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Using fourth-order perturbation theory, a general formula for the van der Waals potential of two neutral,
unpolarized, ground-state atoms in the presence of an arbitrary arrangement of dispersing and absorbing
magnetodielectric bodies is derived. The theory is applied to two atoms in bulk material and in front of a planar
multilayer system, with special emphasis on the cases of a perfectly reflecting plate and a semi-infinite half
space. It is demonstrated that the enhancement and reduction of the two-atom interaction due to the presence
of a perfectly reflecting plate can be understood, at least in the nonretarded limit, by using the method of image
charges. For the semi-infinite half space, both analytical and numerical results are presented.

DOI: 10.1103/PhysRevA.74.042101 PACS number�s�: 12.20.�m, 42.50.Vk, 34.20.�b, 42.50.Nn

I. INTRODUCTION

The dispersive interaction between two neutral, unpolar-
ized, ground-state atoms—commonly known as the van der
Waals �vdW� interaction—may be regarded, in the nonre-
tarded limit, i.e., for small interatomic separations, as the
mutual interaction of the fluctuating electric dipole moments
of the atoms in the ground state. It was first calculated in this
limit by London using perturbation theory, the leading-order
result being an attractive potential proportional to r−6, where
r denotes the interatomic separation �1�. In the retarded limit,
i.e., for large interatomic separations, the interaction is due to
the ground-state fluctuations of both the atomic dipole mo-
ments and the electromagnetic far field. This was first dem-
onstrated by Casimir and Polder, who identified the vdW
interaction as the position-dependent shift of the system’s
ground-state energy due to the coupling between the atoms
and the electromagnetic field �2�. Using a normal-mode ex-
pansion of the electromagnetic field and calculating the en-
ergy shift in leading-order perturbation theory, they general-
ized the �nonretarded� London potential to arbitrary distances
between the two atoms, where in particular in the retarded
limit the potential was found to vary as r−7.

The theory has been extended in many respects, and vari-
ous factors affecting the vdW interaction have been studied.
Based on a calculation of photon scattering amplitudes, Fein-
berg and Sucher extended the theory to magnetically polar-
izable atoms �3�. They found that the vdW interaction of two
magnetically polarizable atoms is again attractive, while for
two atoms of opposed type—one magnetically and one elec-
trically polarizable—a repulsive vdW force may be ob-
served. Later on, it was demonstrated that in the case of two
atoms of opposed type the nonretarded potential is propor-
tional to r−4, in contrast to the r−6 dependence of the nonre-
tarded potential of equal-type atoms �4�. The Feinberg-
Sucher result was extended to particles exhibiting crossed
polarizabilities �5�. Further studies have also included the
cases of one �6� or both atoms �7,8� being excited, leading to
potentials that vary as r−6 and r−2 in the nonretarded and
retarded limits, respectively. Thermal photons present for
any nonzero temperature have been shown to lead, in the

retarded limit, to a change of the vdW potential of two
ground-state atoms from a r−7 to a r−6 dependence as soon as
the interatomic separation exceeds the wavelength of the
dominant photons �9–12�. Modifications of the vdW interac-
tion due to external fields have been shown to lead to a
potential varying as r−3 in the nonretarded limit when the
applied field is unidirectional �13�. Generalizations of the
vdW interaction to the three- �14–17� and N-atom case
�18,19� were addressed first in the nonretarded limit and later
for arbitrary interatomic separations, where the potentials
were seen to depend on the relative positions of the atoms in
a rather complicated way.

van der Waals interactions play an important role in the
understanding of many phenomena—mostly in the field of
surface science, such as surface tension �20,21�, adhesion
�22�, and capillarity �23�, but also in chemical physics, such
as colloidal interactions �20,24� and stability �25�. However,
application of the theoretical results to these phenomena re-
quires taking into account the influence of media on the
atom-atom interaction. An expression for the vdW interac-
tion of two ground-state atoms in the presence of dielectric
media was first obtained by McLachlan based on linear re-
sponse theory �26� and then was given by Mahanty and Nin-
ham via a semiclassical approach �27–29�, and was applied
to the case of two atoms placed between two planar, per-
fectly conducting plates �28�. The situation of two atoms
between two perfectly conducting plates was later reconsid-
ered taking into account finite temperature effects �30�. Other
scenarios such as two atoms embedded in bulk magnetodi-
electric �31,32� or nonlocal dielectric material �33� or placed
in front of a metallic �34–36� or dielectric half space �36,37�,
or within a planar dielectric three-layer geometry �38� or two
anisotropic molecules in front of a dielectric half space or
within a planar dielectric cavity �37�, have also been studied.

In this paper we present an exact derivation of a very
general formula for the vdW potential of two ground-state
atoms in the presence of an arbitrary arrangement of dispers-
ing and absorbing magnetodielectric bodies. Based on mac-
roscopic quantum electrodynamics in linearly, locally, and
causally responding media, and starting from the multipolar
coupling Hamiltonian for the atom-field interaction in
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electric-dipole approximation, we calculate the vdW poten-
tial in leading, fourth-order, perturbation theory. We then ap-
ply the general result to the cases that the two atoms are
placed �i� within bulk material and �ii� in front of a planar
magnetodielectric multilayer system, generalizing the above-
mentioned results found for purely dielectric planar systems
to magnetodielectric systems with an arbitrary number of
layers.

The paper is organized as follows. In Sec. II the atom-
field interaction Hamiltonian in its multipolar coupling form
is presented. The derivation of the general formula for the
vdW potential is given in Sec. III, and Sec. IV is devoted to
the applications mentioned, where a detailed analytical as
well as numerical analysis is given. Finally, the paper ends
with a summary and conclusions in Sec. V.

II. MULTIPOLAR-COUPLING HAMILTONIAN

The Hamiltonian for a system consisting of nonrelativistic
charged particles � �each particle having charge q�, mass m�,
position r̂�, and canonically conjugate momentum p̂��, inter-
acting with the electromagnetic field in the presence of dis-
persing and absorbing magnetodielectric bodies, is given by
�39,40�

Ĥ = �
�=e,m

� d3r�
0

�

d���f̂�
†�r,�� · f̂��r,�� + �

�

1

2m�

��p̂� − q�Â�r̂���2 +
1

2
� d3r�̂p�r�	̂p�r�

+� d3r�̂p�r�	̂�r� , �1�

where

�̂p�r� = �
�

q�
�r − r̂�� �2�

and

	̂p�r� =� d3r�
�̂p�r��

4��0�r − r��
�3�

are the charge density and scalar potential of the particles,

respectively. The bosonic fields f̂��r ,�� and f̂�
†�r ,�� are the

canonically conjugate variables that describe the combined
system of the electromagnetic field and the �inhomogeneous�
magnetodielectric medium, including the dissipative system
responsible for absorption,

� f̂�i�r,��, f̂��i�
† �r�,���� = 
���
ii�
�r − r��
�� − ��� , �4�

� f̂�i�r,��, f̂��i��r�,���� = 0, �5�

where �=e ��=m� refers to the electric �magnetic� excita-

tions. The vector potential Â�r� and the scalar potential 	̂�r�
of the medium-assisted electromagnetic field can in the Cou-
lomb gauge be expressed in terms of the dynamical variables

f̂��r ,�� and f̂�
†�r ,�� as

Â�r� = �
0

�

d��i��−1Ê� ��r,�� + H.c., �6�

�	̂�r� = − �
0

�

d�Ê� ��r,�� + H.c., �7�

with

Ê� �r,�� = �
�=e,m

� d3r�G��r,r�,�� · f̂��r�,�� , �8�

where

Ge�r,r�,�� = i
�2

c2	 �

��0
Im ��r�,��G�r,r�,�� , �9�

Gm�r,r�,�� = − i
�

c
G�r,r�,�� � �� r�	−

�

��0
Im �r�,�� ,

�10�

�G�r ,r� ,����� r��ij =� jkl�l�Gik�r ,r� ,��, and � ��� denotes
transverse �longitudinal� vector fields. In Eqs. �9� and �10�,
G�r ,r� ,�� is the classical Green tensor obeying the equation


� � �r,�� � � −
�2

c2 ��r,���G�r,r�,�� = ��r − r��

�11�

together with the boundary condition at infinity. All relevant
characteristics of the macroscopic bodies enter the theory via
the space- and frequency-dependent complex permittivity
��r ,�� and permeability ��r ,��=−1�r ,��, with the real
and imaginary parts of ��r ,�� and �r ,�� satisfying the
Kramers-Kronig relations. Note that the Green tensor obeys
the useful properties �39�

G*�r,r�,�� = G�r,r�,− �*� , �12�

G�r,r�,�� = GT�r�,r,�� , �13�

�
�=e,m

� d3sG��r,s,�� · G�
+�r�,s,�� =

��0

�
�2 ImG�r,r�,�� .

