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By modeling a linear polarizable and magnetizable medium �magnetodielectric� with two quantum fields,
namely E and M, the electromagnetic field is quantized in such a medium consistently and systematically. A
Hamiltonian is proposed from which, using the Heisenberg equations, Maxwell and constitutive equations of
the medium are obtained. For a homogeneous medium, the equation of motion of the quantum vector potential,

A� , is derived and solved analytically. Two coupling functions which describe the electromagnetic properties of
the medium are introduced. Four examples are considered showing the features and the applicability of the
model to both absorptive and nonabsorptive magnetodielectrics.

DOI: 10.1103/PhysRevA.74.042102 PACS number�s�: 12.20.Ds

I. INTRODUCTION

In a homogeneous and nondispersive medium, the photon
is associated with only the transverse part of the electromag-
netic field. In contrast in an inhomogeneous nondispersive
medium, the transverse and the longitudinal degrees of free-
dom are coupled. In this case the quantization of the electro-
magnetic field can be accomplished by employing a general-

ized gauge that is, �� · ���r��A� �=0, where ��r��, is the space
dependent dielectric function �1,2�. Using the gauge

�i,j=1
3 �

�xi
��ij�r��A� j�=0� , the generalization of this quantization

to the case of an anisotropic nondispersive medium is
straightforward �3�.

The quantization in a dispersive and absorptive dielectric
represents one of the most interesting problems in quantum
optics, since it gives a rigorous test of our understanding of
the interaction of light with matter. The dissipative nature of
a medium is an immediate consequence of its dispersive
character and vice versa according to the Kramers-Kronig
relations. This means that the validity of the electromagnetic
field quantization in a nondissipative but dispersive media, is
restricted to a range of frequencies for which the imaginary
part of the dielectric function is negligible. Otherwise, there
will be inconsistencies in the electromagnetic field quantiza-
tion process.

In the scheme of Lenac for dispersive and nonabsorptive
dielectric media, by starting from fundamental equations of
motion, the medium is described by a dielectric function
��r� ,�� without any restriction on its spatial behavior �4�. In
this scheme, it is assumed that there are no losses in the
system, so the dielectric function is real for the whole space.
The procedure is based on an expansion of the total field in
terms of the coupled eigenmodes, orthogonality relations are
derived and equal-time commutation relations are discussed.

Huttner and Barnett have presented a canonical quantiza-
tion for an electromagnetic field inside an absorptive dielec-
tric �5�. In their model, the medium is represented by a col-
lection of interacting matter fields and the absorptive

character of the medium is described by interaction of the
matter fields with a reservoir containing a continuum of
Klein-Gordon fields. In this model, eigenoperators for the
coupled systems are calculated and the electromagnetic field
is expressed in terms of these operators. Also the dielectric
function is derived and is shown to satisfy the Kramers-
Kronig relations.

Gruner and Welsch presented a quantization method of
the radiation field inside a dispersive and absorptive linear
dielectric starting from the phenomenological Maxwell equa-
tions, where the properties of the dielectric are described by
a permittivity consistent with the Kramers-Kronig relations
�6�. An expansion of the field operators is performed which
is based on the Green’s function of the classical Maxwell
equations and preserves the equal-time canonical commuta-
tion relations.

Suttorp and Wubs in the framework of the damped polar-
ization model, have quantized the electromagnetic field in an
absorptive medium with spatial dependence of its parameters
�7�. They have solved the equations of motion of the dielec-
tric polarization and the electromagnetic field by means of
the Laplace transformation for both positive and negative
times. The operators that diagonalize the Hamiltonian are
found as linear combinations of canonical variables with co-
efficients depending on the electric susceptibility and the di-
electric Green’s function. Also the time dependence of the
electromagnetic field and the dielectric polarization are de-
termined.

The macroscopic description of a quantum damped har-
monic oscillator with frequency �0 is represented in terms of
the Langevin equation �8–10�:

x�̈ + �
0

�

dt���t − t��x�̇�t�� − �0
2�

0

�

dt���t − t��x��t�� = F� N�t� .

�1�

The coupling with the heat bath in the microscopic theory
corresponds to two types of forces in the macroscopic equa-
tion of motion of a damped harmonic oscillator. The forces
of the first type are obtained from some memory functions �

and �. The second type force is the noise force F� N�t�. These
two types of forces have a fluctuation-dissipation connection
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and both are required for a consistent description of a dissi-
pative quantum system.

Matloob has quantized the macroscopic electromagnetic
field in a linear isotropic permeable dielectric medium by
quantizing the Langevin equation and associating a damped
quantum harmonic oscillator with each mode of the radiation
field �10�. There are some other approaches to quantizing the
electromagnetic field and the interested reader is referred to
�11–21�.

