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Alice and Bob share a correlated composite quantum system AB. If AB is used as the key for a one-time pad
cryptographic system, we show that the maximum amount of information that Alice can send securely to Bob
is the quantum mutual information of AB.
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I. THE ONE-TIME PAD AND MUTUAL INFORMATION

A one-time pad �1� is a cryptographic protocol in which
communicators Alice and Bob initially have correlated ran-
dom variables, collectively called the “key,” that are not
correlated with any variables possessed by a potential eaves-
dropper Eve. �In most discussions, the key variables pos-
sessed by Alice and Bob are supposed to be perfectly
correlated—e.g., they are identical copies of the same secret
string of bits. We consider the more general case.� If the
key variables are used only once, they allow Alice to send
Bob a perfectly secret message over a public communication
channel. The value of a key as a resource is the amount of
information that can be sent secretly by its use.

In this paper we examine a quantum-mechanical analog of
the one-time pad. Alice and Bob initially share a correlated
composite quantum system AB. Alice encodes a classical
message by performing one of several possible operations on
her subsystem A, after which she transfers it to Bob. Bob
reads the message via a measurement on the entire system
AB. The eavesdropper Eve only has access to subsystem A;
thus, to ensure the security of the secret message, Alice must
ensure that the A by itself can provide no information to Eve.

Holevo �2� provided an upper bound for the accessible
information in a measurement. Suppose a quantum system
is prepared in a state �� with probability p�. The ensemble
average state is �=��p���. Holevo showed that, for any
measurement, the mutual information I between the prepara-
tion and the measurement result is bounded above by

I � � = S��� − �
�

p�S���� , �1�

where S���=−Tr� log �. Holevo �3� and Schumacher and
Westmoreland �4� proved that, with appropriate choices of
code and decoding observable, this upper bound can be ap-
proached asymptotically. Therefore, � measures the classical
information that can be conveyed using a particular
ensemble of quantum states.

The quantity ��0, with equality if and only if all of the
possible states �� are the same. We can say even more. The
only situation in which zero information is provided by any
measurement is the situation in which all of the possible
states are the same. Since Alice wishes to exclude the eaves-
dropper, she must arrange that her various operations always
lead to the same output state of A. That is, �A=0.

However, Alice and Bob want to make sure that �AB�0,
since Bob needs to read the secret message by an AB mea-
surement. Let �AB be the initial “key” state of AB. Only the
correlations within �AB permit Alice and Bob to communi-
cate at all. If the initial state �AB is a product state, then it
must remain a product state regardless of Alice’s manipula-
tion of it—and always the same product state, since �B is
unchanged and Alice’s final state �A is fixed. Even with both
A and B in his possession, Bob will not be able to infer
anything about Alice’s choice of operation, because he will
always have the state �A � �B. Without correlations, the
“key” state �AB is useless.

We now put this intuitive observation on a more quanti-
tative basis. Imagine that Alice performs the operation E�

A on
A with probability p�. We write

��
AB = �E�

A
� IB��AB, �2�

�AB = �
�

p���
AB. �3�

To exclude the eavesdropper, we require that ��
A=�A for

every �. The information that Alice can send to Bob will be
limited by

�AB = S��AB� − �
�

p�S���
AB� . �4�

The entropy of the average state �AB is subadditive, so
that S��AB��S��A�+S��B� �with equality if and only if
�AB=�A � �B�. Thus,

�AB � S��B� + S��A� − �
�

p�S���
AB� . �5�

Note that �B=�B �since Alice only operates on A� and that,
by assumption, the individual final A states satisfy ��

A=�A

for all �:

�AB � S��B� + �
�

p��S���
A� − S���

AB�� . �6�

No operation on A alone can lead to an increase in the
coherent information �5� SA−SAB, so that for all �,

S���
A� − S���

AB� � S��A� − S��AB� . �7�

Therefore,
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�AB � S��A� + S��B� − S��AB� . �8�

The quantity on the right is I��A :B�, the quantum mutual
information between A and B, a measure of the degree of
correlation in the original state �AB. We have shown that the
information that Alice can transmit secretly to Bob using �AB

as a one-time pad is bounded above by I��A :B�.

II. A SPECIAL CASE

Having shown that �AB� I��A :B�, we will now show
that Alice can choose an ensemble of operations so that
�AB→ I��A :B� asymptotically. Since we know that we can
achieve �AB as an asymptotic information rate, it follows that
Alice can send up to I��A :B� bits per key to Bob while
keeping Eve completely excluded.

To do this, we will only need to consider unitary opera-
tions on A, given by unitary operators U�

A. The new A states
will be exactly the same as the original “key” state of A, so
that

��
A = U��AU�

† = �A �9�

for all �. This amounts to saying that �U�
A ,�A�=0.

We will first consider a special case in which we can
make �AB= I��A :B� in a single composite system, without the
need for an asymptotic argument. Suppose that the initial A
state is maximally mixed on a subspace, so that �A= 1

d�
�where � is the projection onto a d-dimensional subspace�.
Then any unitary operator on A that commutes with � will
leave �A invariant. Let us choose basis states �kA� for the
support of � and write

�AB = �
kl

�kA��lA� � wkl
B . �10�

By considering �B=TrA�AB, we can see that the B operators
wkl

B satisfy

�B = �
k

wkk
B . �11�

What operators U�
A does Alice include in her ensemble?

