PHYSICAL REVIEW A 74, 042301 (2006)

Protected realizations of quantum information

E. Knill*

Mathematical and Computational Sciences Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA

(Received 13 April 2006; published 3 October 2006)

There are two complementary approaches to realizing quantum information so that it is protected from a
given set of error operators. Both involve encoding information by means of subsystems. One is initialization-
based error protection, which involves a quantum operation that is applied before error events occur. The other
is operator quantum error correction, which uses a recovery operation applied after the errors have occurred.
Together, the two approaches make it clear how quantum information can be stored at all stages of a process
involving alternating error and quantum operations. In particular, there is always a subsystem that faithfully
represents the desired quantum information. We give a definition of faithful realization of quantum information
and show that it always involves subsystems. This supports the “subsystems principle” for realizing quantum
information. In the presence of errors, one can make use of noiseless, (initialization) protectable, or error-
correcting subsystems. We give an explicit algorithm for finding optimal noiseless subsystems. Finding optimal
protectable or error-correcting subsystems is in general difficult. Verifying that a subsystem is error correcting
is known to involve only linear algebra. We discuss the verification problem for protectable subsystems and

reduce it to a simpler version of the problem of finding error-detecting codes.
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I. INTRODUCTION

According to quantum information theory, quantum infor-
mation is represented by states of a number of quantum bits
(qubits), which are idealized two-level quantum systems.
Here, we consider finite quantum information and do not
explicitly refer to the underlying tensor-product structure of
the state space of more than one qubit. Thus, we consider
quantum information represented by the states of an ideal
system | whose state space is determined by a Hilbert space
‘H, of finite dimension N. In order to realize quantum infor-
mation in a physical system P, two problems need to be
solved. The first is to determine the ways in which the state
space of P can usefully encode the desired quantum infor-
mation, the second is to determine which among these ways
can be best protected from decoherence due to the dynamics
of P and its interactions. If quantum information is intended
for use in quantum algorithms, a third problem is to ensure
that the dynamics of the system and its interactions can be
used to implement the desired quantum gates. Here we con-
sider the first two problems.

A. Encoding quantum information and
the subsystems principle

A general method for realizing or encoding quantum in-
formation is as a subsystem of a physical quantum system P
[1]. This method involves a decomposition of P’s Hilbert
space Hp as

Hp=(H;y ® Hg) ® Hpg, (1)

where @© denotes the orthogonal sum of Hilbert spaces.1 This
decomposition identifies |’ as a subsystem of P. We use
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“primes” (as in |") for systems with identical state spaces.
With this convention, Eq. (1) yields a representation of the
states of the ideal quantum information system | in a sub-
system of P. We say that | is “(subsystem) encoded” in P and
call the decomposition of Eq. (1) a “subsystem encoding.”
We refer to S as the “cosubsystem” of I’ in P; R is the
“remainder system.” An example of such an encoding is that
of a vibrational qubit of a single ion trapped in a one-
dimensional harmonic potential. In this case the state space
is spanned by the internal and vibrational levels of the ion.
The space H» ® Hg is formed from the first two vibrational
levels and the internal levels of the ion, respectively. The
space Hp consists of states with more than two vibrational
quanta irrespective of the internal state of the ion. The famil-
iar cases of such encodings have the property that 7, is
associated with a physically meaningful degree of freedom.
However, for the purpose of protecting against errors, it is
usually necessary to use “entangled” encodings. An example
is the noiseless qubit encoded in three spin-1/2 particles sub-
ject to collective decoherence [2]. A feature of subsystem
encoding is that the states of | are not uniquely encoded as
states of P. This is because any change of state of the cosub-
system S does not affect the states of 1”.

Subsystem encodings of | in P are equivalent to
Hermitian-conjugate- and product-preserving linear embed-
dings of B(H,) into B(Hp) [2,3]. Here B(H) denotes the set
of (bounded) operators on H. In particular, given the sub-
system encoding of Eq. (1), B(H,) is isomorphic to the alge-
bra of operators of the form A ® I® 0 with A acting on H, I
on Hg, and 0 on Hg. Conversely, if A is a subalgebra of
bounded operators on Hp and A is Hermetian conjugate
(H.c.) isomorphic to B(H,), then there is a unique subsystem
encoding such that the operators of A are the operators of the
form A®I®0 as above.

Are there ways of encoding quantum information that do
not involve a subsystem encoding?. In an attempt to answer
this question, we can consider other methods for realizing
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quantum information in a quantum system. The three most
commonly used methods involve traditional encoding in sub-
spaces, ideal decoding, and observable identification. The
first method requires a traditional encoding operation that
embeds H, into a subspace of Hp by means of an isometry.
(Isometries are linear maps preserving the inner product.)
This is the method used in the traditional theory of quantum
error correction and corresponds to a subsystem encoding
with trivial cosubsystem. In this case, the subspace Hs
® Hg="H,, of Hp is known as a “quantum code.” That this is
inadequate is apparent when one considers enlarging P by
other relevant degrees of freedom. Quantum codes also fail
to capture the location of quantum information in realistic
error-control settings, in particular fault-tolerant quantum
computing. This is because in practice, error control never
results in restoration of the encoded quantum information to
any fixed quantum code. Assuming that this is a requirement
leads to the conclusion that fault tolerance is not possible [4].

One way to resolve the problem above is by providing an
ideal decoding procedure that in principle allows us to ex-
tract the quantum information even if it has been perturbed
by correctable errors. More generally, we can use an ideal
decoding procedure to specify how quantum information is
realized in a quantum system. This is the second method
mentioned above. An ideal decoding procedure adjoins | and
(possibly) an ancilla system A to P, where | and A are in
specified initial states |0), and |0)a. The total state space is
determined by Hp® H,® Ha. The decoding operation is a
unitary operator on this state space. After it is applied, the
desired quantum information resides in |. Ideal decoding has
been used successfully in analyses of fault-tolerant quantum
architectures (see, for example, Ref. [5]). To connect the
ideal decoding-based method of realizing quantum informa-
tion to subsystem encodings, note that the decoding opera-
tion is, in effect, an isometry from an extended space Hpe
©Hr to H®Hy. Here we have identified Hp with Hp
®|0),®|0)a and Hy with Ha® Hp. A decoding-based real-
ization therefore involves a subsystem encoding in an exten-
sion of the physical state space, where the extension need not
be physically meaningful. One can consider generalizing
decoding-based realizations by means of isometries that pro-
vide the identification

Hp ® Hq® Hr="H; ® Hs ® HRg, (2)

which is obtained if the decoding operation also involves
additional physical systems Q in unspecified initial states.
Although this is more general than subsystem encoding,
most such isometries do not result in quantum information
that can be considered to be faithfully encoded in system P.
We resolve this problem at the end of Sec. II by requiring
that decoding operations are paired with encoding operations
such that the composition of encoding with decoding pre-
serves quantum information.