In this paper by modeling a polarizable and magnetizable
medium with two massless quantum fields, namely “E and M
quantum fields,” we come to a completely systematic and
consistent method for quantizing the electromagnetic field in
such a medium. We propose a general method in which the
medium is included in the quantization process. In fact, the
coupling of the electromagnetic field with the medium in a
microscopic level, is modeled macroscopically by replacing
the medium with E and M quantum fields. The underlying
mechanism of interaction between the electromagnetic field
and the medium in microscopic theory may be much more
complicated than that implied by this model which simply
replaces the medium with a collection of harmonic oscilla-
tors. The present model is a generalization of the Caldeira-
Leggett model where for dissipative quantum systems, they
model the environment by a collection of harmonic oscilla-
tors �22,23�. In the Caldeira-Leggett model, the environ-
ment’s Hamiltonian is

HB = �
n
� pn

2

2mn
+

1

2
mn�n

2xn
2� , �2�

where mn, xn, pn, and �n are mass, position, momentum, and
frequency of the nth oscillator, respectively. It should be
noted that the properties of the environment may in some
cases be determined on the basis of a microscopic model
which is not necessarily the Caldeira-Leggett model. As an
example we mention an Ohmic resistor which as a linear
electric element should be well described by a Hamiltonian
of the form �2�. On the other hand the underlying mechanism
leading to dissipation in a resistor may be more complicated
than that implied by the model of a collection of harmonic
oscillators.

The main feature of the present approach is that E and M
quantum fields are to describe the electric and magnetic
properties of the medium macroscopically. It is clear �at least
in the present work, based on the results�, that this assump-
tion is an effective one which can be compared with the
phenomenological approaches to the problem.

In the Green’s function method and schemes applied in
Refs. �6,10,13,14,24� the noise current and polarization den-
sities are due to interaction of the electromagnetic field with
the medium. Since the kind of interaction is not defined, the
explicit forms of the noise current and polarization densities
are not known. It is clear that the dissipative character of the
medium depends on electric and magnetic susceptibilities.
Since the presence of the noise quantum fields are necessary
for quantum dissipative systems, there should be a depen-
dence between the strengths of the noise densities and the
strengths of electric and magnetic susceptibilities. Specially,

when the medium becomes a nondissipative one, i.e., when
the imaginary part of the Fourier transform of dielectric
function tends to zero, the strengths of the noise densities
should clearly tend to zero. In the Green’s function method
and schemes applied in �6,10,13,14,24�, the relation between
the strengths of the noise densities and the strengths of elec-
tric and magnetic susceptibilities is not clear. Therefore it is
not clear how these noises tend to zero when the medium
becomes a nondissipative medium.

The constitutive equations of the medium which relate
electric and magnetic polarization densities to electric and
magnetic fields, respectively, should be treated as a conse-
quence of the interaction between the electromagnetic field
and the medium. But in the mentioned methods, the consti-
tutive equations can not be derived from Heisenberg equa-
tions of motion. In the present approach, the coupling of the
electromagnetic field with the medium is known and explicit
forms of noise densities are given. Therefore the relation
between the strengths of the noise densities and the strengths
of the electric and magnetic susceptibilities is clear. Also, in
this approach, the constitutive equations can be derived from
the Heisenberg equations of motion. The key role is played
by what we have introduced as coupling functions, which
couple the electromagnetic field to E and M quantum fields.
The electric and magnetic susceptibilities are defined in
terms of the coupling functions. Also, the noise polarization
densities are described in terms of the coupling functions and
the creation and annihilation operators of the E and M quan-
tum fields. The coupling functions are common factors in the
noise densities and the electric and magnetic susceptibilities.
It can be shown that for a nondissipative medium, the noise
densities vanish as expected.

In the damped polarization model the polarizability prop-
erty of the dielectric, is described by a quantum field Y and
the dissipative property of the medium is described by intro-
ducing a heat bath which is independent of the field Y. The
heat bath is a continuum of the Klein-Gordon fields with a
continuous frequency range. The heat bath interacts with the
medium in a suitable way. In this model, the magnetic prop-
erty of the medium is not included �5,7�.

In the present approach, the magnetic property of the me-
dium is included and the polarizability and the dissipative
properties of the medium are described only in terms of a
single quantum field �E quantum field�. Also, the electric
susceptibility is defined in terms of a coupling function
which couples the “E quantum field” to the electromagnetic
field. Finally, the electric polarization field of the medium is
defined in terms of the coupling function and the creation
and annihilation operators of the E quantum field.

II. QUANTUM DYNAMICS

Quantum electrodynamics in a linear polarizable and
magnetizable medium can be accomplished by modeling the
medium with two independent quantum fields which interact
with the electromagnetic field. One of these quantum fields
namely the E quantum field, describes the polarizability
character of the medium and interacts with the displacement

field D� through a minimal coupling term. The other quantum
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field, namely “M quantum field,” describes magnetizability
character of the medium and interacts with the magnetic field
through a dipole interaction term. The Heisenberg equations
for the electromagnetic field �system� and E and M quantum
fields �environment�, lead to both Maxwell and constitutive
equations. The constitutive equations relate to the electric
and magnetic polarization densities to the macroscopic elec-
tric and magnetic fields, respectively.

The vector potential of the electromagnetic field in the
Coulomb gauge can be expanded in terms of the plane waves
as follows:

A� �r�,t� =� d3k��
�=1

2 	 �

2�2��3�0�k�
�ak���t�eik�·r� + ak��

† �t�e−ik�·r��e�k��,

�3�

where �k� =c
k�
 and �0 is the permittivity of the vacuum. The
unit vectors e�k��, ��=1,2� are polarization vectors and satisfy

e�k�� · e�k��� = 	���,

e�k�� · k� = 0. �4�

These recent relations, guarantee that the vector potential �3�,
satisfies the Coulomb gauge �� ·A� �r� , t�=0.