�14�

If the charged particles constitute a system of neutral atoms
and/or molecules �briefly referred to as atoms in the follow-
ing� labeled by A, ���Aq�=0, then it is convenient to em-
ploy the Hamiltonian in the multipolar-coupling form, which
can be obtained from the minimal-coupling form �1� via a
Power-Zienau transformation

Û = exp
 i

�
� d3r�

A

P̂A�r� · Â�r�� , �15�

where the polarization of atom A is given by
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P̂A�r� = �
��A

q�r̂̄��
0

1

d�
�r − r̂A − �r̂̄�� , �16�

with

r̂̄� = r̂� − r̂A �17�

denoting the particle coordinates relative to the center of
mass

r̂A = �
��A

m�

mA
r̂� �18�

of atom A �mA=���Am��. We assume that all the atoms are
�i� essentially at rest, m� /mA→0, �ii� small compared to the

wavelength of the relevant field components, r̂̄�→ r̂A, and
�iii� well separated from each other,

� d3rP̂A�r� · P̂B�r� = 
AB� d3rP̂A
2�r� . �19�

Under these assumptions, the Hamiltonian in the multipolar-
coupling scheme can be obtained from Eqs. �1� and �15� in
complete analogy to the procedure outlined in Ref. �41�, re-
sulting in

Ĥ = ĤF + �
A

ĤA + �
A

ĤAF, �20�

where

ĤF = �
�=e,m

� d3r�
0

�

d���f̂�
†�r,�� · f̂��r,�� , �21�

ĤA = �
��A

p̂�
2

2m�

+
1

2�0
� d3rP̂A

2�r� , �22�

ĤAF = − d̂A · Ê�r̂A� + �
��A

q�

2m�

p̂̄� · �r̂̄� � B̂�r̂A��

+ �
��A

q�
2

8m�

�r̂̄� � B̂�r̂A��2. �23�

In Eq. �23�,

d̂A = �
��A

q�r̂̄� = �
��A

q�r̂� �24�

is the electric dipole moment of atom A, and the electric and
induction fields are given by

Ê�r� = �
0

�

d�Ê� �r,�� + H.c., �25�

with Ê� �r ,�� from Eq. �8�, and

B̂�r� = �
0

�

d�B̂� �r,�� + H.c., �26�

B̂� �r,�� = �i��−1 � � Ê� �r,�� . �27�

Note that in the multipolar-coupling scheme Ê�r� has the
physical meaning of a displacement field with respect to the
polarization of the atoms. Finally, in the case of atoms which
are not magnetically polarizable, we may omit the second
and third terms in Eq. �23� so that Eq. �23� reduces to the
well-known electric-dipole term

ĤAF = − d̂A · Ê�r̂A� . �28�

III. THE VAN DER WAALS POTENTIAL

Let us consider two neutral, ground-state atoms A and B
at given positions rA and rB in the presence of arbitrarily
shaped magnetodielectric bodies. Denoting by �nA�B�� the
�unperturbed� energy eigenstates of atom A�B�, we may rep-
resent the atomic Hamiltonian HA�B�, Eq. �22�, in the form

ĤA�B� = �
n

EA�B�
n �nA�B��nA�B�� . �29�

Restricting our attention to the electric-dipole approximation,

the interaction Hamiltonian ĤA�B�F reads, according to Eq.
�28� �r̂A�B��rA�B��,

ĤA�B�F = − �
n

�
m

�nA�B��mA�B��dA�B�
nm · Ê�rA�B�� , �30�

where dA�B�
nm = nA�B��d̂A�B��mA�B��, and Ê�r� is given by Eq.

�25� together with Eq. �8�. Further, let ��0��, �1����, and
�1��� ,1���� be the vacuum, single-, and two-quantum excited
states of the combined system consisting of the electromag-
netic field and the bodies, respectively,

f̂�i�r,����0�� = 0, �31�

f̂��i�
† �r�,�����0�� � �1���� , �32�

1
	2

f̂��i�
† �r�,��� f̂��i�

† �r�,�����0�� � �1���,1���� �33�

�the corresponding single- and two-excitation energies are,
respectively, ��� and ����+����.

Following Casimir and Polder’s approach �2� �see also
Ref. �42��, we identify the two-atom vdW interaction with
the position-dependent shift of the ground-state energy �EAB
calculated in leading-order perturbation theory according to

�EAB = − �
I,II,III

�
0�ĤAF + ĤBF�III�III�ĤAF + ĤBF�II�

�EI − E0�

�
II�ĤAF + ĤBF�I�I�ĤAF + ĤBF�0�

�EII − E0��EIII − E0�
, �34�

where the primed sum indicates that only intermediate states
�I�, �II�, and �III� other than the �unperturbed� ground state of
the overall system,
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�0� = �0A��0B���0�� , �35�

are included in the summations. Note that the summations
include position and frequency integrals.

From Eq. �30�, by considering only two-atom virtual pro-
cesses, it can be inferred that the intermediate states �I� and
�III� have one of the atoms excited and one body-assisted
field excitation present, while the intermediate states �II� can
be of three types: �i� both atoms in the ground state with two

field excitations present, �ii� both atoms excited with no field
excitation present, and �iii� both atoms excited with two field
excitations present. All possible intermediate states together
with the respective energy denominators are listed in Table II
in Appendix A.

Let us consider, e.g., case �1� in this table. Substituting the
corresponding matrix elements �A1�–�A4� as given in Ap-
pendix A into Eq. �34�, we derive the contribution �EAB�1� to
the two-atom energy shift �EAB to be

�EAB�1� = −
1

2�3�
n,m

�
i1,i2,i3,i4

�
�1,�2,�3,�4


�
j=1

4 � d3rj�
0

�

d� j� 1

Dnm��1,�2,�3,�4�

� ��dA
n0 · G�1

* �rA,r1,�1��i1
�dA

0n · G�3

* �rA,r3,�3��i3
�dB

m0 · G�3
�rB,r3,�3��i3

�dB
0m · G�4

�rB,r4,�4��i4

�12�
�24�

+ �dA
n0 · G�1

* �rA,r1,�1��i1
�dA

0n · G�3

* �rA,r3,�3��i3
�dB

m0 · G�2
�rB,r2,�2��i2

�dB
0m · G�4

�rB,r4,�4��i4

�12�
�34�

+ �dA
n0 · G�1

* �rA,r1,�1��i1
�dA

0n · G�2

* �rA,r2,�2��i2
�dB

m0 · G�2
�rB,r2,�2��i2

�dB
0m · G�4

�rB,r4,�4��i4

�13�
�34�

+ �dA
n0 · G�1

* �rA,r1,�1��i1
�dA

0n · G�2

* �rA,r2,�2��i2
�dB

m0 · G�3
�rB,r3,�3��i3

�dB
0m · G�4

�rB,r4,�4��i4

�13�
�24�� , �36�

where


���� = 
i�i�

����


�r� − r��
��� − ��� �37�

and

Dnm��1,�2,�3,�4� = ��A
n + �1���2 + �3���B

m + �4�
�38�

��A�B�
n = �EA�B�

n −EA�B�
0 � /��. Recalling Eq. �14�, we may sim-

plify Eq. �36� to

�EAB�1� = −
�0

2

��2�
n,m
�

0

�

d��
0

�

d���2��2� 1

Di
+

1

Dii
�

��dA
0n · Im G�rA,rB,�� · dB

0m�

� �dA
0n · Im G�rA,rB,��� · dB

0m� , �39�

where Di and Dii are, respectively, the first and the second
denominators in Table II, and without loss of generality we
have assumed that the matrix elements of the electric-dipole
operators are real.