The third method for realizing quantum information re-
quires that there are observables of P that can be identified
with the observables of |. If the identification preserves the
algebraic properties of the observables, then it provides a
H.c.-isomorphic embedding of B(*,) into B(Hp). As men-
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tioned above, such embeddings are equivalent to subsystem
encoding. In general, it makes sense to require that any faith-
ful encoding of | in P involves identifying observables of P
that represent the observables of |. However, it is not obvious
that the identification should preserve the algebraic proper-
ties. In Sec. II, we give a general definition of “faithful en-
coding of 1 in P” that requires only that for each state and
observable of | there are corresponding states and observ-
ables of P. The correspondence must be faithful in the sense
that expectations of observables and the dynamics of evolu-
tion and measurement correctly reflect the expectations and
dynamics of the corresponding objects in |. We prove that
such correspondences are always obtained from a subsystem
encoding. Thus, the results of Sec. II provide support for the
“subsystems principle” for realizing quantum information.

The subsystems principle. Any faithful representation of
quantum information in a physical system requires that at all
times there are identifiable subsystems that encode the de-
sired quantum information.

The subsystems principle is powerful, but it is worth not-
ing that it is sometimes convenient to use realizations of
quantum information that do not satisfy this principle per-
fectly. For example, in optical quantum computing with “cat”
states, it is convenient to represent the logical states of qubits
by nonorthogonal coherent states [6,7]. Another example is
the study of “initialization-free” decoherence-free sub-
systems, where the probability amplitude of the encoded in-
formation may be less than 1 and the nature of the remaining
amplitude must be taken into account [8].

B. Protecting quantum information

In most physical settings there are sources of errors that
can affect encoded quantum information. Ideally, we would
like exact knowledge of the error behavior of a physical sys-
tem under all circumstances in which it is used. Since this
knowledge is usually unavailable, any of a number of ideal-
izing assumptions can be made. In the context of quantum
channels, or when unwanted interactions are expected to
have weak temporal correlations, we assume errors to be due
to a known markovian process (in the continuous time set-
ting) or a known quantum operation (in the discrete time
setting). Both may be described by a collection of possible
error events £={E;}. In general, the goal of quantum error
control is to find quantum information subsystems for which
the effects of the markovian process or quantum operation
can be suppressed to the largest extent possible. Because the
exact nature of the errors is usually not known, this goal is
typically difficult to pursue. To make the task more tractable,
we can consider only those errors that are expected to be
likely and look for subsystems that allow for “good” protec-
tion against such errors. We can then bound the effect of
other errors by making estimates of their maximum probabil-
ity (or amplitude) of occurrence.

In this paper, we focus on subsystems that enable perfect
protection against a fixed set of errors {E;};, with or without
active intervention. Because of the linearity of quantum me-
chanics, perfect protection against the E; implies perfect pro-
tection against any error in the linear span & of the E;. Sub-
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systems whose states are unaffected by the errors are known
as “noiseless” or “decoherence free” subsystems [9]. They
were introduced in Refs. [2,3] in the context of H.c.-closed
& (or the closure under Hermitian conjugation of a non-H.c.-
closed &), in which case they can be characterized by irre-
ducible representations of the commutant of &, which is the
set of operators that commute with all members of £. In
general, noiseless subsystems are not as easily constructed.
In Ref. [10] an explicit characterization of noiseless sub-
systems for any £ is obtained. This characterization is readily
seen to be equivalent to the statement that the subsystem |
of the decomposition Hp="H;» ® Hg® HR is noiseless if and
only if the restrictions of the E; to the subspace H; ® Hg act
as 1@ E /(9. Several equivalent characterizations for when
£ is the span of the operation elements of a specific quantum
operation were obtained in Refs. [11,12]. These characteriza-
tions do not directly address the question of how one can
computationally search for noiseless subsystems. A strategy
for this search was offered in Ref. [13]. This strategy re-
quires finding £-invariant subspaces and decomposing them
into the canonical subsystems associated with the irreducible
representations of a fixed-point algebra for a quantum opera-
tion whose operation elements span &. In Sec. III we develop
this strategy into an algorithm that does not require explicit
construction of algebras other than the one generated by &.
The mathematical structure of algebras over the complex
numbers plays a crucial role. Interestingly, if there exists a
quantum operation whose operational elements span &, then
the algorithm simplifies substantially and is efficient in the
dimension of the Hilbert space. Note that there is no require-
ment that the likely errors included in £ be derived from a
quantum operation. However, in most cases £ does satisfy
this condition. To ensure that this condition holds, one can
add I—)\E,EZTE,« for a sufficiently small N. However, the
choice of spanning set E; and A may affect the availability of
large-dimensional noiseless subsystems.

When no noiseless subsystem of sufficiently large dimen-
sion can be found, it is necessary to use active intervention to
protect encoded quantum information. The idealized setting
for active intervention involves alternating steps consisting
of error events E; and a quantum operation R that ensures
that the errors do not affect the encoded information. An
operation ‘R with this property is known as either a “recov-
ery” or an “initialization” operation, depending on context.
According to the subsystems principle, there must be two
subsystems, one in which quantum information resides after
error events but before R is applied, and another after R is
applied. We call the first a “protectable” subsystem. The sec-
ond is known as an “error-correcting” subsystem. Provided
the encoded quantum information has been successfully pro-
tected, both subsystems are noiseless. The first is noiseless
for the products E;R;, where the R; are the operation ele-
ments of R, whereas the second is noiseless for the operators
R,E;. Protectable subsystems are defined (but not named) in
Ref. [2], where it is shown how to determine the protectable
subsystem in the case where the error-correcting subsystem
is a quantum code, that is, the cosubsystem is one dimen-
sional. Error-correcting subsystems are the main feature of
operator quantum error correction [11,12] and directly gen-
eralize traditional error-correcting codes.
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Knowledge of the protectable subsystem and the error-
correcting subsystem associated with a recovery or initializa-
tion operation and the relationship between the two help us
to understand how quantum information is stored at all times
without having to provide explicit encoding or ideal decod-
ing procedures. It shows that there is nothing fundamentally
different between storing quantum information in an ion qu-
bit (a subsystem of the quantum states of one or more ions in
a trap), a nuclear spin (a subsystem of the atom containing
the nucleus, the molecule containing the atom, etc.), the one-
qubit noiseless subsystem of three spin-1/2 particles, and the
subsystems involved in active error correction and fault tol-
erant quantum computing. In all cases, the quantum informa-
tion may be identified by a subsystem decomposition of the
state space, or equivalently, by the observables needed to
measure and control it.