We will say that her ensemble includes �1� all possible rela-
tive phase flips among the �kA� basis states; �2� all permuta-
tions of the �kA� basis states; and �3� all combinations of
these. There are N such operators, and Alice uses each with
probability 1 /N. Thus,

��
AB = �

kl

�U�
A�kA��lA�U�

A†� � wkl
B , �12�

�AB = �
kl
	 1

N
�
�

U�
A�kA��lA�U�

A†
 � wkl
B . �13�

Consider the sum in the second expression. When k� l, the
sum over � contains all relative phase flips among the A
basis states with equal weights. In this case the sum must
equal zero. The expression for �AB becomes

�AB = �
k
	 1

N
�
�

U�
A�kA��kA�U�

A†
 � wkk
B . �14�

The sum over � also includes all permutations among the A
basis states. This means that the result of this sum is inde-
pendent of k. We conclude that the average state �AB is a
product state, namely,

�AB = �A
� �B. �15�

For each �, ��
AB is just the original state �AB, rotated by

the unitary operator U�
A. This rotated state will have the same

entropy as the original. It follows that

�AB = S��AB� − �
�

p�S���
AB� = S��A� + S��B� − S��AB�

�16�

=I��A:B� . �17�

In this special case, then, we can arrange for �AB to achieve
its upper bound of I��A :B� exactly.

Notice how this works. We have arranged Alice’s en-
semble of operations so that the correlations between A and
B completely disappear on average—leaving �AB a product
state. Let us think about this more generally. Once again, we
suppose that we have a bunch of unitary operators U�

A acting
on A, which do not alter the subsystem state �A. We have

�AB = S��AB� − S��AB� �18�

�since for each � the state ��
AB has the same entropy as �AB�.

Noting that �A=�A and �B=�B, we can rewrite this as

�AB = I��A:B� − I��A:B� , �19�

where I��A :B� and I��A :B� are the mutual information for
�AB and �AB, respectively. In other words, �AB is exactly the
amount by which we have, on average, reduced the mutual
information between the systems. In our special case, where
the subsystem A is completely mixed, we can reduce this all
the way to zero, and so �AB= I��A :B�.

This points up a connection between our analysis and the
work of Groisman et al. �6�, who define the “total correla-
tion” of two systems to be the amount of classical informa-
tion that must be added to the system so that the correlations
can be completely eliminated by local operations. They show
that the total correlation is given by the quantum mutual
information. The elimination of correlations is not our aim;
rather, we wish to maximize �AB subject to the strict privacy
condition that �A=0. Nevertheless, Eq. �19� tells us that
these two tasks are closely related.

III. THE GENERAL CASE

Now let us consider a general state �AB. The subsystem
state �A has D distinct eigenvalues 	K. For a given K, the
eigenspace of 	K has dimension dk. We can therefore choose
a basis of �A eigenstates and write
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�A = �
K=1

D

	K	 �
mK=1

dK

�KmK��KmK�
 . �20�

For a given K, we think of the basis states �KmK� as com-
prising a “block” spanning the dK-dimensional eigenspace of
	K. This block has total “weight” PK=dK	K in this mixture.
We can write

�A = �
K

PK�K
A , �21�

where each �K
A is the density operator that is maximally

mixed on the eigenspace of 	K:

�K
A = �

mK

1

dK
�KmK��KmK� . �22�

The joint state �AB can be written

�AB = �
KL

	 �
mKnL

�KmK��LnL� � wKmKLnL

B 
 . �23�

What can we say about the operators wKmKLnL

B ? If we com-
pare the partial trace of this expression with Eq. �20�, we see
that

TrwKmKLnL

B = 	K
KL
mKnL
. �24�

Thus, given a value of K,

�
mK

wKmKKmK

B = PK�K
B �25�

for some density operator �K
B. This will be useful below.

Notice that, for various values of K, the density operators
�K

A have orthogonal supports. In general, we can make no
such claim about the supports of the density operators �K

B.
As before, Alice will perform unitary operations on A that

do not change the subsystem state �A. The operators U�
A in-

clude �1� all relative phase flips between distinct blocks; �2�
all relative phase flips between basis states within each
block; �3� all permutations of the basis states within each
block; and �4� all combinations of these. Again, we say that
there are N such operators, and Alice uses each with
probability 1 /N.

The resulting average state �AB is

�AB = �
KL

�
mKnL

	 1

N
�
�

U�
A�KmK��LnL�U�

A†
 � wKmKLnL

B .

�26�

Since the average over � includes all phase flips between
distinct values of K and L, the average in parentheses is zero
unless K=L, so

�AB = �
K

�
mKnK

	 1

N
�
�

U�
A�KmK��KnK�U�

A†
 � wKmKKnK

B .

�27�

Also, we include all phase flips between distinct values of
mK and nK, so the sum becomes

�AB = �
KmK

	 1

N
�
�

U�
A�KmK��KmK�U�

A†
 � wKmKKmK

B .