The contributions �EAB�k� to �EAB which correspond to
the cases �2�–�10� in Table II in Appendix A can be calcu-
lated analogously. It turns out that they differ from Eq. �39�
only in the energy denominators. It is not difficult to prove
that the summation of the energy denominators under the
double frequency integral leads to �Appendix B�

�
a=i

xii
1

Da
→

4��A
n + �B

m + ��
��A

n + �B
m���A

n + ����B
m + ��

�� 1

� + ��
−

1

� − ��
� . �40�

Hence, the two-atom contributions �EAB�k� to the fourth-
order energy shift lead to the vdW potential UAB�rA ,rB�
=�k=1

10 �EAB�k� as follows:

UAB�rA,rB� = −
4�0

2

��2�
n,m

1

�A
n + �B

m�
0

�

d��
0

�

d��

�
�2��2��A

n + �B
m + ��

��A
n + ����B

m + ��
� 1

� + ��
−

1

� − ��
�

� �dA
0n · Im G�rA,rB,�� · dB

0m�

��dA
0n · Im G�rA,rB,��� · dB

0m� . �41�

To perform the integral over ��, we first use the identity
Im G= �G−G*� / �2i� and the relation �12� to write

�
0

�

d��� 1

� + ��
−

1

� − ��
���2 Im G�rA,rB,���

=
1

2i
�

−�

�

d��� 1

� + ��
−

1

� − ��
���2G�rA,rB,��� ,

�42�

where the poles at ��=−� and ��=� are to be treated as
principal values. The Green tensor is analytic in the upper
half of the complex frequency plane including the real axis,
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apart from a possible pole at the origin. In addition,
��2G�rA ,rB ,��� is well-behaved for vanishing �� �39�. We
may therefore replace the integral on the right-hand side of
Eq. �42� by contour integrals along infinitely small half
circles surrounding +�, and an infinitely large half circle in
the upper complex half plane. The integral along the infi-
nitely large half circle vanishes because �39�

lim
���→�

�2�G�rA,rB,���rA�rB
= 0. �43�

Collecting the contributions from the infinitely small half
circles, we end up with

�
0

�

d��� 1

� + ��
−

1

� − ��
���2 Im G�rA,rB,���

=
1

2
��2�G�rA,rB,�� + G*�rA,rB,��� , �44�

where we have again made use of the relation �12�. Substi-
tution of Eq. �44� into Eq. �41� leads to

UAB�rA,rB� = −
�0

2

i��
�
n,m

1

�A
n + �B

m�
0

�

d�
�4��A

n + �B
m + ��

��A
n + ����B

m + ��
��dA

0n · G�rA,rB,�� · dB
0m�2 − �dA

0n · G*�rA,rB,�� · dB
0m�2�

= −
�0

2

i��
�
n,m

1

�A
n + �B

m��
0

�

d�
�4��A

n + �B
m + ��

��A
n + ����B

m + ��
+ �

0

−�

d�
�4��A

n + �B
m − ��

��A
n − ����B

m − ����dA
0n · G�rA,rB,�� · dB

0m�2. �45�

This equation can be further simplified by again using
contour-integral techniques. It can be seen that the integrand
in the first integral in Eq. �45� is analytic in the first quadrant
of the complex frequency plane, including the positive real
axis. Therefore, it can be replaced by contour integrals along
an infinitely large quarter circle in the first quadrant and
along the positive imaginary axis, introducing a purely
imaginary frequency, �= iu. The integral along the infinitely
large quarter circle vanishes because of Eq. �43�. In a similar
way, the second integral in Eq. �45� can also be transformed
to one over the imaginary axis. Combining the contributions
from the two integrals leads to

UAB�rA,rB� = −
2�0

2

��
�
n,m
�

0

� duu4�A
n�B

m

���A
n�2 + u2����B

m�2 + u2�

� �dA
0n · G�rA,rB,iu� · dB

0m�2. �46�

An expression of this type was first given in Ref. �29� on the
basis of a heuristic generalization of the respective free-space
result.

Noting that the �lowest-order� atomic ground-state polar-
izability tensor is �see, e.g., �43��

�A�B���� = lim
�→0+

2

�
�

n

�A�B�
n dA�B�

0n dA�B�
n0

��A�B�
n �2 − �2 − i��

, �47�

we may rewrite Eq. �46� as

UAB�rA,rB�

= −
��0

2

2�
�

0

�

duu4

�Tr��A�iu� · G�rA,rB,iu� · �B�iu� · G�rB,rA,iu�� , �48�

where we have used Eq. �13�. In particular for atoms, which
are spherically symmetric,

�A�B���� = �A�B����I = lim
�→0+

2

3�
�

n

�A�B�
n �dA�B�

0n �2I

��A�B�
n �2 − �2 − i��

,

�49�

Eq. �48� becomes

UAB�rA,rB� = −
��0

2

2�
�

0

�

duu4�A�iu��B�iu�

� Tr�G�rA,rB,iu� · G�rB,rA,iu�� . �50�

The total force acting on atoms A and B can be derived
from the potential

U�rA,rB� = UA�rA� + UB�rB� + UAB�rA,rB� �51�

according to

FA�B� = − �rA�B�
U�rA,rB� , �52�

where UA�B� is the single-atom potential �see, e.g., Ref. �41��

UA�B��rA�B�� =
��0

2�
�

0

�

duu2

�Tr��A�B��iu� · G�1��rA�B�,rA�B�,iu�� ,

�53�

with G�1� being the scattering part of the Green tensor,

G�r,r�,iu� = G�0��r,r�,iu� + G�1��r,r�,iu� �54�

�G�0�, bulk part�. In particular, the body-assisted force acting
on atom A�B� due to the presence of atom B�A� reads
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FAB�BA� = − �rA�B�
UAB�rA,rB� . �55�

Note that FAB�−FBA in general, due to the presence of the
bodies.

IV. APPLICATIONS

A. Bulk material

Let us first consider the simplest configuration where the
two atoms are embedded in a bulk magnetodielectric mate-
rial whose Green tensor reads �40�

G�r,r�,iu� = G�0��r,r�,iu�

=
��iu�

4��r − r��
 f���I − g���
�r − r���r − r��

�r − r��2 �
�e−n�iu��r−r��u/c, �56�

where n�iu�=	��iu���iu� and

f�x� = 1 + x + x2, �57�

g�x� = 1 + 3x + 3x2, �58�

� = c�n�iu��r − r��u�−1. �59�

Combining Eq. �51� �together with Eqs. �50� and �53�� with
Eq. �56�, we find that �l= �rA−rB��

U�rA,rB� = UAB�rA,rB�

= −
�

16�3�0
2l6�

0

�

du
�A�iu��B�iu�

�2�iu�
e−2n�iu�ul/c

��3 + 6n�iu�ul/c + 5�n�iu�ul/c�2

+ 2�n�iu�ul/c�3 + �n�iu�ul/c�4� , �60�

which is in agreement with Ref. �32�. Note that in Eq. �60�
local-field corrections are disregarded. They could be taken
into account in a similar way as in the case of single-atom
systems �see, e.g., Refs. �40,44,45��.

In the retarded limit, where l�c /�min ��min

=min���A�
n ,�� �A�=A ,B ;n ,�=1,2 , . . . ��, with �� denoting

the resonance frequencies of the medium�, due to the pres-
ence of the exponential in the integrand in Eq. �60�, only
small values of u significantly contribute. Hence we may
approximately replace the atomic polarizabilities and the per-
mittivity and permeability of the medium by their respective
static values,

�A�B��iu� � �A�B��0�, ��iu� � ��0�, ��iu� � ��0� ,

�61�

and perform the integral in closed form to yield

U�rA,rB� = −
Cr

l7 , �62�

where

Cr =
23�c

64�3�0
2

�A�0��B�0�
n�0��2�0�

. �63�

Equation �62� reveals that the potential behaves like l−7 just
as in the free-space case, but with the coefficient being re-
duced by a factor of �n�0��2�0��−1.

In the nonretarded limit, where l�c / �n�0��max� ��max

=max���A�
n ,�� �A�=A ,B ;n ,�=1,2 , . . . ���, the integral in Eq.