In most active error correction settings, the protectable
subsystem suffices for determining how quantum informa-
tion is stored, both before and after errors. In these settings,
the error-correcting subsystem’s primary contribution is to
efficiently determine the recovery-initialization procedure. In
particular, if the identity operator is included among the error
operators, the error-correcting subsystem is identical to the
protectable subsystem |’ but with a smaller cosubsystem.
Specifically, the subsystem decomposition for the error-
correcting subsystem is obtained from the subsystem decom-
position Hp="H, ® Hg® Hp for the protectable subsystem
by restricting the cosubsystem’s state space to a subspace
‘HtC Hs. The error-correcting subsystem’s decomposition is
then Hp="H;» ® Ht® Hq, where Hq contains the states or-
thogonal to H;»® Ht. As a result of this relationship, the
observables associated with the protectable subsystem are
also observables for the error-correcting subsystem and have
the same effect on the quantum information. Consequently,
for the purpose of identifying or controlling the current value
of the stored quantum information, it suffices to know the
protectable subsystem, regardless of whether the last event
was a recovery operation or an error. This applies to all sta-
bilizer codes for local error models with decoding algorithms
based on syndrome extraction. It is readily verified that the
associated protectable subsystem contains the stabilizer code
as a subspace where the cosubsystem is in a particular state.
More generally, the stabilizer-based error-correcting sub-
systems identified in Ref. [14] and used to simplify Shor’s
nine-qubit one-error-correcting code [15], have the property
that they can be obtained by restricting the protectable sub-
system’s cosubsystem to a subspace Hy. The recovery-
initialization procedure in all these cases involves a quantum
operation that returns the state of the cosubsystem to Hy
without affecting the protectable subsystem’s state.

Protectable subsystems become particularly useful in the
context of schemes for fault-tolerant quantum computing,
where the recovery operation and error events can no longer
be easily separated. In this case, the ideal error-correcting
codes or subsystems associated with a scheme are typically
not where quantum information resides. It resides in the pro-
tectable subsystems of the scheme. This point of view is
more fundamental than the one based on specifying an ideal
decoding procedure. It avoids the arbitrariness associated
with decoding and directly specifies the observables needed
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to access quantum information. Nevertheless, it is often con-
venient and even necessary to use decoding procedures to
specify fault-tolerant schemes. Note that in fault-tolerant
quantum computing it is usually the case that the subsystems
containing quantum information vary in time. This happens,
for example, when teleportation is used for error correction,
when quantum information is stored in memory versus being
actively manipulated, and in cluster-state-based schemes as
part of the model [16].

An advantage of error-correcting subsystems is that there
are simple criteria and algorithms for determining whether
there exist associated recovery operations for which they be-
come noiseless [11,12,17]. Not having to specify the recov-
ery operation simplifies the search for subsystems suitable
for protecting quantum information and makes it natural to
talk about error-correcting subsystems without specifying the
recovery operation. The same cannot be said for protectable
subsystems. In Sec. IV we partially remedy this situation by
reducing the problem of determining whether a subsystem is
protectable to a number of other problems that do not in-
volve the existence of a quantum operation.

C. Conventions

Capital letters in sans-serif font such as A,...,H,...,P
are used to label quantum systems. The state space of a sys-
tem A is determined by a Hilbert space, denoted by Ha. We
label states according to the quantum system they belong to.
For example, |), is a pure state of A and p® is a density
matrix for A. The tensor product symbol ® may be omitted
in tensor products of labeled states and operators. We fre-
quently consider instances of identical state spaces realized
by and in different systems. We use primes to distinguish the
different systems with identical state spaces. Thus, I, |” and 1”
are systems whose state spaces are identified via implicit
isometries, which are inner-product-preserving linear maps.
In particular, a state |¢), of | is identified with the states |#),/
and |¢);» of systems |” and 1", respectively. One way to in-
terpret this is to consider ¢ as a symbol labeling a vector in
an appropriate Hilbert space H and |¢)— |) as the isometry
identifying ‘H and H,. We use the equality symbol “=" not
just to denote strict mathematical equality but also for iden-
tifying objects which are equal via an isomorphism. The iso-
morphisms involved are defined only implicitly, provided the
meaning is clear. For a Hilbert space H, B(H) denotes the
algebra of operators of H. U(H) denotes the group of unitary
operators of . In this work, all state spaces are finite di-
mensional.

II. FAITHFUL ENCODINGS OF
QUANTUM INFORMATION

To formalize the idea of “faithful encoding,” we consider
more general ways of encoding quantum information. A
faithful encoding of | in P is a map D from density operators
p on H; to nonempty sets of density operators on Hp, to-
gether with a map O from observables (Hermitian operators)
A of 'H, to nonempty sets of observables of an extension Hq
of Hp, that satisfy three faithfulness requirements.
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(1) Statics: For all o e D(p) and X € O(A),
tr(aX) = tr(pA). (3)

This requirement ensures that we can identify the expecta-
tion values of faithfully encoded states.
(2) Unitary dynamics: For all o € D(p) and X € O(A),

e Xge™ e D(e7pe™). (4)

With this requirement satisfied, we can evolve the states us-
ing conventional quantum control so that the evolved states
are consistent with the first requirement.

For the next requirement, the domain of D is extended to
all positive semidefinite operators by defining D(0)={0} and
for p#0, D(p)=tr(p)D[p/tr(p)]. For an operator Z, let
I1(Z,\) be the projector onto the N\ eigenspace of Z, or,
equivalently, the projector onto the null space of Z—\. For A
not in the spectrum of Z, the projector is 0.

(3) Measurement dynamics: For all o€ D(p), X € O(A)
and \ real,

II(X,\)oll(X,\) e D[TI(A,N)pII(A,N)]. (5)

Faithful measurement dynamics ensures that projective mea-
surements can be implemented correctly.

The support of a positive semidefinite Hermitian operator
p is the span of its nonzero eigenvalue eigenvectors and is
denoted by Supp(p). For a set of such operators D, Supp(D)
is the span of the supports of the members of D.

Theorem 1. If D and O are a faithful encoding of | in P,
then one can identify a subsystem encoding Hp=H ® Hg
® Hpg such that for all p, D(p) has support in H;» ® Hg, and
for all A, H» ® Hg and Hpg are invariant subspaces of O(A),
and O(A) acts as A’ ®I on H;, ® Hg.

The detailed proof of the theorem is in Appendix A. Here
is a brief outline. Let ) be the linear sum of the supports of
operators in D(p) for all p. Let V* be its orthogonal comple-
ment. By assumption, VC Hp. The proof proceeds in three
stages. In the first, we show that the operators of O(A) have
V and V* as invariant subspaces. We can then redefine O(A)
by restricting its operators to V. Hg is identified as V* NHp.
We then show that O(A) consists of exactly one operator and
deduce that O extends to an algebra isomorphism when re-
stricted to commuting subsets of observables. The underlying
reason for this involves showing that the eigenspaces of
O(A) may be faithfully identified with eigenspaces of A. The
first two stages of the proof do not require faithful unitary
dynamics. The last stage involves analyzing SU(2) sub-
groups of U(H,) and corresponding subgroups of U()) in-
duced by O. Their action on eigenspaces of operators in the
range of O implies the desired subsystem encoding.

