. In the high temperature limit, the decoherence
factor is �3T= �2kBT�0��t2 /
 for �t�1. Then, the
estimation of the decoherence time is straightforward,
tD
3T=1/��
� / �2kBT�0�. However, if �t�1, �3T

=2kBT�0 / �
��, constant in time. Then, decoherence shall
occur if and only if 2kBT�0�
�, and that shall happen in a
time t�1/� as it is shown on top of Fig. 1. At the bottom of
Fig. 1, �0 is smaller and then, kBT�0�
�, which means that
�3T will never be of order one and, therefore, decoherence
shall not be effective. Finally, in the supraohmic case at zero
temperature, the decoherence factor is �30=�0�4t4 / �1
+�2t2�2. We can see in Fig. 1 that decoherence never occurs
for this case. This is so because �30=�0 for �t�1. The
decoherence factor will be a constant value of e−�0 for all
times. Since �0�1, this factor will never be of order one. In
conclusion, as high-T environments are so efficient produc-
ing decoherence, there is a strong condition over the dissipa-
tive constant �0 in order to get tD�� �15�, i.e., �0
�
� /kBT, which actually is unfeasible. Bigger �0 implies
shorter decoherence times. However, for zero-T baths, the

condition on �0 relaxes to �0�1 making tD�� and allowing
experimental observation.

V. FINAL REMARKS

When measuring a GP, the dynamical phase must be
eliminated. It can be either canceled, for example, using
spin-echo technique for spins in magnetic fields �16�, or one
can parallel transport the state vector in order to ensure that
the dynamical phase is zero at all times. Even though the
state does not acquire a phase locally, it can acquire a phase
globally after completing a cyclic evolution. This global
phase is equal to the geometric phase. GPs are useful in the
context of quantum computation as a tool to achieve fault
tolerance. However, practical implementations of quantum
computing are always done in the presence of decoherence, a
nonunitary effect of open systems. However, there have been
many assumptions about the time scale at which the geomet-
ric phase can be measured, there has been no reported obser-
vation yet for mixed states under nonunitary evolutions.
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FIG. 1. �Color online� Comparison between the ��t� coefficients
for the ohmic case �n=1� and the supraohmic case �n=3� for dif-
ferent environments for high �T=1000�, low �T=1.55�, and zero
temperature �
=1=kB�. �=100 � and �0=0.3 �top� and �0=0.03
�bottom�. Time is measured in units of �. It is easy to note that the
low temperature limit is not zero temperature.
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It has been argued that the observation of GPs should be
done in times long enough to obey the adiabatic approxima-
tion but short enough to prevent decoherence from deleting
all phase information. In this paper, not only have we shown
an exact model where the correction to the GPs can be evalu-
ated for different types of environment at any temperature,
but also estimations of the corresponding times at which the
interference pattern is mostly reduced and decoherence be-
comes effective. This model allows us to evaluate an exact
master equation for the reduced density matrix and, as a
consequence, to elaborate a full analysis on the effect of
decoherence on the geometric phase of the composite sys-
tem. The goal is the analysis of the effect produced by deco-
herence, which should be essential to design experimental

setups in order to observe geometric phases using, for ex-
ample, interferometry. We stressed that the convenient envi-
ronment to observe GPs is at zero temperature in the under-
damped limit and that these decoherence times should be
taken into account when extending the study of GPs to the
nonunitary regime, especially pertinent to the application to
fault-tolerant quantum computation �17�.
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