Operators ak���t� and ak��

† �t� are annihilation and creation
operators of the electromagnetic field and satisfy the follow-
ing equal-time commutation rules

�ak���t�,a
k�� ��

†
�t�� = 	�k� − k�� �	���. �5�

The conjugate canonical momentum density of the electro-
magnetic field �� F�r� , t� and also the displacement vector op-

erator D� �r� , t� are by definition

�� F�r�,t� = − D� �r�,t� = i�0� d3k��
�=1

2 	 ��k�

2�2��3�0
�ak��

† �t�e−ik�·r�

− ak���t�eik�·r��e�k��. �6�

From this definition it is obvious that � ·D� =0, which is the
Gauss law in the absence of external charges. The commu-
tation relations �5� lead to the commutation relations be-

tween the components of the vector potential A� and the dis-

placement vector operator D� as follows:

�Al�r�,t�,− Dj�r�� ,t�� = �Al�r�,t�,� j�r�� ,t�� = ı�	lj
��r� − r�� � ,

�7�

where 	lj
��r�−r�� �= 1

�2��3 �d3k�eik�·�r�−r�� ��	lj −
klkj


k�
2
�, is the transverse

delta function with the following properties:
�i� Let us define the transverse and longitudinal compo-

nents of an arbitrary vector field F� �r� , t�, as follows:

F� ��r�,t� = F� �r�,t� −� d3r��� � · F� �r�� ,t��� G�r�,r�� � , �8�

F� ��r�,t� =� d3r��� � · F� �r�� ,t��� G�r�,r�� � , �9�

respectively. Wherein G�r� ,r�� � is the Green’s function

G�r�,r�� � = −
1

4�
r� − r�� 

. �10�

Then as the first property, one can easily show that

Fi
��r�,t� = �

j=1

3 � d3r�	ij
��r� − r�� �Fj�r�� � . �11�

�ii� The second property is the transversality of

	lj
��r�−r�� �

�
l=1

3
�

�xl
	lj

��r� − r�� � = 0, j = 1,2,3. �12�

The Hamiltonian of the electromagnetic field inside a mag-
netodielectric medium, can be written

HF�t� =� d3r�D� 2�r�,t�
2�0

+
��� 
 A� �2�r�,t�

2�0
� ,

=�
�=1

2 � d3k���k�ak��

† �t�ak���t� , �13�

where �0 is the magnetic permittivity of the vacuum and we
have applied the normal ordering to operators ak��

† �t� and
ak���t�.

Now as mentioned, we model the medium by two quan-
tum fields, E and M, which describe the electric and mag-
netic properties of the medium macroscopically. Therefore,
the Hamiltonian of the medium can be written

Hd = He�t� + Hm�t� ,

He�t� = �
�=1

3 � d3q� � d3k���k�d�
†�k�,q� ,t�d��k�,q� ,t� ,

Hm�t� = �
�=1

3 � d3q� � d3k���k�b�
†�k�,q� ,t�b��k�,q� ,t� , �14�

where �k� is the dispersion relation of the medium and He and
Hm are the Hamiltonians of the E and M quantum fields,
respectively. The operators d��k� ,q� , t�, d�

†�k� ,q� , t�, b��k� ,q� , t�,
and b�

†�k� ,q� , t�, are annihilation and creation operators of the
E and M quantum fields, respectively. We impose the follow-
ing equal-time commutation relations on these operators

�d��k�,q� ,t�,d��
† �k�� ,q�� ,t�� = 	���	�k� − k���	�q� − q��� ,

�b��k�,q� ,t�,b��
† �k�� ,q�� ,t�� = 	���	�k� − k���	�q� − q��� . �15�

Now let us define the electric polarization density operator of
the medium as follows

ELECTROMAGNETIC FIELD QUANTIZATION IN A… PHYSICAL REVIEW A 74, 042102 �2006�

042102-3



P� �r�,t� = �
�=1

3 � d3q�

	�2��3 � d3k��f��k�,r��d��k�,q� ,t�eiq� ·r�

+ h.c.�v���q�� , �16�

where for convenience H.c. stands for Hermitian conjugation
and

v���q�� = e��q�, for � = 1,2,

v�3�q�� = q̂ =
q�


q� 

, for � = 3. �17�

In a similar manner we define the magnetic polarization den-
sity operator of the medium as follows:

M� �r�,t� = i�
�=1

3 � d3q�

	�2��3 � d3k��g��k�,r��b��k�,q� ,t�eiq� ·r�

− h.c.�s���q�� ,

s���q�� = q̂ 
 e��q�, for � = 1,2,

s�3�q�� = q̂, for � = 3. �18�

In the polarization densities �16� and �18�, the functions
f��k� ,r�� and g��k� ,r�� are the coupling functions between the
electromagnetic field and E and M quantum fields. The cou-
pling functions are position dependent �independent� for a
inhomogeneous �homogeneous� magnetodielectrics.