Our proof of the theorem requires all three faithfulness
properties. The conclusion of the theorem does not hold if
we assume only faithful statics and faithful unitary dynam-
ics. For example, any irreducible representation of U(H,)
leads to an encoding satisfying these two faithfulness re-
quirements, and such representations that have dimension
larger than N exist. For example, if | is a qubit, then any spin
>1/2 representation of SU(2) yields an encoding that lacks
faithful measurement dynamics. Another example is en-
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semble quantum computing with pure or pseudopure states
[18-20]. In the case of pseudopure states, faithful statics is
only satisfied up to a scale. Nevertheless, quantum informa-
tion is still associated with subsystems. It may be interesting
to determine the nature of encodings satisfying only faithful
statics (perhaps weakened to allow for an overall scale fac-
tor) and faithful unitary dynamics. Are they always equiva-
lent to a sum of subsystems transforming under distinct irre-
ducible representations of U(?,)? On the other hand, we
conjecture that faithful statics and measurement dynamics
imply faithful unitary dynamics.

An apparently more general faithfulness property, “faith-
ful interactions,” requires that the encoding of | in P behaves
correctly in interactions with other idealized systems. Faith-
ful interactions are needed if we use the encoded quantum
information in a quantum information processing setting
with multiple physical systems, each encoding quantum in-
formation in some way. Faithful measurement dynamics can
be implemented by an interaction with an ideal system fol-
lowed by a destructive measurement of the ideal system.
Hence faithful measurement dynamics can be viewed as a
special case of faithful interactions. According to the theo-
rem, the three faithfulness requirements are sufficient for the
implementation of faithful interactions by coupling to appro-
priate operators.

We now return to the issue of the relationship between
decoding operations and faithful encodings mentioned in the
Introduction. Decoding as defined there is the traditional way
of identifying quantum information and generalizes recovery
operations. A general form of the situation addressed by de-
coding involves one or more encoding isometries C;:H,
— Hp one or more possible events E; that are operators on
‘Hp and that may occur before we decode, and a decoding
operation F that (after purification, if necessary) isometri-
cally maps Hp into H,® H for some possibly composite
system A. We say that {C;},{E;},F preserve quantum infor-
mation if for all i,j, FE;C;|)=|)|¢;)a for some unnor-
malized vector |¢;;)a that does not depend on |). Here,
which event E; occurred is assumed to be unknown. We
could consider the case where the decoding operation is cho-
sen after the events and depends on partial knowledge of the
events. However, by conditioning on the knowledge, we re-
turn to the situation just described. The only difference is that
the subsystem associated with the situation may depend on
the partial knowledge. To cover the case where quantum in-
formation is stored in error-correcting subsystems, let C; be
given by the isometries identifying H, with H}» ®|i)g, where
the |i)g over any spanning set of Hg. In order to support the
subsystems principle, we prove the next theorem.

Theorem 2. If {C;},{E;},F preserve quantum information,
then there exists a subsystem encoding Hp=H; ® Hg/
EBHR such that for all l,] and |l//>|, EjCl| w>|=|l//>|/ | ¢i,j>3'
€ Hp, and F| )| pjds =[] dijda, where the [¢))s: and
|h;)a do not depend on [¢),.

Proof. This follows from the fact that there exists a pro-
tectable subsystem associated with any quantum error-
correcting code and associated recovery operation, which
was proven in Refs. [2,21]. Alternatively, we could prove the
theorem from theorem 1 by defining D(|¢))={E;C;| )} and
O(A) by pullback of the appropriate operators via the decod-
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ing operator F. Here we give a direct proof. Let the |¢,~j)A be
as required according to the definition of preserving quantum
information. Let S be the set of vectors |¢)a such that H,
® |y is contained in the range of F. Then S contains the
|¢,»J->A. Because the range of F is linearly closed, so is S.
Define Hg=3S. Using the isometric properties of F, we can
define a subsystem encoding Hp="Hs ® Hg ® Hg such that
F(|y)1| d)s) =] d)s. This subsystem encoding has the
desired properties. |

III. FINDING NOISELESS SUBSYSTEMS

If A is a H.c.-closed subalgebra of B(Hp), then the ca-
nonical decomposition of Hp is

Hp=2H, ® Hg & Hp, (6)

where operators A € A act as =1 ® 5,(A)S)+0®). For ev-
ery operator of the form Eil('i)®B§Si)+0(R), there exists an
A e A with S;(A)=B,. The H, are noiseless subsystems for
A. We also consider Hg to be noiseless for A, but note that
error operators in .4 have probability zero for states in this
subspace. The tensor products and direct sums in the decom-
position must be consistent with the Hilbert space’s inner
product. This is implicit in the construction and the identifi-
cation via an isometry.

Let € be a linearly closed set of error operators in B(Hp).
For now, we do not assume that £ is the span of the operation
elements of a quantum operation. Let H,» ® Hg® Hp define
a subsystem encoding of | in P. Let II be the projector onto
the support of |’, that is, onto H;» ® Hg C Hp. The subsystem
is noiseless for £ if and only if for all E € &, the restriction of
E to H;® Hg acts as the identity on H,,. Equivalently, for
all Ec &, EN=1""@S(E)®. It is straightforward to verify
that if the subsystem is noiseless, then II projects onto an
invariant subspace of &, and £I1 generates a H.c.-closed sub-
algebra whose canonical decomposition contains noiseless
subsystems with state spaces of dimension at least N, the
dimension of H,. This leads to a strategy for finding maxi-
mum dimensional noiseless subsystems that is equivalent to
the strategy proposed in Ref. [13]. (1) Pick an invariant sub-
space of & and let II be its projector. (2) Determine the
canonical decomposition of the H.c.-closed algebra gener-
ated by IIE. The noiseless subsystems of this algebra are
candidate noiseless subsystems for £. We give an algorithm
for finding suitable IT and associated subsystems. The algo-
rithm involves the decomposition of a matrix algebra, for
which efficient algorithms are known. Note that in addition
to the noiseless subsystems identified in this way, one can
construct other noiseless subsystems as subsystems of al-
ready obtained noiseless subsystems, or by combining co-
subsystems of identical dimensional noiseless subsystems
with orthogonal supports. These constructions cannot yield
larger dimensional noiseless subsystems, but they may gen-
erate ones with greater error tolerance or more efficiently
controllable states.

Let A be the algebra generated by £. A subsystem is
noiseless for £ if and only if it is noiseless for A. A is not
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necessarily H.c. closed. As a result, .4 does not have a ca-
nonical decomposition of Hp as a direct sum of tensor prod-
ucts of Hilbert spaces. Nevertheless, we can identify a spe-
cial subspace within which a similar decomposition is
possible and where maximum dimensional noiseless sub-
systems may be found. This subspace is the span S of the
irreducible subspaces of A. A subspace V of Hp is “irreduc-
ible” for A if it is A-invariant, AV # 0 and there is no non-
zero A-invariant proper subspace of V. Let Z be the null
space of A. Both S and Z are invariant. The following steps
are the strategy on which our algorithm is based.

(1) Determine the span S of the irreducible subspaces of
A.

(2) Decompose S into a direct sum @,Z; of subspaces
spanned by isomorphic irreducible subspaces.