�60� is effectively limited to a region where e−2n�iu�ul/c�1
and the term in curly brackets is approximately equal to 3, so
that

U�rA,rB� = −
Cnr

l6 , �64�

where

Cnr =
3�

16�3�0
2�

0

�

du
�A�iu��B�iu�

�2�iu�
, �65�

which agrees with Refs. �31–33� and shows the l−6 depen-
dence also known from the free-space case. According to Eq.
�60� and Eqs. �62�–�65�, a bulk magnetodielectric medium
tends to inhibit the interaction between the atoms, thereby
reducing the interatomic dispersion force.

B. Multilayer systems

Now let the two atoms be in front of a planar magnetodi-
electric multilayer system consisting of N adjoined layers
labeled by j �j=0,1 ,2 , . . . ,N−1� with thicknesses dj

�d0→��, permittivities � j���, and permeabilities � j���, as
sketched in Fig. 1. The z axis is perpendicular to the layers,
with the origin being on the interface between layer j=N
−1 and the free-space region, which can be regarded as layer
j=N �dN→�, �N����1, �N����1�. With the coordinate
system chosen such that the two atoms �in the free-space
region� lie in the xz plane, the nonzero elements of the scat-
tering part G�1��rA ,rB , iu� of the Green tensor G�rA ,rB , iu� in
Eq. �50� can be given by �Appendix C�

Gxx�yy�
�1� �rA,rB,iu� =

1

8�
�

0

�

dqqe−bNZ+�J0�qX�
+

�− �
J2�qX�

bN
rN

s

−

bN
J0�qX�
−

�+ �
J2�qX��

kN
2 rN

p� , �66�

.

.
j = 0 j = 1 j = 2 j =N−1

d1 d2d0→∞ dN−1

zz =0

ε0(ω) ε1(ω) ε2(ω) εN−1(ω)

µ0(ω) µ1(ω) µ2(ω) µN−1(ω)

· · · l

A
Z

x

X

B

FIG. 1. Sketch of the planar multilayer medium.
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Gxz�zx�
�1� �rA,rB,iu� =

−

�+ �
1

4�
�

0

�

dqq2e−bNZ+
J1�qX�

kN
2 rN

p ,

�67�

Gzz
�1��rA,rB,iu� = −

1

4�
�

0

�

dqq3e−bNZ+
J0�qX�
bNkN

2 rN
p , �68�

where Z+=zA+zB, X=xB−xA, J��x� denotes Bessel functions,
and

bj = bj�q,u� =	u2

c2 � j�iu�� j�iu� + q2, �69�

kj = kj�q,u� = 	� j�iu�� j�iu�
u

c
= nj�iu�

u

c
. �70�

The �generalized� reflection coefficients rj
� with respect to

the left boundary of the jth layer �j=1,2 ,3 , . . . ,N� can be
obtained from the recurrence relation

rj
� = rj

��q,u� =

�� j−1
�

bj−1

−
� j

�

bj

� + �� j−1
�

bj−1

+
� j

�

bj

�e−2bj−1dj−1rj−1
�

�� j−1
�

bj−1

+
� j

�

bj

� + �� j−1
�

bj−1

−
� j

�

bj

�e−2bj−1dj−1rj−1
�

,

�71�

r0
�=0 ��=s , p�, where � j

s and � j
p stand for � j�iu� and � j�iu�,

respectively.
According to the decomposition �54� of the Green tensor,

the two-atom potential UAB, Eq. �50�, can be decomposed
into three parts,

UAB�rA,rB� = UAB
�0��rA,rB� + UAB

�1��rA,rB� + UAB
�2��rA,rB� ,

�72�

where

UAB
�0��rA,rB� = −

��0
2

2�
�

0

�

duu4�A�iu��B�iu�

�Tr�G�0��rA,rB,iu� · G�0��rB,rA,iu�� �73�

is the bulk-part contribution, which is given by Eq. �60� with
n�iu��1���iu�,

UAB
�1��rA,rB� = −

��0
2

�
�

0

�

duu4�A�iu��B�iu�Tr�G�0��rA,rB,iu� · G�1��rB,rA,iu��

= −
��0

2

32�3l
�

0

�

duu4�A�iu��B�iu�e−lu/c�
0

�

dqqe−bNZ+��
2f��� − g���
X2

l2 �
 rN
s

bN
−

bN

kN
2 rN

p� − 2
 f���

− g���
Z2

l2 � q2

bNkN
2 rN

p�J0�qX� − g���
X2

l2 
 rN
s

bN
+

bN

kN
2 rN

p�J2�qX�� �74�

comes from the cross term of bulk and scattering parts �with f�x� and g�x� being defined by Eqs. �57� and �58�, respectively,
�=c / �lu�, and Z=zB−zA�, and

UAB
�2��rA,rB� = −

��0
2

2�
�

0

�

duu4�A�iu��B�iu�Tr�G�1��rA,rB,iu� · G�1��rB,rA,iu��

= −
��0

2

64�3�
0

�

duu4�A�iu��B�iu��
0

�

dqq�
0

�

dq�q�e−�bN+bN� �Z+�
 rN
s rN

s�

bNbN�
+

rN
p rN

p�

kN
4 �bNbN� +

2q2q�2

bNbN�
� −

bN� rN
s rN

p�

bNkN
2

−
bNrN

s�rN
p

bN�kN
2 �J0�qX�J0�q�X� +

4qq�rN
p rN

p�

kN
4 J1�qX�J1�q�X� + � rN

s rN
s�

bNbN�
+

bNbN� rN
p rN

p�

kN
4 +

bN� rN
s rN

p�

bNkN
2 +

bNrN
s�rN

p

bN�kN
2 �

� J2�qX�J2�q�X�� �75�
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is the scattering-part contribution �bN� =bN�q� ,u� , rN
��

=rN
��q� ,u��. Equations �74� and �75� generalize results pre-

sented in Refs. �26,37,34� for two atoms in front of a metal-
lic or dielectric half space, respectively, to arbitrary magne-
todielectric multilayer systems.

1. Perfectly reflecting plate

Let us consider the case N=1 �Fig. 2� in more detail
and begin with the limiting case of a perfectly reflecting
plate,

rp � r1
p = ± 1, rs � r1

s = � 1, �76�

where the upper �lower� sign corresponds to a perfectly con-
ducting �permeable� plate. In the retarded limit, where
l ,zA ,zB�c /�min ��min=min���A�

n �A�=A ,B ;n=1,2 , . . . ���,
UAB

�0� is given by Eq. �62� with n�0��1���0�, whereas UAB
�1�

�Eq. �74�� and UAB
�2� �Eq. �75�� can be given in closed form

only in some special cases. If X�Z+ �cf. Fig. 2�, we derive,
on using the relevant elements of the scattering Green tensor
as given in Appendix C �Eqs. �C10� and �C11��,

UAB
�1� = ±

32

23

X2 + 6l2

l3Z+�l + Z+�5Cr , �77�

UAB
�2� = −

Cr

Z+
7 , �78�

where Cr is given by Eq. �63� with ��0��1�n�0�. Thus,
recalling Eq. �62�, the interaction potential �72� reads

UAB = 
−
1

l7 ±
32

23

X2 + 6l2

l3Z+�l + Z+�5 −
1

Z+
7�Cr , �79�

which is in agreement with Ref. �35� in the case of a con-
ducting plate. In particular, if zA�zB, or equivalently Z+
�Z� l, from Eqs. �77� and �78� it follows that

UAB
�1� = �

6

23
UAB

�0� , �80�

UAB
�2� = UAB

�0� , �81�

so the interaction potential UAB Eq. �72� is enhanced by the
presence of the perfectly reflecting plate

UAB = �
40

23
UAB

�0� for rp�s� =
+

�− �
1,

52

23
UAB

�0� for rp�s� =
−

�+ �
1.� �82�

Next, we discuss the behavior of UAB in the case where
the condition zA�zB is not valid. Since the bulk part UAB

�0�

�first term in the square brackets in Eq. �79�� is negative, the
interaction potential is enhanced �reduced� by the plate if the
scattering part UAB

�1� +UAB
�2� �second and third terms in the

square brackets in Eq. �79�� is negative �positive�. In the case
of a perfectly conducting plate, it is seen that especially for
Z=0, briefly referred to as the parallel case, UAB

�1� +UAB
�2� is

positive, and hence the interaction potential is reduced by the
plate, whereas for X=0, briefly referred to as the vertical
case, UAB

�1� +UAB
�2� is positive and the interaction potential is

reduced if and only if

zB/zA � 4.90, �83�

where, without loss of generality, atom A is assumed to be
closer to the plate than atom B. It is apparent from Eq. �79�
that for a perfectly permeable plate UAB

�1� +UAB
�2� is always

negative, and hence, the interaction potential is always en-
hanced by the plate.