The polarization densities P� and M� , are defined on the
basis of the following physical assumptions:

�i� These densities should be Hermitian operators.

�ii� For a linear magnetodielectric medium, P� and M� ,
should be a linear combination of creation and annihilation

operators of the medium. For a nonlinear medium, P� and M� ,
may not have a linear expansion in terms of the creation and
annihilation operators of the medium.

�iii� Polarization densities should depend on the macro-
scopic properties of the medium.

Macroscopic properties of the medium will be reflected in
electric and magnetic susceptibilities. It is clear from rela-

tions �16� and �18� that the polarization densities P� and M�

depend on coupling functions f��k ,r��, g��k ,r��, and disper-
sion relation ��k�� of the medium. In the following we show
that electric and magnetic susceptibilities are dependent on
the coupling functions and dispersion relation.

Now let us propose the total Hamiltonian as follows:

H̃�t� =� d3r
�D� �r�,t� − P� �r�,t��2

2�0
+

��� 
 A� �2�r�,t�
2�0

− ��


 A� �r�,t� · M� �r�,t�� + He + Hm. �19�

Using �7� and �11�, we can obtain the Heisenberg equations

for A� and D� ,

�A� �r�,t�
�t

=
ı

�
�H̃,A� �r�,t�� = −

D� �r�,t� − P� ��r�,t�
�0

, �20�

�D� �r�,t�
�t

=
ı

�
�H̃,D� �r�,t�� =

�� 
 �� 
 A� �r�,t�
�0

− �� 
 M� ��r�,t� ,

�21�

where P� � and M� � are transverse components of P� and M� ,

respectively. The transverse electric field E� �, magnetic in-

duction B� and magnetic field H� are

E� � = −
�A�

�t
, B� = �� 
 A� , H� =

B�

�0
− M� , �22�

so �20� and �21� can be rewritten

D� = �0E� � + P� �, �23�

�D�

�t
= �� 
 H� �. �24�

In absence of an external charge density, we have

D� � =�0E� � + P� � =0, and we can define the longitudinal compo-

nent of the electric field as E� � =− P� �

�0
.

Combining �20� and �21�, we find

− �� 2A� +
1

c2

�2A�

�t2 = �0
�P� �

�t
+ �0�� 
 M� �. �25�

By using the commutation relations �15�, the Heisenberg
equations for operators d��k� ,q� , t� and b��k� ,q� , t� can be ob-
tained as follows:

ḋ��k�,q� ,t� =
ı

�
�H̃,d��k�,q� ,t�� = − ı�k�d��k�,q� ,t�

+
ı

�	�2��3 � d3r�f*��k�,r�� �E� �r�� ,t�e−iq� ·r�� · v���q�� ,

�26�

and

ḃ��k�,q� ,t� =
ı

�
�H̃,b��k�,q� ,t�� = − ı�k�b��k�,q� ,t�

+
1

�	�2��3 � d3r�g*��k�,r�� �e−iq� ·r�� B� �r�� ,t� · s���q�� ,

�27�

respectively. These equations have the following formal so-
lutions:

d��k�,q� ,t� = d��k�,q� ,0�e−ı�k�t +
ı

�	�2��3�
0

t

dt�e−ı�k��t−t��


� d3r�f*��k�,r�� �e−iq� ·r�� E� �r�� ,t�� · v���q�� , �28�
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b��k�,q� ,t� = b��k�,q� ,0�e−ı�k�t +
1

�	�2��3�
0

t

dt�e−ı�k��t−t��


� d3r�g*��k�,r�� �e−iq� ·r�� B� �r�� ,t�� · s���q�� . �29�

By substituting �28� in �16�, we find the polarization operator

P� �r�,t� = P� N�r�,t� + �0�
0


t


dt��e�r�, 
t
− t��E� �r�, ± t�� , �30�

where E� =− �A�

�t − P� �

�0
is the total electric field. The upper �lower�

sign, corresponds to t�0 �t
0�, respectively.
The memory function

�e�r�,t� =
8�

��0
�

0

�

d
k�

k�
2
f��k�,r��
2 sin �k�t t � 0,

�e�r�,t� = 0, t � 0, �31�

is called the electric susceptibility of the magnetodielectric
which is defined in terms of the dispersion relation �k� and

the coupling function f��k� ,r��. The operator P� N�r� , t� in �30� is
the noise electric polarization density

P� N�r�,t� = �
�=1

3 � d3q�

	�2��3 � d3k��f��k�,r��d��k�,q� ,0�e−ı�k�t+iq� .r�

+ H.c.�v���q�� . �32�

By using Eq. �31�, we can obtain the following important
relations in the frequency domain:

Im��� e�r�,��� =
4�2

3��0

d
k�
3

d�

f�r�,��
2, �33�

Re��� e�r�,��� =
8�

��0
�

0

�

d
k�

k�
2
f��k�,r��
2
�k�

�k�
2 − �2

, �34�

where

�� e�r�,�� = �
0

�

dt�e�r�,t�eı�t. �35�

A feature of the present approach is its flexibility to choosing
an appropriate dispersion relation ��
k�
�, such that d�

d
k�
 �0.
When a dispersion relation is given, then knowing the sus-
ceptibility, we can obtain the corresponding coupling func-
tion from �33� easily. The sign of the left-hand side of the
relation �33� should be positive because it is the imaginary
part of the electric susceptibility in the frequency domain and
this imaginary part is also connected to losses in the medium,
so it is necessarily positive, otherwise �� e�r� ,�� should be
discarded, as it would be unphysical. Therefore for consis-
tency one must choose a dispersion relation which is a
strictly increasing function of 
k�
. Here we have chosen the
simplest one, i.e., a linear dispersion relation. It is remark-
able to note that for a given susceptibility �� e�r� ,��, by using

�15� and the definition of P� N in �32�, one can show that for

any choice of ��
k�
� and f�� ,r�� satisfying �33�, the following
commutation relations:

�P� Ni�r�,��,P� Nj�r�� ,����

=
��0

�
Im��� e�r�,���	ij	�r� − r�� �	�� − ��� �36�

between the Fourier transforms of the components of the
noise polarization density do not change. These commutation
relations are identical with those in Ref. �13� and lead to the
correct commutation relations of electromagnetic field opera-
tors. So various choices of ��
k�
� and f�� ,r�� restricted by
�33�, do not affect the commutation relations �36� and also
the commutation relations between electromagnetic field op-
erators. This means that there are many models with the
same electric and magnetic properties which can be taken as
an environment with different dispersion relations. In this
point of view ��
k�
� and f�� ,r�� are two free parameters of
our model up to the relation �33�. As was mentioned, we
chose the simplest dispersion relation ��
k
�=c
k�
, where c,
velocity of light, as the proportionality coefficient, is just for
simplifying the calculations. It is clear from Eq. �33� that
other choices of the dispersion relation, just lead to a redefi-
nition of the coupling function f�� ,r�� and also more difficult
mathematical expressions.

For the choice ��
k
�=c
k�
, the definition of the electric
susceptibility in �31�, becomes

�e�r�,t� =
8�

�c3�0
�

0

�

d�k��k�
2
f��k�,r��
2 sin �k�t, t � 0,

�e�r�,t� = 0, t � 0. �37�

For a definite �e�r� , t�, which is zero for t�0, we can obtain
the corresponding coupling function f��k� ,r��, in terms of
�e�r� , t�, as follows:


f��k�,r��
2 =
�c3�0

4�2�k�
2�

0

�

dt�e�r�,t�sin �k�t, �k� � 0,


f��k�,r��
2 = 0, �k� = 0. �38�

Similarly, by substituting �29� in �18�, we obtain the follow-

ing expression for the magnetic polarization density M� �r� , t�,

M� �r�,t� = M� N�r�,t� +
1

�0
�

0


t


dt��m�r�, 
t
 − t��B� �r�, ± t�� ,

�39�

where �m is the magnetic susceptibility of the magnetodi-
electric

�m�r�,t� =
8��0

�c3 �
0

�

d�k��k�
2
g��k�,r��
2 sin �k�t, t � 0,
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�m�r�,t� = 0, t � 0. �40�

If we are given a definite �m�r� , t�, which is zero for t�0,
then we can obtain the corresponding coupling function
g��k� ,r�� in terms of �m�r� , t� as follows:


g��k�,r��
2 =
�c3

4�2�0�k�
2�

0

�

dt�m�r�,t�sin �k�t, �k� � 0,


g��k�,r��
2 = 0, �k� = 0. �41�

The operator MN�r� , t�, is the noise magnetic polarization den-
sity

M� N�r�,t� = i�
�=1

3 � � d3q�

	�2��3
d3k��g��k�,r��b��k�,q� ,0�e−ı�k�t+iq� ·r�

− H.c.�s���q�� . �42�

It is remarkable to note that the constitutive Eqs. �23�, �30�,
and �39� together with Maxwell equations are obtained di-
rectly from the Heisenberg equations applied to the electro-
magnetic field and the quantum fields E and M. The explicit
forms of the noise polarization densities are given by �32�
and �42�. The coupling functions f and g, are common fac-

tors in the noise densities P� N and M� N and the susceptibilities
�e, �m. So it is clear that the strengths of the noise fields are
dependent on the strengths of the susceptibilities �e and �m,
which describe the dissipative character of a magnetodielec-
tric medium.

For a homogeneous medium, the coupling functions
f��k� ,r�� and g��k� ,r��, are position independent. In this case,
from �37� and �40�, we deduce that �e and �m, are also po-
sition independent. Substituting �30� and �39� in the wave
Eq. �25�, we find

− �� 2A� +
1

c2

�2A�

�t2 ±
1

c2

�

�t
�

0


t


dt��e�
t
 − t��
�A�

�t�
�r�, ± t��

− �� 
 �
0


t


dt��m�
t
 − t���� 
 A� �r�, ± t��

= �0
�P� N

�

�t
�r�,t� + �0�� 
 M� N�r�,t� , �43�

where c2= 1
�0�0

and the upper �lower� sign corresponds to
t�0 �t
0�, respectively.

Equation �43� is the Langevin-Schrödinger Eq. �8� for the

vector the potential A� , wherein, the explicit form of the noise
current density is known.