(3) For each 7, let A; be the restriction of A to Z;. Find
the canonical decomposition for the H.c.-closed algebra gen-
erated by A; and record its noiseless subsystems.

Theorem 3. Provided that A is generated by the opera-
tional elements of a quantum operation, the strategy given
above will find the maximum dimensional noiseless sub-
systems.

The proof of this theorem is in Appendix B, where there is
also a discussion of what to do if 4 is not generated by the
operational elements of a quantum operation. There are effi-
cient algorithms that implement each step of the strategy; for
a review, see Ref. [22]. For completeness, an outline of the
algorithm is given in Appendix C.

IV. PROTECTABLE SUBSYSTEMS

As above, let {E;}; be a set of error operators on Hp, with
Hp=H; ® Hg® HpR a subsystem encoding. The subsystem
I” is “initialization protectable” (or “protectable” for short), if
there exists a quantum operation with operation elements
{R;}; such that I" is noiseless for {E;R}; ;. The goal of this
section is to reduce the problem of determining whether a
given subsystem is protectable to the problem of searching
for certain extremal error-detecting codes. We then reduce
this problem to several linear algebra problems.

Let |i)g be an orthonormal basis of Hg. For any state |i)
of H;y ® HgC Hp, we define 5(i||) € H,» by the identity
(|| ) ®|iYs=|h). Let V be the intersection of the in-
verse images of H|» ® Hg under the errors E;.

Theorem 4. With the definitions of the previous para-
graphs, | is protectable if and only if there exists a subspace
CCV with the property that the maps Fy;:|)—> SGI|E;| ) are
proportional to a single isometry from C to H,:.

Proof. For the “if” part of the theorem, we show that C is
an error-correcting code for {E;};. We can reconstruct E; on C
from the F;; by the identity E;|4)=3;(F;|4) ®|j)s. Let U
be the isometry such that S(j|Ei|¢)=a,-jU|¢). Then E;|)
=(U|4)) @ Zja;] j)s. That C is an error-correcting code fol-
lows immediately. The operators R; are given by U~'|i)s(il.

For the converse, we can use the subsystems principle
(more specifically, theorem 2), according to which there must
be a subsystem decomposition Hp="H»® Ht® Hq such that
Rl @) =lvpr@|dy)r and  E | pr=|vh | e)s.
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The desired subspace is given by H;»® |0) for any base state
|0)1 of T. Note that the desired isometry is implicitly defined
via the two subsystem decompositions. |

The maps Fj; defined in the statement of theorem 4 are
well defined from V to H,. Let M, N be the dimensions of V
and H,, respectively. By choosing orthonormal bases {|i)y};
of V and {|j)i/}; of Hy:, the F;; are expressible as NXM
matrices (also denoted by F;;) with entries (F;)y
=|’(k|Fi_/-|l)V. Without loss of generality, M =N, for other-
wise the subsystem |” is clearly not protectable. The condi-
tion in theorem 4 is equivalent to the requirement that there
exists a unitary matrix V such that F;V contains a multiple of
the N X N identity matrix as its first N X N block. The code C
is spanned by the first N columns of V. This requirement is
reminiscent of the familiar condition on the existence of an
N-dimensional error-detecting quantum code, according to
which there must exist a unitary matrix W such that WE,W'
has a multiple of an N X N identity matrix as its first diagonal
subblock. The protectability requirement can indeed be re-
duced to the existence of an error-detecting code. In particu-
lar, |" is protectable if and only if there exists an
N-dimensional error-detecting code for the operators {F’ lTjF -
Note that this is equivalent to requiring the existence of an
N-dimensional error-correcting code for the operators Fi'j,
where F ,'j is the square matrix obtained from F;; by expand-
ing with rows of zeros. However, we do not have to consider
all operators F ;F «- 1t suffices to find an N-dimensional error-
detecting code for operators of the form F ;].F ;j and F l.;F (ij)s
where 7 is a cyclic permutation of the index pairs.

We call subspaces C satisfying the condition in theorem 4
“protecting” codes (for I"). There are several procedures that
can be used to reduce the difficulty of the search for protect-
ing codes. They are given in Appendix D.

The problem of determining whether a subsystem is pro-
tectable can be reduced to any of a number of linear algebra
problems. We give two such reductions here. Whether there
are efficient algorithms for these problems is an open ques-
tion. For the first problem, let pB) be a density matrix on
systems A and B. What states o of A can be obtained by
projecting B onto a pure state |/)g? The “pure o-projection
problem” for p"B) is to determine a state |¢)g such that
B(y|pP| Yyg=po for some p # 0, if such a state exists.

Theorem 5. If the span of the rows of the Fj is
M-dimensional, then the problem of determining whether
subsystem |’ is protectable is efficiently reducible to a pure
I-projection problem.

The proof of the theorem is in Appendix E.

If the rows of the F;; do not span the full space, then the
protectability problem may be reduced to a generalization of
the pure I-projection problem. However, in situations where
the original error operators are associated with quantum op-
erations, the F, ;'S do not have a common null space, even
after the restrictions of the previous lemmas have been ap-
plied. Otherwise there would be states for which all E; have
zero probability. The second problem involves finding spe-
cial matrices in a linear space of matrices.

Theorem 6. The pure I-projection problem is polynomi-
ally equivalent to the problem of finding a matrix with or-
thonormal columns in a linear space of matrices.

042301-6



PROTECTED REALIZATIONS OF QUANTUM INFORMATION

Proof. Consider the pure I-projection problem for p'AB).
By purifying p""B) with the addition of an environment E, we
obtain a pure state |¢/)age Whose reduced density matrix on
AB is pB) The pure I-projection problem is now equivalent
to the problem of finding |¢)g such that B(¢|| ) age is pro-
portional to a maximally entangled state between A and E.
Note that without loss of generality, the dimension of E is
greater than that of A. Otherwise, the problem has no solu-
tion. We can expand everything in a basis for the different
systems’ Hilbert spaces according to |@)g=2,a;|i)s.|t)ase

=3 my| alj)s|k)e. Let M be the matrix with coefficients
(M ;);=m;j;. The property that B(¢|| ¥)age is maximally en-
tangled is equivalent to the property that ¥;a;M; has ortho-
normal columns.

Given any set of matrices M| we can reverse the reduc-
tion of the previous paragraph by setting M;=tM; ¢ with ¢
=1/[Zu(M] "M )] to obtain a state such that fts pure
I—prOJectlon problem is equivalent to the problem of finding
a matrix with orthonormal columns in the span of the M j.l
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APPENDIX A: PROOF OF THEOREM 1

Let V be the linear sum of the supports of operators in
D(p) for all p. Let V' be its orthogonal complement. By
assumption, VC Hp. For an operator X, let Null(X) denote
the null space of X.

Lemma 7. Let X € O(A). Then Null(X-\)NV is non-
empty if and only if A is in the spectrum of A. Furthermore,
V=2,[Null(X-\) NV] and Null(X—X\) NV is the linear span
of the supports of p € D(o) with Supp(o) C Null(A—N\).