Let us now turn to the nonretarded limit, where l ,zA ,zB

�c /�max ��max=max���A�
n �A�=A ,B ;n=1,2 , . . . ���, and

UAB
�0� is given by Eq. �64� ���iu��1�. From Eqs. �74� and �75�

we derive, on making use of the relevant elements of the
scattering Green tensor as given in Appendix C �Eqs.
�C14�–�C17��,

UAB
�1� = ±

4X4 − 2Z2Z+
2 + X2�Z+

2 + Z2�
3l5l+

5 Cnr, �84�

UAB
�2� = −

Cnr

l+
6 �85�

�l+=	X2+Z+
2�, where Cnr is given by Eq. �65� with ��iu�

�1. Hence, the interaction potential �72� reads, on recalling
Eq. �64�,

UAB = 
−
1

l6 ±
4X4 − 2Z2Z+

2 + X2�Z+
2 + Z2�

3l5l+
5 −

1

l+
6�Cnr.

�86�

Let us again consider the effect of the plate on the inter-
action potential for the parallel and vertical cases. In the
parallel case, Eq. �86� takes the form

UAB = 
−
1

l6 ±
4l2 + Z+

2

3l3�l2 + Z+
2�5/2 −

1

�l2 + Z+
2�3�Cnr, �87�

which in the on-surface limit Z+→0 approaches

.

.

A

B

z =0 z

x

X

Z

l

FIG. 2. Two atoms near a perfectly reflecting plate.
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UAB = �
2

3
UAB

�0� for rp�s� =
+

�− �
1,

10

3
UAB

�0� for rp�s� =
−

�+ �
1,� �88�

in agreement with the corresponding result found in Refs.
�28,30� for the case of the conducting plate. It can be seen
easily that the term UAB

�1� �second term in the square brackets
in Eq. �87�� dominates the term UAB

�2� �third term in the square
brackets in Eq. �87��, so UAB

�1� +UAB
�2� is positive �negative� for

a perfectly conducting �permeable� plate, and hence, the in-
teraction potential is reduced �enhanced� due to the presence
of the plate.

In the vertical case, from Eq. �86� the interaction potential
is obtained to be

UAB = 
−
1

l6 �
2

3Z+
3l3 −

1

Z+
6�Cnr. �89�

It is obvious that UAB
�1� +UAB

�2� �the second and third terms in
Eq. �89�� is negative when the plate is perfectly conducting,
thereby enhancing the interaction potential since UAB

�0� �the
first term in Eq. �89�� is negative. In the case of a perfectly
permeable plate, UAB

�1� +UAB
�2� is positive if and only if

zB

zA
� 1 +

2

�3

2
�1/3

− 1

� 14.82, �90�

where atom A is again assumed to be closer to the plate than
atom B.

Since UAB
�0� and UAB

�2� are negative in all cases, the realiza-
tion of enhancement or reduction of the interaction potential
depends only on the sign of UAB

�1� and its magnitude compared
to that of UAB

�2�.
In particular, the results for the nonretarded limit �the sign

of UAB
�1� being summarized in Table I� can be explained by

using the method of image charges, where the two-atom
vdW interaction is regarded as being due to the interactions
between fluctuating dipoles A and B and their images A� and
B� in the plate, with

Ĥint = V̂AB + V̂AB� + V̂BA� �91�

being the corresponding interaction Hamiltonian. Here, V̂AB
denotes the direct interaction between dipole A and dipole B,

while V̂AB� and V̂BA� denote the indirect interaction between
each dipole and the image induced by the other one in the
plate. The leading contribution to the energy shift is of sec-

ond order in Ĥint,

�EAB = − �
n,m

�
0A,0B�Ĥint�nA,mB�

���A
n + �B

m�
nA,mB�Ĥint�0A,0B� .

�92�

In this approach, UAB
�0� corresponds to the product of two

direct interactions, therefore, it is negative in agreement with
Eq. �86�, because of the minus sign on the right-hand side of
Eq. �92�. Accordingly, UAB

�2� is due to the product of two in-
direct interactions and is also negative—in agreement with
Eq. �86�. The terms containing one direct and one indirect
interaction are contained in UAB

�1� and determine its sign. We
can hence predict the sign of UAB

�1� from a graphical construc-
tion of the image charges, as sketched in Figs. 3–6.

Figure 3 shows two electric dipoles in front of a perfectly
conducting plate in the parallel case. The configuration of
dipoles and images indicates repulsion between dipole A �B�
and dipole B� �A��, so UAB

�1� is positive, in agreement with
Table I. On the contrary, in the vertical case from Fig. 4

+
   

  − +
     −

+
     −+

   
  −

AA

BB

FIG. 3. Two electric dipoles near a perfectly conducting plate
�parallel case�.

+     −+     −+     −+     −

AA BB

FIG. 4. Two electric dipoles near a perfectly conducting plate
�vertical case�.

−

−

+

+

−

−

AA

BB

FIG. 5. Two magnetic dipoles near a perfectly conducting plate
�parallel case�.
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attraction is indicated, i.e., negative UAB
�1�, which is also in

agreement with Table I.
The case of two electric dipoles in front of a perfectly

permeable plate can be treated by considering two magnetic
dipoles in front of a perfectly conducting plate, since the two
situations are equivalent due to the duality between electric
and magnetic fields in the absence of free charges or cur-
rents. From Figs. 5 �parallel case� and 6 �vertical case� it is
apparent that the interaction between dipole A �B� and dipole
B� �A�� is attractive in the parallel case and repulsive in the
vertical case, again confirming the sign of UAB

�1� as given in
Table I. When the dipole-dipole separation in Fig. 6 is suffi-
ciently small compared with the dipole-surface separations,
then the direct interaction between the two dipoles is ex-
pected to be stronger than their indirect interaction via the
image dipoles. As a result, UAB

�1� will be the dominant term in
UAB

�1� +UAB
�2� and UAB

�1� +UAB
�2� becomes positive. However, when

the dipole-dipole separation exceeds the dipole-surface sepa-
rations, then the indirect interaction may become comparable
to the direct one, and UAB

�2� may be the dominant term, leading
to negative UAB

�1� +UAB
�2�. The image dipole model hence, gives

also a qualitative explanation of the condition �90�.

2. Semi-infinite magnetodielectric half space

Let us now abandon the assumption of perfect reflectivity
and consider a magnetodielectric plate of permittivity ����

and permeability ����. To be more specific, we restrict our
attention to a sufficiently thick plate so that the model of a
semi-infinite half space applies. In this case, Eq. �71� for the
reflection coefficients reduces to

r� � r1
� =

�0
�b − b0

�0
�b + b0

, �93�

with b�b1=	u2 /c2+q2, b0=	��iu���iu�u2 /c2+q2, �0
s

=��iu�, and �0
p=��iu�.