The quantum Langevin equation can be considered as the
basis of the macroscopic description of a quantum particle
coupled to an environment or a heat bath �8,9�.

III. SOLUTION OF THE HEISENBERG EQUATIONS

In this section, we solve the Heisenberg equations for the
vector potential. Let us denote the Fourier transform of the

vector potential A� �r� , t� by A�� �q� , t�, so

A� �r�,t� =
1

	�2��3 � d3q�A�� �q� ,t�eiq� ·r�, �44�

from �3�, it is clear that

A�� �q� ,t� = �
�=1

2 	 �

2�0�q�
�aq���t�e�q�� + a−q��

† �t�e�−q��� . �45�

The wave Eq. �43� can be written in terms of A�� �q� , t� as
follows:

A��̈ + �q�
2A�� ±

�

�t
�

0


t


dt��e�
t
 − t��A��̇ �q� , ± t�� − �q�
2�

0


t


dt��m�
t
 − t��A�� �q� , ± t��

= −
ı

�0
�
�=1

2 � d3k�

	�2��3
��k� f��k��d��k�,q� ,0�e−ı�k�te�q�� − �k� f*��k��d�

†�k�,− q� ,0�eı�k�te�−q���

+ �q�	�0

�0
�
�=1

2 � d3k�

	�2��3
�g��k��b��k�,q� ,0�e−ı�k�te�q�� + g*��k��b�

†�k�,− q� ,0�eı�k�te�−q��� , �46�

where �q� =c
q� 
.
This equation can be solved using the Laplace transfor-

mation method. For any time dependent operator g�t�, the
forward and backward Laplace transformations are by defi-
nition

gf�s� = �
0

�

dtg�t�e−st, �47�

and

gb�s� = �
0

�

dtg�− t�e−st, �48�

respectively. Let �̃e�s� and �̃m�s� be the Laplace transforma-

tions of �e�t� and �m�t�, respectively. Then A�� f�q� ,s� and

A�� b�q� ,s�, i.e., the forward and backward Laplace transforma-

tion of A� �q� , t�, can be obtained in terms of �̃e�s� and �̃m�s� as
follows:
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A�� f ,b�q� ,s� =
s + s�̃e�s�

s2 + �q�
2 + s2�̃e�s� − �q�

2�̃m�s�
A�� �q� ,0� ±

1

s2 + �q�
2 + s2�̃e�s� − �q�

2�̃m�s�
A��̇ �q� ,0�

−
ı

�0
�
�=1

2 � d3k�
 �k� f��k��d��k�,q� ,0�

�s ± ı�k���s2 + �q�
2 + s2�̃e�s� − �q�

2�̃m�s��
e�q�� −

�k� f*��k��d�
†�k�,− q� ,0�

�s � ı�k���s2 + �q�
2 + s2�̃e�s� − �q�

2�̃m�s��
e�−q���

+	�0

�0
�q��

�=1

2 � d3k�
 g��k��b��k�,q� ,0�

�s ± ı�k���s2 + �q�
2 + s2�̃e�s� − �q�

2�̃m�s��
e�q�� +

g*��k��b�
†�k�,− q� ,0�

�s � ı�k���s2 + �q�
2 + s2�̃e�s� − �q�

2�̃m�s��
e�−q��� ,

�49�

where the upper �lower� sign corresponds to A�� f�q� ,s� (A�� b�q� ,s�), respectively. Now taking the inverse Laplace transformation of

A�� f�q� ,s� and A�� b�q� ,s�, we obtain a complete solution for A� �r� , t�,

A� �r�,t� = �
�=1

2 � d3q�	 �

2�2��3�0�q�
�Z±��q�,t�eıq� ·r�aq���0� + H.c.�e�q�� ±

1

�0
�
�=1

2 � d3q�

	�2��3 � d3k���±��k�,�q�,t�d��k�,q� ,0�eıq� ·r� + H.c.�e�q��

+	�0

�0
�
�=1

2 � d3q��q�

	�2��3 � d3k���±��k�,�q�,t�b��k�,q� ,0�eıq� ·r� + H.c.�e�q��, �50�

where the upper �lower� sign corresponds to t�0�t
0�. The
functions Z+��q� , t�, Z−��q� ,−t�, �+��k� ,�q� , t�, �−��k� ,�q� ,−t�,
�+��k� ,�q� , t�, �−��k� ,�q� ,−t� are given by

Z±��q�, ± t� = L−1
 �s + s�̃e�s� � ı�q��

s2 + �q�
2 + s2�̃e�s� − �q�

2�̃m�s�� ,

�±��k�,�q�, ± t� = f��k��L−1



 s

�s ± ı�k���s2 + �q�
2 + s2�̃e�s� − �q�

2�̃m�s��� ,

�±��k�,�q�, ± t� = g��k��L−1



 1

�s ± ı�k���s2 + �q�
2 + s2�̃e�s� − �q�

2�̃m�s��� ,

�51�

for t�0 and L−1f�s� is the inverse Laplace transformation of
function f�s�. The transverse component of the electric field

can be obtained from E� �=− �A�

�t . Having the vector potential

A� , the transverse component of the electric polarization den-

sity �P� �� and also the magnetic polarization density �M� �, can
be obtained easily from relations �30� and �39�.