Proof. Suppose that A is in the spectrum of A, and con-
sider any p e D[II(A,\)]. By faithfulness of measurement
dynamics, IT(X,\)pII(X,\) € D[II(A,\)]. By faithfulness of
statics, IT(X,\)plI(X,\) is not zero. Since the support of
IT(X,\)pII(X,\) is contained in Null(X—X\) NV, this inter-
section is nonzero. Conversely, suppose that Null(X—A) NV
is nonempty. Then there exist o and p € D(o) such that the
support of p is not orthogonal to Null(X—\). Thus
II(X,N)pII(X,\) is not zero and is a member of
D[II(A,N\)oII(A,N)]. Because D(0)={0}, II(A,\)oII(A,N)
is not zero. Hence Null(A—\) is nonzero, so that \ is in the
spectrum of A.

To prove that V is spanned by the subspaces Null(X
—N) NV, we use the following sequence of inclusions:

VD D [Null(X=\) N V]
A
2> > 2 {Supp[II(X.MpIl(X.M)] NV}
N o ppeD(o)

=2 > 2 A{Supp[TI(X,\)pII(X,\)] NV}

o p:peD(o) \
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D> X Supplp)

o p:peD(o)

(A1)

=V, (A2)

where in each expression, \ ranges over the spectrum of A.
The critical step in the sequence requires the inclusion

> {Supp[TT(X,\)pI1(X.\)] N V} 2 Supp(p).  (A3)
A
To prove this inclusion, observe that
Supp[IT(X,N)pII(X,\)]CV  because  TI(X,\)pIl(X,\)

e D[II(A,\)pII(A,\)]. Faithfulness of measurement dynam-
ics implies that T1(X,\)pII(X,\)=0 for A not in the spec-
trum of A. It then suffices to recall that for a complete set of
orthogonal projectors P;, 2;Supp(P;pP;)=Supp(Z,P;pP;)
D Supp(p).

For the last claim of the lemma, let W be the set of density
operators with support in Null(A-\). If oeW, then
TI(A,\)oTI(A,\) =0 and for all N’ £\, TI(A,\")oTI(A,\")
=0. Faithful measurement dynamics imply that for p
eD(o),  Supp(p) CNull(X-\).  Thus, 2, yZ,cp(o
Supp(p) CNull(X—=N) NV. The following sequence of rela-
tionships proves the reverse inclusion:

Null(X = \) N V=Null(X = \) N (E D Supp(p))

o p:peD(o)

gmx,x)(z s Supp<p>)

o p:peD(o)

=> X Supp[II(X.N)pII(X,\)]

o p:peD(o)

c> >

o p:peD[II(AN)oII(AN)]

=> X Supp(p),

oceW p:peD(o)

Supp(p)
(A4)

where we have used the fact that for a projector II and a
positive semidefinite Hermitian operator p, IISupp(p)
=Supp(I1pll). |

Corollary 8. Let X € O(A). Then V and V* are invariant
subspaces of X.

Proof. Because the eigenspaces of X are orthogonal,
Lemma 7 implies that X can be block diagonalized with re-
spect to an orthonormal basis whose first members span V.l

Lemma 7 and corollary 8 imply that without loss of gen-
erality, we can assume that for all X € O(A), X restricted to
V1 is 0. If not, replace every member of O(A) with its re-
striction to V. This does not affect any of the faithfulness
requirements.

The last statement in lemma 7 together with the assump-
tion that X € O(A) has trivial action on V* implies that X’s
eigenspaces and eigenvalues are determined by A and the
map D. It follows that O(A) consists of exactly one operator.
Thus, without loss of generality, we now take O(A) to be a
function from observables of H, to observables of Hp.
Lemma 7 also implies that inclusion relationships between
eigenspaces of observables of H, are preserved by O.
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Corollary 9. Suppose that Null(A—\;) CNull(B—X\,).
Then NulllO(A)-\;]C Null[O(B)-\,].

If observables A and B commute, we can construct an
observable C whose eigenspaces are the maximal common
eigenspaces of A and B. By using the eigenspaces of O(C) to
derive the eigenspaces of O(A) and of O(B), we can see that
O(AB)=0(A)O(B) and O(aA+ BB)=0(aA)+O(BB), so that
O preserves the algebraic structure of commuting sets of
observables. Similarly, for any eigenbasis |\;) of A, we can
use an operator C with nondegenerate eigenvalues having the
same eigenbasis to see that the spaces Supp[D(|\;){\;])] are
a complete orthogonal decomposition of V into eigenspaces
of A. From this it follows that O(A) is determined by the
values of D on pure states.

For the last stage of the proof of theorem 1, we fix an
orthonormal basis |i); of H,. Let e,-j=|i)|l(j . Xj=e +e, Yy
=—ie;+ie;, C=Xje;, and V;=NulllO(C)-i]. Note that
ie”Xii™2 |y = "ii™2|i),=|j). According to faithfulness of
unitary dynamics, e ?WD(0)e!® C D(e A ae*). (For sets
D and operators U, UD={Ux:x € D}.) The inclusion is an
equality — because = we also have  D(ege™)
= ¢7i0() IO Dy (p=iA (71 g=10(A) 6iOW) (=0 D) 1OA),

This and the earlier results imply that e=?%i)™2),=)),. By
using corollary 9 with the eigenspaces of X;;, Y;; and e
+ej;, we can see that the nonzero eigenspaces of O(X ) and
O(Y};) are contained in V;® V).

Because of the algebraic proper’[ies of O mentioned above
and X =e;tej;, e OX)™=—i0(X;). We can therefore fix
an orthonormal basis |il) of V; such 'that 0(X,;)|0ly=|il) and
O(Xy;)|ily=|0l). The goal is to show that we can identify |il)
with |>|
subsystem S. Note that the operators X; and e;; generate the
Lie algebra of U(H,). Thus compositions of exponentlals of
the form e ™o'or e~"i* act transitively on the pure states of
H,. It follows that for any |, Supp[D(|#),(¢{)] is an image
of corresponding compositions of exponentials of the form
e~ 10X0)" or ¢i¢ji* acting on V,. Such compositions are com-
pletely determined by the basis |il). Now O(A) is determined
by Supp[D(|¢),'(¢])], with |14}, ranging over eigenvectors of
O(A). Since for fixed I, O(X(;)and O(e;;) act as they should
on the states |kl), we have that O(A) necessarily satisfies

(k| O(A) | kI)="(k|A|k),, as desired. ]

APPENDIX B: PROOF OF THEOREM 3

We consider the more general problem of finding noise-
less subsystems for arbitrary A, whether or not A is gener-
ated by the operational elements of a quantum operation.
Symbols not explicitly defined here refer to the objects de-
fined in Sec. III. The proof proceeds by narrowing the search
space for maximum dimensional noiseless subsystems in
several steps.

Lemma 10. A maximum dimensional noiseless subsystem
for A can be found in S or in 2.