In the retarded limit, l ,zA ,zB�c /�min �with �min being
defined as above Eq. �61�� we may again replace the atomic
polarizability and the permittivity and permeability of the
plate by their static values. Replacing the integration variable
q in Eq. �74� by v=b1c /u �cf. Eq. �C9��, leads to

UAB
�1��rA,rB� =

�c

32�3l3�0
2�A�0��B�0��

1

�

dv��v2
Z2A5− + �Z2 − 2X2��A4−

l
+

A3−

l2 � + l2A5+ + lA4+ + A3+� + 2�v2 − 1�
X2B5 + �X2

− 2Z2��B4

l
+

B3

l2 ���rp + 
Z2A5+ + �Z2 − 2X2��A4+

l
+

A3+

l2 � + l2A5− + lA4− + A3−�rs� , �94�

where, according to Eq. �93�, the static reflection coefficients
are given by

rs = rs�v� =
��0�v − 	��0���0� − 1 + v2

��0�v + 	��0���0� − 1 + v2
, �95�

rp = rp�v� =
��0�v − 	��0���0� − 1 + v2

��0�v + 	��0���0� − 1 + v2
, �96�

and

An± =
1

cn+1�
0

�

du une−au/c�J0��u/c� ± J2��u/c�� , �97�

Bn =
1

cn+1�
0

�

du une−au/cJ0��u/c� , �98�

with �=X	v2−1 and a= l+vZ+ �for explicit expressions of
An± and Bn, see Appendix D�. Similarly, Eq. �75� reduces to

UAB
�2� = −

��0
2

64�3c2�A�0��B�0��
1

�

dv�
1

�

dv�„�rprp��3v2v�2

− 2�v2 + v�2� + 2� + rsrs� − rsrp�v�2 − rprs�v
2�M0

+ 4vv�	v2 − 1	v�2 − 1rprp�M1 + �rsrs� + rprp�v
2v�2

+ +−−

AA BB

FIG. 6. Two magnetic dipoles near a perfectly conducting plate
�vertical case�.

TABLE I. Sign of UAB
�1� for a perfectly reflecting plate.

conducting plate permeable plate

parallel case � �

vertical case � �
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+ rsrp�v�2 + rprs�v
2�M2… �99�

�r�� =r��v���, where

Mn = �
0

�

du u6e−�v+v��Z+u/cJn��u/c�Jn���u/c� �100�

���=X	v�2−1�, which can be evaluated analytically only in
some special cases. In particular, when X�Z+, then approxi-
mately

Mn = Jn
2�0��

0

�

du u6e−�v+v��Z+u/c =
720c7

�v + v��7Z+
7 
n0.

�101�

In the nonretarded limit, l ,zA ,zB�c / �n�0��max� �with
�max being defined as above Eq. �64��, UAB

�1� and UAB
�2� can be

obtained by using in Eqs. �74� and �75�, respectively, the
relevant elements of the scattering part of the Green tensor as
given in Appendix C. In the case of a purely dielectric half
space ���1� we derive �Eqs. �C20�–�C23��

UAB = −
Cnr

l6 +
�4X4 − 2Z2Z+

2 + X2�Z2 + Z+
2��Cnr

�1�

l5l+
5 −

Cnr
�2�

l+
6 ,

�102�

where Cnr is given by Eq. �65� with ��iu��1, and

Cnr
�1� =

�

16�3�0
2�

0

�

du �A�iu��B�iu�
��iu� − 1

��iu� + 1
, �103�

Cnr
�2� =

3�

16�3�0
2�

0

�

du �A�iu��B�iu�
��iu� − 1

��iu� + 1
�2

.

�104�

Equation �102� together with �103� and �104� is in agreement
with the result found in Refs. �26,34,37�.

In particular in the limiting case when l�Z+, Eq. �102�
reduces to

UAB = −
Cnr

l6 +
�X2 − 2Z2�Cnr

�1�

l5Z+
3 . �105�

It is seen that the second term on the right-hand side of
this equation is positive �negative� in the parallel �vertical�
case, so the vdW potential is reduced �enhanced� by the pres-
ence of the dielectric half space. For the case of a purely
magnetic half space ���1� we derive �Eqs. �C24�–�C27��

UAB = −
Cnr

l6 +
�Z2 − 2X2 + 3Z+�l+ − Z+��Cnr

�3�

l5l+
, �106�

where

Cnr
�3� =

�

64�3�0
2c2�

0

�

du u2�A�iu��B�iu�

�
���iu� − 1����iu� − 3�

��iu� + 1
. �107�

Note that UAB
�2� does not contribute to the asymptotic nonre-

tarded two-atom vdW potential UAB for the purely magnetic
half space. In particular in the limiting case when X�Z+, Eq.
�106� reduces to

UAB = −
Cnr

l6 +
�2Z2 − X2�Cnr

�3�

2l5Z+
. �108�

It is seen that the second term in the right-hand side of this
equation is negative �positive� in the parallel �vertical� case,
so the vdW potential is enhanced �reduced� due to the pres-
ence of the magnetic half space.

It should be pointed out that the nonretarded limit for the
magnetodielectric half space is in general incompatible with
the limit of perfect reflectivity ���iu�→� or ��iu�→�� con-
sidered in Sec. IV B 1, as is clearly seen from the condition
given above Eq. �102� �cf. also the expansions �C18� and
�C19�, which are not well-behaved in the limit of perfect
reflectivity�. As a consequence, Eq. �106� does not reduce to
Eq. �86� via the limit ��iu�→�. It is therefore remarkable
that the result for a purely dielectric half space, Eq. �102�,
does reduce to Eq. �86� in the limit ��iu�→�, as already
noted in Ref. �46� in the case of the single-atom potential.

Figures 7–9 show the results of exact �numerical� calcu-
lation of the vdW interaction between two identical two-level
atoms near a semi-infinite half space, as given by Eq. �72�
together with Eqs. �60�, �74�, and �75�. In the figures the
potentials and the forces are normalized with respect to their
values in free space as given by Eq. �60� �n�iu��1
���iu��. In the calculations, we have used single-resonance
Drude-Lorenz-type electric and magnetic susceptibilities of
the half space,

���� = 1 +
�Pe

2

�Te
2 − �2 − i��e

, �109�

���� = 1 +
�Pm

2

�Tm
2 − �2 − i��m

. �110�

From the figures it is seen that the vdW interaction is
unaffected by the presence of the half space for atom-half-
space separations that are much greater than the interatomic
separations, while an asymptotic enhancement or reduction
of the interaction is observed in the opposite limit.

Figure 7�a� shows the dependence of the normalized in-
teraction potential UAB�l� on the atom-atom separation l in
the parallel case �Z=0� for different values of the distance
zA �=zB� of the atoms from a purely dielectric half space. The
ratio of the interatomic force along the connecting line of the
two atoms, FABx�l� �Eq. �55�� to the corresponding force in
free space, FABx

�0� �l�, follows closely the ratio UAB�l� /UAB
�0��l�,

so that, within the resolution of the figures, the curves for
FABx�l� /FABx

�0� �l� �not shown� would coincide with those for
UAB�l� /UAB

�0��l�. The figure reveals that due to the presence of
the dielectric half space the attractive interaction potential
and force are reduced, in agreement with the predictions
from the nonretarded limit, Eq. �105�. The relative reduction
of the potential and the force are not monotonic; there is a
value of the atom-atom separation where the reduction is
strongest. The l dependence of UAB�l� /UAB

�0��l� in the presence
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of a purely magnetic half space in the parallel case is shown
in Fig. 7�b�. Again, the corresponding force ratio
FABx�l� /FABx

�0� �l� �not shown� behaves like UAB�l� /UAB
�0��l�. The

figure indicates that the presence of a purely magnetic half
space enhances the vdW interaction between the two atoms,
with the enhancement increasing with the atom-atom separa-
tion, in agreement with the nonretarded limit, Eq. �108�.

Figure 8 shows UAB�l� /UAB
�0��l� in the vertical case �X=0�

when the half space is purely dielectric �Fig. 8�a�� or purely
magnetic �Fig. 8�b��. In the figure, atom A is assumed to be
closer to the surface of the half space than atom B, and the
graphs show the variation of the interaction potential with
the atom-atom separation l for different distances zA of atom
A from the surface of the half space. It is seen that for a
purely dielectric half space the potential is enhanced com-
pared to the one observed in the free-space case—in agree-
ment with Eq. �105�. Note that there are values of the atom-
atom separation at which the enhancement is strongest. For a
purely magnetic half space, the potential is seen to be typi-
cally enhanced although for very small atom-atom separa-

tions a reduction appears �inset in Fig. 8�b��—in agreement
with Eq. �108�. Whereas the force FBAz�l� /FBAz

�0� �l� for the
force acting on atom B �not shown� again follows closely the
potential ratio UAB�l� /UAB

�0��l�, the ratio FABz�l� /FABz
�0� �l�, for

the force acting on atom A noticeably differs from
UAB�l� /UAB

�0��l�, as can be seen by comparing Figs. 8 and 9.
Clearly, the reason must be seen in the different atom-atom
and atom-half-space directions in the two cases �cf. Figs. 4
and 6�.