Taking the Laplace transformation of the constitutive Eq.
�30�, the longitudinal component of the electric field can be
written

E� ��r�,t� = −
P� �

�0

= −
1

�0
� d3q�

	�2��3 � d3k�


�Q±��k�,t�f��k��d3�k�,q� ,0�eiq� ·r� + H.c.�q̂ , �52�

where Q+��k� , t�, Q−��k� ,−t� are given by

Q±��k�, ± t� = L−1
 1

�1 + �̃e�s���s ± i�k��
� , �53�

for t�0. In the following we consider some important ex-
amples.

Example 1: Let f��k��=g��k��=0, then from �37� and �40�,
we have �e�t�=�m�t�=0, and from �51�, we find

Z+��q�,t� = Z−��q�,t� = e−i�q�t, �± = �± = 0, �54�

therefore in this limiting case, the quantization of electro-
magnetic field reduces to the usual quantization in the
vacuum as expected.

Example 2: Take �e�t� and �m�t� as follows:

�e�t� = ��e
0

�
0 
 t 
 � ,

0 otherwise,
�
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�m�t� = � �m
0

��m
0 + 1��

0 
 t 
 �

0 otherwise,
� �55�

where �e
0, �m

0 and � are some positive constants, using �38�
and �41�, we find the corresponding coupling functions as
follows:


f��k��
2 =
�c3�0�e

0

4�2�k�
2

sin2
�k��

2

�k��

2

,


g��k��
2 =
�c3�m

0

4�2�0��m
0 + 1��k�

2

sin2
�k��

2

�k��

2

, �56�

and from �30� and �39� we have

P� �r�,t� = P� N�r�,t� +
�0�e

0

�
�


t
−�


t


dt�E� �r�, ± t�� ,

M� �r�,t� = M� N�r�,t� +
�m

0

�0��m
0 + 1��

�

t
−�


t


dt�B� �r�, ± t�� ,

�57�

where P� N�r� , t� and M� N�r� , t� are the noise polarization densi-
ties �32� and �42� corresponding to the coupling functions
obtained in �56�.

In the limit �→0, the coupling functions �56� and the
noise polarization densities, tend to zero, and the relations
�57� are reduced to

P� �r�,t� = �0�e
0E� �r�,t� ,

M� �r�,t� =
�m

0

�0��m
0 + 1�

B� �r�,t� . �58�

In this limit, the electric field and the polarization densities
are purely transverse and

Z−��q�,t� = Z+��q�,t� = cos �̃q�t − i	1 + �m
0

1 + �e
0 sin �̃q�t ,

�̃q� =
�q�

	�1 + �e
0��1 + �m

0 �
,

�±��q�,t� = �±��q�,t� = 0. �59�

Also the electromagnetic energy inside the dielectric is

� �1

2
E� · D� +

1

2
H� · B��d3r

=� d3q�� 1

2�0�1 + �e
0�

D�� �q� .0� · D�� †�q� .0�

+
�0�q�

2

2�1 + �m
0 �

A�� �q� ,0� · A�� †�q� ,0�� , �60�

where D�� is the Fourier transform of the displacement field.
The energy given by �60� is a constant of motion contrary to

the vacuum expression �� 1
2�0E� 2+ B� 2

2�0
�d3r, which is not

clearly a constant of motion. This example shows that this
model can be applied to a nondispersive magnetodielectric
medium.

Example 3: Let �e�t�=�u�t� and �m�t�=0, where u�t� is
the step function

u�t� = 
1 t � 0,

0 t � 0,
� �61�

and � is a positive constant, then using �38� and �41�, we find


f��k��
2 =
�c3�0�

4�2�k�
3 , g��k�� = 0, �62�

and accordingly we can rewrite �46� as follows:

A��̈ + �q�
2A�� + �A��̇ = − ı	 �c3�

4�2�0
� d3k�

	�2��3�k�
�
�=1

2


�d��k�,q� ,0�e−ı�k�te�q�� − d�
†�k�,− q� ,0�eı�k�te�−q��� ,

�63�

which has a dissipative term proportional to the first time

derivative of dynamical variable A�� . From �51�, one can ob-
tain

Z±��q�,t� = e��t/2�±
�

2�q�
sin �q�t + cos �q�t −

i�q�

�q�
sin �q�t� ,

�±��k�,�q�,t� =	�c3��0

4�2�k�
3 ��

i�k�e
−i�k�t

�q�
2 − �k�

2
� i��k�

+ e��t/2� �−
�

2
+ i�q��e±i�q�t

2i�q��−
�

2
+ i�q� ± i�k��

+
��

2
+ i�q��e�i�q�t

2i�q��−
�

2
− i�q� ± i�k���� , �64�

where �q� =	�q�
2− �2

4 . The asymptotic solution of A� �r� , t� in
large-time limit is
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A� �r�,t� = � ı	 �c3�

4�2�0
�
�=1

2 � d3q�

	�2��3 � d3k�

	�k�


�d��k�,q� ,0�e−ı�k�t+iq� ·r�

�q�
2 − �k�

2
� ı��k�

− H.c.�êq��. �65�

Using �52�, it is easy to show that the longitudinal compo-
nent of the electric field in the limit t→ ±� is