Proof of lemma 10. Suppose that H,: is a noiseless sub-
system of Hp with cosubsystem Hg. Then V="H; ® Hg is
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invariant under A and for A € A, A acts as I’ ® S(4)®® on V.
If for all A e A, S(A)®=0, then VC Z and we are done. If
not, then there exists a nontrivial irreducible subspace S; of
Hg under the action of {S(A):A e A}. For each state |,
|9y ® S; is an irreducible representation for A. In particular,
H; ®S;CS. Since H;» ® S, is also a noiseless subsystem, the
proof is complete. |

Note that Z is itself a noiseless subsystem. This sub-
system is trivial in the sense that the probability of £-errors is
zero for any state in Z. This means that in a realistic setting,
there must be operators acting on the system not included in
&, and for Z to be at least approximately noiseless, they need
to act as operators close to the identity when restricted to Z.

According to the theory of R-modules, S is a module for
A. The definition implies that it is semisimple, from which it
follows that S=ZX;5;, where the S; are irreducible and the
sum is over independent subspaces, see Ref. [23], Chap. 9. S,
and S; are isomorphic with respect to the action of A if there
ex1sts an invertible linear map U;; from §; to §; such that for
lx) e S;, AU;|x)=U;A|x). The map U; is said to “inter-
twine” S; and S;. We can relabel the S to form sets {S;}; of
isomorphic 1rredu01ble representatlons For each k, let V, be
the span of the S;;, and let U ) be an intertwiner from Sy to
Sj. Choose a basis |i0Ok) of 301< and define |ijk)= U(k)|10k>
Note that these vectors need not be orthogonal or normal-
ized. Nevertheless, they define invertible linear maps from
tensor products J;,® Sy, to V), via the linear extension of
|/) ® |iOk)y—> |ijk).The action of A € A with respect to this
factorization is on Sy only.

Lemma 11. A maximum dimensional noiseless subsystem
for A in S can be found in one of the V.

Proof. This follows from the argument given in the proof
of lemma 10. It suffices to observe that the irreducible rep-
resentations |i); ® S; are isomorphic for different |i),. |

The main remaining problem in narrowing the search
space for maximum dimensional noiseless subsystems is that
the factorization of the )V, may fail to preserve the inner
product. To simplify the notation, fix £ and let V=V, S,
=Sy, and J=,. Let U be an invertible linear map from 7
® S, to V that implements the abovementioned factorization
of V. Thus, for Aec A and |x)e J®S, AU|x)=U[I
®R(A)]|x), where R is a well defined, irreducible represen-
tation of A on S,. Note that an irreducible representation of
A on &, is onto B(S;) (Burnside’s theorem). This implies
that any noiseless subsystem of ) must be associated with a
subspace J' of J such that the restriction of U to J' ® 5, has
the property that there are linear operators W on J' and V on
Sy such that U(W® V) is an isometry. Fortunately, in cases
where A is generated by the operational elements of a quan-
tum operation, we do not need to search for such subspaces.

Lemma 12. If A is generated by the operational elements
of a quantum operation, then there exist linear operators W
on J and V on S, such that U(W® V) is unitary.

Proof. Let {E;}; generate A, where the E; are the opera-
tional elements of a quantum operation O. By composing O
with itself sufficiently many times, it is possible to obtain a
quantum operation O’ such that its operational elements
span A. Thus, without loss of generality, assume that the E;
span A and 2E/E;=1. We have E;=U[I®R(E)]U". In or-
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der to continue, assume, without loss of generality, that J
®Sp=V. This can be done by means of any isometry be-
tween V and J® S,. This implies that U is an invertible but
not necessarily unitary linear map from J® S to itself. We
have

Z UTe RE)UTU[T@ REE)IUT =T (B1)

or, equivalently,

> 1o RE)UUI®RE)]=UU. (B2)
This implies that for all positive semidefinite o on 7,
D RE) (0@ DU U0 © DIR(E)
=t f(c@DHUU(ec@1)], (B3)

where tr; is the partial trace over J. Let R be the operation
defined by R(X)=3,R(E;)'XR(E,). According to Eq. (B3), for
all positive semidefinite o, tr {(c®I)U'U(o®1)] is a posi-
tive semidefinite fixed point of R. The spanning assumption
on the E; and irreducibility of S, under R(A) imply that the
R(E;) span B(S,). It follows that if p# 0 is positive semidefi-
nite and R(p)=p, then the support of p is S,. It also implies
that R has at most one positive fixed point (up to positive
multiples): If p’ is another one, then so is p—ep’ for all e
Let € be the largest such that p—ep’ is positive semidefinite.
Then p—ep’ is a fixed point with nonmaximal support, which
implies that it is 0. Let p be the unique trace 1 positive fixed
point of R. Then, for all positive semidefinite o, trf(o
@I)U'U(oc®1)] is a multiple of p. We can now deduce that
U'U=p’' ® p for some strictly positive p’. Defining V=p~!/2
and W=p'~!"2 yields the lemma. |

This completes the proof of Theorem 3. |

APPENDIX C: ALGORITHM FOR FINDING
NOISELESS SUBSYSTEMS

An algorithm that implements the strategy for finding
noiseless subsystems given before Theorem 3 proceeds as
follows. Symbols not explicitly defined here refer to the ob-
jects defined in Sec. III.

To find S, consider the structure of .4 in more detail. If A
does not contain I, replace A by A+CI. By doing so, the
action of A on Z is no longer zero, but Z is still distinguish-
able from the other irreducible subspaces. Every one-
dimensional subspace of Z is irreducible and not isomorphic
to the irreducible subspaces of S. There exists a maximal
chain of invariant subspaces 0=),CV,C--- CV,=Hp such
that the action of A induced on the quotients V,,,/V, is
irreducible or zero. In a basis |e;) of Hp where |egy);)
€ Vi1 \Vi (\ denotes set difference), the operators of A are
block upper triangular. Let 7 be the members of A that act as
0 on each of these quotients. 7 is known as the Jacobson
radical of A. Let A be the null space of 7, which is the set
of vectors in the intersection of the null spaces of operators
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of J. Then N is invariant (because 7 is a two-sided ideal)
and SC N (because S is invariant and the span of irreducible
subspaces). A fundamental property of 7 is that A/J is a
semisimple algebra. Let Ay, be the restriction of A to N.
Then A is isomorphic to a quotient of .4/.7, which implies
that A, is semisimple. According to the representation
theory of semisimple algebras, A is a semisimple A, mod-
ule, which implies that A'=8. Thus, to determine S, we can
use an efficient algorithm for finding the Jacobson radical
and then compute its null space. Decomposing N into inde-
pendent irreducible subspaces can be done by means of an
efficient algorithm for the decomposition of semisimple al-
gebras over the complex numbers. A randomized algorithm
can be based on the observation that A, is isomorphic to a
direct sum of complete matrix algebras A, on the Sy, acting
canonically on the (nonunitary) decomposition of S into a
direct sum of products Z,=7; ® Sp. It follows that a random
matrix in A4, (with respect to a suitably chosen probability
distribution) typically has generalized eigenspaces that gen-
erate (by multiplication by members of A,) exactly one of
the invariant subspaces Z,=7, ® Sy This yields the desired
matrix algebras A,. For each A,, let A, be the H.c.-closed
algebra generated by A;. The canonical factorization of Z,
with respect to .A,t can also be obtained by a randomized
algorithm. By construction, Z,=H,;®H, (isometrically),
with A;: acting only on H,. The eigenspaces of a randomly
chosen Hermitian operator H, in AZ are typically of the form
H,;® |i) for an orthonormal basis of H,, where H,;=7,, but
with the isometry for making this identification not yet
known. With high probability, these isometries can be deter-
mined from an independently chosen second H) by express-
ing H} in an orthonormal basis whose i’th block of vectors is
a basis of H;® |i). Because H} is a Kronecker product with
identity action on M, the i,j block of H, must define an
isometry between ,; and H; (if it is nonzero). These isom-
etries must be consistent and induce the desired tensor prod-
uct structure.