Figures 7�a� and 8�a� showing the interaction potential of
two atoms in the presence of a purely dielectric half space in
the parallel and vertical cases, respectively, cover the results
shown in Ref. �37� on a different scale. The results here are
more complete because they show that the relative potential
does not have the monotonic behavior suggested by the fig-
ures in Ref. �37�.

V. SUMMARY AND CONCLUSIONS

Based on macroscopic quantum electrodynamics �QED�
in linear, causal media, we have obtained a general formula

 0.6 

 0.8 

 1 

 0.0 1  0.1  1  1 0  100 

 1 

 1.1 

 1.2 

 0.0 1  0.1  1  1 0  100 

(a) 

(b) 

U
A
B

(l
)/

U
 A

B
(l

) 
(0 

) 
U
A
B

(l
)/

U
 A

B
(l

) 
(0 

) 

lω10/c

FIG. 7. The vdW potential for two identical two-level atoms in
the parallel case in the presence of �a� a purely dielectric half space
with �Pe /�10=3, �Te /�10=1, and �e /�10=0.001 and �b� a purely
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=0.001 is shown as a function of the atom-atom separation l ��10 is
the atomic transition frequency, and UAB

�0��l� is the potential in free
space�. The atom-half-space separations are zA=zB=0.01c /�10

�solid line�, 0.2c /�10 �dashed line�, and c /�10 �dotted line�.
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for the vdW potential of two ground-state atoms in the pres-
ence of an arbitrary arrangement of dispersing and absorbing
magnetodielectric media by calculating the leading-fourth-
order shift of the ground-state energy of the overall system.
The result has been applied to two atoms �i� in bulk material
�without taking into account local-field corrections�, �ii� in
the presence of a perfectly reflecting plate, and �iii� in the
presence of a semi-infinite magnetodielectric half space. It
has been found that the presence of a bulk magnetodielectric
medium will reduce the interaction potential with respect to
its well-known free-space value.

We have further shown that in the presence of a perfectly
reflecting plate, the vdW interaction can be enhanced or re-
duced depending on the �electric or magnetic� nature of the
plate and the �parallel or vertical� alignment of the atoms. In
particular, in the nonretarded limit these effects can be quali-
tatively explained, using the method of image dipoles.

Finally, we have calculated the vdW potential in the pres-
ence of a magnetodielectric half space. The analytical results
show that in the nonretarded limit the potential in the case of
a purely dielectric half space is reduced �enhanced� in the
parallel �vertical� case compared to its value in free space,
while in the case of a purely magnetic half space it is en-

hanced �reduced� for parallel �vertical� alignment of the two
atoms. The results for a purely dielectric half space are in
qualitative agreement with those for the perfectly conducting
plate, while for a magnetic plate the results for finite perme-
ability disagree with those for the perfectly reflecting case in
the asymptotic power laws—owing to the fact that the two
limits of perfect reflectivity and nonretarded distance do not
commute.

The numerical computation of the interaction potential in
the whole distance regime confirms the analytical results. In
addition, it shows that the relative enhancement or reduction
of the vdW interaction is not always monotonous, but may in
general display maxima or minima, in particular in the case
of a purely dielectric half space.
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APPENDIX A: INTERMEDIATE STATES
AND INTERACTION MATRIX ELEMENTS

The intermediate states contributing to the two-atom vdW
interaction according to Eq. �34� are listed in the first three
columns of Table II; the corresponding matrix elements of
the interaction Hamiltonian �30� �together with Eqs. �8� and
�25�� can be found by recalling the commutation relations
and �4� and �5� and using the relations �13� and �14�. For
example, for case �1� in Table II this leads to

1�1��nA�0B�HAF + HBF�0A��0B���0��

= − �dA
n0 · G�1

* �rA,r1,�1��i1
, �A1�

1�2�,1�3��0A�0B�HAF + HBF�nA��0B��1�1��

= −
1
	2

��dA
0n · G�3

* �rA,r3,�3��i3

�12�

+ �dA
0n · G�2

* �rA,r2,�2��i2

�13�� , �A2�

1�4��0A�mB�HAF + HBF�0A��0B��1�2�,1�3��

= −
1
	2

��dB
m0 · G�3

�rB,r3,�3��i3

�24�

+ �dB
m0 · G�2

�rB,r2,�2��i2

�34�� , �A3�

�0��0A�0B�HAF + HBF�0A��mB��1�4��

= − �dB
0m · G�4

�rB,r4,�4��i4
, �A4�

where 
���� is given by Eq. �37�. Substituting them into Eq.
�34�, one obtains Eq. �36� and subsequently Eq. �39�, with
energy denominators Di and Dii as given in Table II. The
other denominators listed in the last column of the table fol-
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low in a similar way from the respective intermediate states
given in the first three columns.

APPENDIX B: DERIVATION OF EQ. (40)

From the energy denominators given in Table II, it is
straightforward to obtain

1

Dii
+

1

Diii
+

1

Dviii
+

1

Dix
+

1

Div
+

1

Dx

=
1

�A
n + �B

m
� 1

�A
n + �

+
1

�B
m + �

�� 1

� + ��
−

1

� − ��
�

+ � 1

�A
n + ��

+
1

�B
m + ��

�� 1

� + ��
+

1

� − ��
�� . �B1�

Since the denominators appear in combinations of the form
of Eq. �39�, where they are multiplied with terms �the two
factors in square brackets� which are always the same and
symmetric with respect to � and ��, we may interchange
�↔�� in the second term and recombine it with the first one
to obtain

1

Dii
+

1

Diii
+

1

Dviii
+

1

Dix
+

1

Div
+

1

Dx

→
2

�A
n + �B

m� 1

�A
n + �

+
1

�B
m + �

�� 1

� + ��
−

1

� − ��
� ,

�B2�

where the symbol → denotes equality under the double fre-
quency integral. Similarly we have

1

Di
+

1

Dv
+

1

Dvi
=

1

��A
n + �����B

m + ���
� 1

� + ��
+

1

� − ��
�

−
1

��B
m + �����A

n + ���� − ���
, �B3�

1

Dvii
+

1

Dxi
+

1

Dxii
=

1

��A
n + �����B

m + ���
� 1

� + ��
+

1

� − ��
�

−
1

��A
n + �����B

m + ���� − ���
. �B4�

The second terms in Eqs. �B3� and �B4� cancel each other
after an interchange of �↔�� to yield

1

Di
+

1

Dv
+

1

Dvi
+

1

Dvii
+

1

Dxi
+

1

Dxii

→
2

��A
n + ����B

m + ��
� 1

� + ��
−

1

� − ��
� . �B5�

Summation of Eqs. �B2� and �B5� immediately leads to Eq.
�40�.

APPENDIX C: SCATTERING GREEN TENSOR
FOR THE PLANAR MULTILAYER SYSTEM

The scattering Green tensor for a planar multilayer system
can be given in the form �47�

G�1��r,r�,iu� =� d2qeiq·�r−r��G�1��q,z,z�,iu� �C1�

�q�ez�, where

G�1��q,z,z�,iu� =
1

8�2bN
�

�=s,p
e�

+e�
−rN

�e−bN�z+z��, �C2�

with

es
± = �sin ��ex − �cos ��ey , �C3�

ep
± = �

bN

kN
��cos ��ex + �sin ��ey� −

iq

kN
ez �C4�

�eq= �cos ��ex+ �sin ��ey =q /q, q= �q�� denoting the polariza-
tion vectors for s- and p-polarized waves propagating in the

TABLE II. Intermediate states contributing to the two-atom vdW potential and corresponding
denominators.