E� ��r�,t� = −
P� �

�0
= ± i	 �c3�

4�2�0
� d3q�

	�2��3 � d3k�

	�k�


�d3�k�,q� ,0�
� � i�k�

e−i�k�t+iq� ·r� − H.c.�q̂ . �66�

Example 4: A simple model for �̃e�s� If we neglect the
difference between local and macroscopic electric field for
substances with a low density, then the classical equation of
a bound atomic electron in an external electric field is

r�̈ + �r�̇ + �0
2r� = −

e

m
E� �t� , �67�

where the influence of the magnetic force has been neglected
compared to the electric force. The parameter � is a damping
coefficient and the force exerted on the electron due to atom
is taken to be simply a spring force with frequency �0. If

E�̃ �s� and r�̃�s� are the Laplace transformations of E� �t� and
r��t�, respectively, then from �67� we can find

r�̃�s� =

−
e

m
E�̃ �s�

s2 + �s + �0
2 . �68�

Now let there be N molecules per unit volume with z elec-
trons per molecule such that f j electrons of any molecule
have a bound frequency � j and a damping coefficient � j. The
Laplace transformation of the polarization density is

P�̃ �s� =
Ne2

m
�

j

f j

s2 + � js + � j
2E�̃ �s� . �69�

If � j and � j are identical for all of electrons, then from �69�
we can write

�̃e�s� =
�p

2

s2 + �s + �0
2 , �p

2 =
Ne2z

m�0
,

�e�t� = �p
2e−�t/2 sin �0t

�0
u�t�, �0

2 = �0
2 −

�2

4
, �70�

where u�t� is the step function defined in �61�. We can obtain
the coupling function f��k�� from �38� as follows:


f��k��
2 =
�c3�0�p

2

16�2�0�k�
2� �

�2

4
+ ��0 − �k��2

−
�

�2

4
+ ��0 + �k��2� .

�71�

If �=0, then the dielectric substance is a nondissipative one
and the coupling function takes the form


f��k��
2 =
�c3�0�p

2

8��0
3 	��0 − �k�� . �72�

In this case, the noise electric polarization density is nonzero
only for the resonant frequency ��=�0� of the equation

r�̈+�0
2r�=− e

mE� 0e−i�0t. In the resonant case, energy of electro-
magnetic field will be absorbed by the medium. By using
�51�, we can obtain Z+��q� , t� and Z−��q� ,−t�, as follows:

Z±��q�, ± t� = L−1
 �s � i�q���s2 + �0
2� + s�p

2

s4 + s2��0
2 + �q�

2 + �p
2� + �q�

2�0
2� ,

�73�

for t�0. Equation �73� can be solved by calculating the resi-
dues of the function

��s � i�q���s2 + �0
2� + s�p

2�e±st

s4 + s2��0
2 + �q�

2 + �p
2� + �q�

2�0
2 , �74�

by extending s to the domain of complex variables. Similarly
�± can be obtained from �51� with f��k�� given by �72�. In this
case we have

Q±��k�,t� =
�0

2 − �k�
2

�0
2 + �p

2 − �k�
2e−i�k�t +

�p
2

2	�0
2 + �p

2
 e±i	�0
2+�p

2t

	�0
2 + �p

2 ± �k�

+
e�i	�0

2+�p
2t

	�0
2 + �p

2 � �k�
� . �75�

The longitudinal component of the electric field can be ob-
tained from �52�, using f��k�� and Q±��k� , t� given by �72� and
�75�, respectively.

If ��0, the substance is of dissipative kind and A� �r� , t�,
can be obtained from �50� with f��k�� given by �71� and �̃e�s�
given by �70�. In this case the longitudinal component of the
electric field can be obtained from �52�. This example shows
that this model of quantization of the electromagnetic field is
applicable to both dissipative and nondissipative dielectrics.

IV. CONCLUDING REMARKS

By modeling a linear, polarizable, and magnetizable me-
dium with two quantum fields E and M, the electromagnetic
field is quantized in the medium, consistently and systemati-
cally. There are many models for the environment with the
same electric and magnetic properties. In other words, there
are many dispersion relations and coupling functions leading
to the same susceptibilities of the medium. Therefore one can
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take the simplest physical dispersion relation. Once a disper-
sion relation is defined, then for any definite magnetodielec-
tric medium, i.e., �e�t� and �m�t� are known functions, one
can find the corresponding coupling functions f��k� ,r�� and
g��k� ,r��. The coupling functions describe the electric and
magnetic properties of the medium macroscopically. These
functions also couple the electromagnetic field to the me-
dium through the quantum fields E and M. The explicit
forms of the noise densities are derived. Since the coupling

functions are common factors in the noise densities and sus-
ceptibilities, the relation between the strengths of the noise
densities and susceptibilities is clear. In this approach, both
Maxwell and constitutive equations are obtained as Heisen-
berg equations of motion. In the limiting case, i.e., when
there is no medium, the approach tends to the usual quanti-
zation of the electromagnetic field in the vacuum as ex-
pected. This model of quantization is applicable to both dis-
persive and nondispersive magnetodielectrics.
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