Components of the algorithm of the previous paragraph
not given explicitly include the generation of an algebra from
a set of matrices (this comes up in generating A from an
error set and generating H.c.-closed algebras from a given
one) and various standard matrix manipulations such as ma-
trix multiplication, eigenvalue and eigenspace determination,
etc. We do not discuss the latter here. To generate the matrix
algebra from a set of operators {E;}, assume without loss of
generality that the E; are independent. Then iteratively,
choose i,/ and determine whether E;E; is in the span of the
E;. If not, adjoin it to the set. Stop when for all i,j, E;E; is in
the span of the E;.

APPENDIX D: NARROWING THE SEARCH FOR
PROTECTING CODES

We have shown that to determine whether a subsystem is
protectable requires searching for protecting codes for the
subsystem. Here we give several lemmas that can help im-
prove the efficiency of such a search. Symbols not explicitly
defined here refer to the objects defined in Sec. I'V.
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Lemma 13. All protecting codes are contained in the null
space of the F in the linear span of {F;};; whose rank is
strictly less than N.

Proof. Let V be as specified in the paragraph before the
statement of the lemma. If the rank of F is less than N, then
the first N XN block of FV must be zero, from which the
result follows. |

Let Gy, ...,G, be N X M matrices. We say that {G, ... G}
has maximal row rank if the span of the rows of the G; has
dimension kN. The next lemma generalizes lemma 13.

Lemma 14. Let Gy, ...,Gy be in the span of the F;; such
that {G,,...,G,} does not have maximal row rank, but for
every k—1 independent Gy, ...,G,_, in the span of the G,
{G},....G,_,} has maximal row rank. Then any protecting
codes are contained in the intersection of the null spaces of
the G,.

Proof. Let V be such that G,V has an initial block propor-
tional to the N X N identity matrix and C is spanned by the
first N columns of V. Suppose that C is not contained in the
null space of some G;. Then G;V’s initial N X N block is not
zero. The space G of matrices G in the span of the G; such
that GV has an initial NXN zero block is
(k—1)-dimensional. Because the row span of G; is indepen-
dent of the linear span R of the rows of the matrices in G, the
dimension of R is strictly less than (k—1)N, contradicting
the assumption of the lemma. |

Lemma 14 means that in principle, the problem of finding
C can be reduced to the case where each F; has full rank and
its row space is independent of the space spanned by the
rows of the other Fj;. In this case there are at most M/N
independent matrices F;;. Unfortunately, we do not know of
an efficient algorithm for checking the condition of Lemma
14 that would enable reducing the problem to this case. Nev-
ertheless, we can show that one can reduce to the case where
there are at most M —1 independent F;.

Lemma 15. For N> 1, if there are M or more independent

Fj, then there exists a nonzero G in the span of the F; such
that G does not have full rank.

Proof. Let {G} be a basis of the linear span of the F;.
Let gJ be the jth row of G;. If one of the g/ is zero, we are
done. Suppose [> M. Then the gl are dependent, so there is
a nontrivial linear combination of the G; with zero first row.
Suppose /=M. Consider the matrices A; whose ith rows are
the g/. Then there exists a nonzero lmear combination @A,
+ BA, with determinant zero. Let x # 0 be in the null space of
(aA,+BA,)T. Then G==x,G; is not zero and the row vector

=(a,B,0...) satisfies yG=0, so that G does not have full
rank. |

Note that the proof of the lemma contains an efficient
algorithm for finding a nonfull rank G.

APPENDIX E: PROOF OF THEOREM 5

Let Gy, ...,Gy be a basis for the linear space spanned by
the F;;. We can choose an orthonormal basis of 1 such that in
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this basis, the matrices G; have a block form
[G4,Gp,....G;,0,...,0], where the G;; are N X N; matrices
of full rank. We attempt to find the desued subspace C by
choosing an orthonormal basis for C. Let X be the matrix
whose columns are members of this basis. We wish to solve
the k identities a;I=G;X for X and a=(c;);. We can write X
in block form, X=[X; ;... ;X,], where X, is N; X N and the X;
are placed one above the other. The desired identities can be
expanded as

ol = EG,, . (E1)

The X; can be eliminated by solving the equations in order.
That is, from aI=GX; we obtain ;=0 and X;=0 if N,
# N, and X, =, G| otherwise. We write this as a linear con-
straint L; =0 and an identity X1=a1511, where L; may be
“empty” (if N;=N) and we set G, to be any left inverse of

G;. Once we have obtained X;=X,, a G,m and linear con-
straints L;a=0 for j<i, we can solve for X; by substituting
in Eq. (El)

GiX;= o1 - E 2 GG (E2)

Jj=1 m=1

The right hand side of this identity is a matrix H; that de-
pends linearly on «. G;;X;=H, can be solved if and only if the
columns of H; are in the column span of G;;. This condition
yields a set of linear constraints L;a=0. If the constraints are
satisfied, then we can compute X;=G/.H,, where G}, is a left

inverse of G;. We can therefore define G,-m by the identity

X;= Ei -1€; Glm At the end of this process, the only free vari-
ables remaining are the a;, which must be chosen to satisfy
the orthonormality constraint on X, EXTX =I. Expanding,
we get

(E3)

2 2 ajakéaé,k = I,
i Jjk

subject to L;a=0 for all i. If the linear constraints cannot be
solved, we are done. Define p(AB) by

p0= 15 3 GGl
i jk

(E4)

where 7 is chosen so that tr(p"®))=1. Any state |¢)g in the
subspace defined by L;| #)g=0 (with L; defined with respect
to the basis consisting of the [j)g) that solves the pure
I-projection problem yields a solution for @ by letting «; be
a suitably scaled multiple of the coefficient of |j)g in the
solution. It follows that to complete the proof, it suffices to
project p® onto the subspace of B satisfying the linear
constraints L; and renormalize the resulting positive
semidefinite operator. This operator is a density matrix for
which the pure I-projection problem is equivalent to the
problem of whether |’ is protectable. |
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