�28�

Finally, since the U�
A operators include all permutations of

basis states within a given block, the average in parentheses
depends only on K and not on mK. Indeed, this average is the
uniform density operator on the 	K eigenspace for �A, which
is just �K

A. This means we can write

�AB = �
K

PK�K
A

� �K
B . �29�

From this, noting that the �K
A operators have orthogonal

supports, we can calculate the quantum mutual information
I��A :B� to be

I��A:B� = S��B� − �
K

PKS��K
B� . �30�

The right-hand side of this equation is bounded above by
log D, the logarithm of the number of distinct eigenvalues of
�A �and thus the number of values of the eigenvalue index
K�. Therefore,

I��A:B� � log D . �31�

Alice can therefore achieve a Holevo bound for the
composite system satisfying

�AB � I��A:B� − log D . �32�

Now consider the asymptotic problem. Alice and Bob
share a large number n of copies of the pair AB, so that their
initial joint state is ��AB��n. The quantum mutual information
of this state is just nI��A :B�. Alice performs operations on all
of her copies together such that the final state of these copies
is always the same. Alice’s systems are delivered to Bob,
who will try to distinguish which operation Alice performed.
Regardless of Alice’s operations,

1

n
��AB��n

� I��A:B� . �33�

We will now show that, for a suitable ensemble of opera-
tions, Alice can approach equality, and therefore I��A :B� is
an asymptotically achievable information rate from Alice to
Bob as n→�.

First, we note that ��A��n is a highly degenerate state for
large n. If the Hilbert space HA has dimension d, then
�HA��n has dimension dn �exponential in n�, but the state
��A��n has no more than �n+1�d �polynomial in n� distinct
eigenvalues. These distinct eigenvalues correspond to the
type classes �7� of sequences of n independent identically
distributed random variables, each having d values. There-
fore, if we use our previous method to choose an ensemble
of unitary operators for Alice’s systems that each leave
��A��n unchanged, we can create an ensemble of �AB��n

states such that

��AB��n
� nI��A:B� − log�n + 1�d. �34�

Therefore,
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1

n
��AB��n

� I��A:B� −
d

n
log�n + 1� . �35�

Since the second term goes to zero as n→�, we have found
a sequence of procedures such that

lim
n→�

1

n
��AB��n

= I��A:B� . �36�

The mutual information I��A :B� is therefore the information
capacity from Alice to Bob if Alice can perform only local
operations on the A systems that always lead to the same A
state �and will thus completely exclude any eavesdropper
with access only to A�.

IV. SLIGHTLY INSECURE TRANSMISSION

Note that we have required absolute perfection—that is,
we have required that, by examining system A by itself, the
eavesdropper Eve cannot get any information at all. No mat-
ter what operation Alice performs, the final A state is exactly
the same. But what if we relax this requirement? Since Alice
now has a wider range of operations at her disposal, she
should be able to increase the Holevo bound �AB, and thus
the information that she can deliver to Bob. If Eve has access
only to a finite specified amount of information, how much
additional capacity can Alice and Bob achieve? We will now
show that the extra capacity from Alice to Bob is no larger
than the Holevo bound �A, which in turn bounds the acces-
sible information of the eavesdropper. Thus, if the protocol is
only slightly insecure ��A is small�, the information capacity
is only slightly increased.

We begin with the key state �AB, and Alice performs the
operation E�

A on A with probability p�. We do not require the
operations to be unitary. As before, the final states are

��
A = E�

A��A� , �37�

��
AB = E�

A
� IB��AB� , �38�

�A = �
�

p���
A, �39�

�AB = �
�

p���
AB. �40�

Then

�AB − �A = S��AB� − S��A� + �
�

p��S���
A� − S���

AB�� .

�41�

By Eq. �7�, remembering that S��B�=S��B� for A operations,
this becomes

�AB − �A � S��AB� − S��A� + S��A� − S��AB� �42�

=I��A:B� − I��A:B� �43�

�I��A:B� . �44�

Thus,

�AB � I��A:B� + �A. �45�

Allowing a small nonzero �A can only increase �AB by that
same small amount.

V. REMARKS

In our analysis of the quantum problem, we have also
proven the analogous classical result. That is, suppose Alice
and Bob possess a pair of correlated random variables XA
and XB. Alice encodes her message by performing one of
several possible operations on her own variable XA. To pre-
vent Eve �who has access to XA� from reading the message,
she arranges for the marginal probability distribution of XA to
be independent of her message. Bob receives XA and reads
the message by examining the joint value �XA ,XB�. In such a
situation, the maximum achievable secure communication
rate from Alice to Bob is the classical mutual information
I�XA :XB�. This follows from our quantum result in the case
that the quantum state of the composite system AB is a mix-
ture of products of states drawn from orthogonal sets for A
and B.

In other words, our analysis tells us that the mutual infor-
mation is the answer to the same communication problem in
both the classical and quantum settings. This illuminates the
connections between classical and quantum information
ideas. In particular, it sheds light on the meaning of the mu-
tual information functional as a measure of the degree of
correlation between physical systems.
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