Case �I� �II� �III� Denominator

�1� �nA ,0B��1�1�� �0A ,0B��1�2� ,1�3�� �0A ,mB��1�4�� Di= ��A
n +������+����B

m+���,
Dii= ��A

n +������+����B
m+��

�2� �nA ,0B��1�1�� �nA ,mB���0�� �0A ,mB��1�2�� Diii= ��A
n +�����A

n +�B
m���B

m+��
�3� �nA ,0B��1�1�� �nA ,mB���0�� �nA ,0B��1�2�� Div= ��A

n +�����A
n +�B

m���A
n +��

�4� �nA ,0B��1�1�� �nA ,mB��1�2� ,1�3�� �0A ,mB��1�4�� Dv= ��A
n +�����A

n +�B
m+��+����B

m+���
�5� �nA ,0B��1�1�� �nA ,mB��1�2� ,1�3�� �nA ,0B��1�4�� Dvi= ��A

n +�����A
n +�B

m+��+����A
n +��

�6� �0A ,mB��1�1�� �0A ,0B��1�2� ,1�3�� �nA ,0B��1�4�� Dvii= ��B
m+������+����A

n +���,
Dviii= ��B

m+������+����A
n +��

�7� �0A ,mB��1�1�� �nA ,mB���0�� �nA ,0B��1�2�� Dix= ��B
m+�����A

n +�B
m���A

n +��
�8� �0A ,mB��1�1�� �nA ,mB���0�� �0A ,mB��1�2�� Dx= ��B

m+�����A
n +�B

m���B
m+��

�9� �0A ,mB��1�1�� �nA ,mB��1�2� ,1�3�� �nA ,0B��1�4�� Dxi= ��B
m+�����A

n +�B
m+��+����A

n +���
�10� �0A ,mB��1�1�� �nA ,mB��1�2� ,1�3�� �0A ,mB��1�4�� Dxii= ��B

m+�����A
n +�B

m+��+����B
m+��
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positive���/negative��� z direction. Further, bN and kN, re-
spectively, are defined according to Eqs. �69� and �70�, and
the generalized reflection coefficients are given in Eq. �71�.
Equations �C3� and �C4� imply that

es
+es

− = � sin2 � − sin � cos � 0

− sin � cos � cos2 � 0

0 0 0
� , �C5�

ep
+ep

−

=�
−

bN
2

kN
2 cos2 � −

bN
2

kN
2 sin � cos �

ibNq

kN
2 cos �

−
bN

2

kN
2 sin � cos � −

bN
2

kN
2 sin2 �

ibNq

kN
2 sin �

−
ibNq

kN
2 cos � −

ibNq

kN
2 sin � −

q2

kN
2

� .

�C6�

Substituting these results into Eqs. �C1� and �C2�, perform-
ing the � integrals by means of �48�

�
0

2�

d�eix cos � cos���� = 2�i�J��x� , �C7�

and using the relation

J1�x�
x

=
J0�x� − J2�x�

2
, �C8�

we arrive at Eqs. �66�–�68�.
In the particular case of a perfectly reflecting plate in the

retarded limit, it is convenient to replace the integration vari-
able q in Eqs. �66�–�68� in favor of v=b1c /u, i.e., q
=	v2−1u /c �see Eq. �69��, and hence,

�
0

�

dq
q

b1
¯ � �

1

�

dv
u

c
¯ . �C9�

For X�Z+, the exponential terms effectively limits the inte-
grals in Eqs. �66�–�68� to the region where qX�1, hence we
can approximate J��qX� by J��0�=
�0, such that the nonzero
scattering-Green tensor components read

Gxx
�1��rA,rB,iu� = Gyy

�1��rA,rB,iu�

=
1

8�Z+

rs − �1 + 2

c

Z+u
+ 2

c2

Z+
2u2�rp�e−Z+u/c,

�C10�

Gzz
�1��rA,rB,iu� = −

1

2�Z+
� c

Z+u
+

c2

Z+
2u2�rpe−Z+u/c,

�C11�

leading to Eqs. �77� and �78�, recall Eq. �61�.
In the nonretarded limit it can be shown that the main

contribution to the frequency integrals comes from the re-
gion where u / �cb1��1 �cf. Ref. �49��. In this region we have

q = b1	1 −
u2

b1
2c2 � b1 � b . �C12�

By changing the integration variable q according to

�
0

�

dq
q

b1
. . . � �

u/c

�

db . . . �C13�

and setting the lower limit of integration to zero, from Eqs.
�66�–�68� we find, after some algebra, the nonzero elements
of the scattering Green tensor to be approximately given by

Gxx
�1��rA,rB,iu� =

c2

4�u2

2X2 − Z+
2

l+
5 rp, �C14�

Gyy
�1��rA,rB,iu� = −

c2

4�u2

1

l+
3 rp, �C15�

Gxz�zx�
�1� �rA,rB,iu� =

−

�+ �
c2

4�u2

3XZ+

l+
5 rp, �C16�

Gzz
�1��rA,rB,iu� =

c2

4�u2

X2 − 2Z+
2

l+
5 rp, �C17�

with l+=	X2+Z+
2, leading to Eqs. �84� and �85�.

For a semi-infinite magnetodielectric half space in the
nonretarded limit, we apply a similar procedure as below Eq.
�C11� and expand the reflection coefficients given by Eq.
�93� in terms of u / �bc�,

rs �
��iu� − 1

��iu� + 1
−

��iu����iu���iu� − 1�
���iu� + 1�2

u2

b2c2 , �C18�

rp �
��iu� − 1

��iu� + 1
−

��iu����iu���iu� − 1�
���iu� + 1�2

u2

b2c2 . �C19�

Substituting �C18� and �C19� into Eqs. �66�–�68� and keep-
ing only the leading-order terms of u /bc, in the case of the
purely dielectric half space we can ignore rs and the second
term in the right-hand side of Eq. �C19�, so that the relevant
elements of the scattering Green tensor are approximately

Gxx
�1��rA,rB,iu� =

2X2 − Z+
2

4�l+
5

��iu� − 1

��iu� + 1

c2

u2 , �C20�

Gyy
�1��rA,rB,iu� = −

1

4�l+
3

��iu� − 1

��iu� + 1

c2

u2 , �C21�

Gxz�zx�
�1� �rA,rB,iu� =

−

�+ �
3XZ+

4�l+
5

��iu� − 1

��iu� + 1

c2

u2 , �C22�

Gzz
�1��rA,rB,iu� =

X2 − 2Z+
2

4�l+
5

��iu� − 1

��iu� + 1

c2

u2 . �C23�

For a purely magnetic half space, the first term on the right-
hand side of Eq. �C19� vanishes, so the leading order of u /bc
is due to the second term as well as the first term on the
right-hand side of Eq. �C18�, so the nonzero elements of the
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scattering Green tensor can be approximated by

Gxx
�1��rA,rB,iu� =

l+ − Z+

4�X2

��iu� − 1

��iu� + 1
+

Z+l+ − Z+
2

16�X2l+
���iu� − 1� ,

�C24�

Gyy
�1��rA,rB,iu� =

l+ − Z+

16�X2 ���iu� − 1� +
Z+l+ − Z+

2

4�X2l+

��iu� − 1

��iu� + 1
,

�C25�

Gxz�zx�
�1� �rA,rB,iu� =

+

�− �
l+ − Z+

16�Xl+
���iu� − 1� , �C26�

Gzz
�1��rA,rB,iu� =

1

16�l+
���iu� − 1� . �C27�

APPENDIX D: EXPLICIT FORMS OF An± AND Bn

IN EQS. (97) and (98)

The integrals in Eqs. �97� and �98� can be performed to
obtain the following explicit expressions:

A3+ =
6a

�a2 + �2�5/2 , �D1�

A3− =
6�a3 − 4a�2�
�a2 + �2�7/2 , �D2�

A4+ =
6�4a2 − �2�
�a2 + �2�7/2 , �D3�

A4− =
6�4a4 − 27a2�2 + 4�4�

�a2 + �2�9/2 , �D4�

A5+ =
30�4a3 − 3a�2�

�a2 + �2�9/2 , �D5�

A5− =
30�4a5 − 41a3�2 + 18a�4�

�a2 + �2�11/2 , �D6�

B3 =
3a�2a2 − 3�2�

�a2 + �2�7/2 , �D7�

B4 =
3�8a4 − 24a2�2 + 3�4�

�a2 + �2�9/2 , �D8�

B5 =
15a�8a4 − 40a2�2 + 15�4�

�a2 + �2�11/2 . �D9�
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