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We consider interacting Fermi systems close to the unitary regime and compute the corrections to the energy
density that are due to a large scattering length and a small effective range. Our approach exploits the
universality of the density functional and determines the corrections from the analyical results for the harmoni-
cally trapped two-body system. The corrections due to the finite scattering length compare well with the result
of Monte Carlo simulations. We also apply our results to symmetric neutron matter.
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Ultracold fermionic atom gases have attracted a lot of
interest since Fermi degeneracy was achieved by DeMarco
and Jin �1�. These systems are in the metastable gas phase, as
three-body recombinations are rare. Most interestingly, the
effective two-body interaction itself can be controlled via
external magnetic fields. This makes it possible to study the
system as it evolves from a dilute Fermi gas with weak at-
tractive interactions to a bosonic gas of diatomic molecules.
This transition from a superfluid BCS state to Bose-Einstein
condensation �BEC� has been the subject of many experi-
mental �2–12� and theoretical works �13–25�.

At the midpoint of this transition, the two-body system
has a zero-energy bound state and the scattering length di-
verges. If other parameters such as the effective range of the
interaction can be neglected, the interparticle spacing be-
comes the only relevant length scale. This defines the unitary
limit. In this limit, the energy density is proportional to that
of a free Fermi gas, the proportionality constant denoted by
�. Close to the unitary limit, corrections are due to a finite,
large scattering length a and a small effective range r0 of the
potential. Within the local density approximation �LDA�, the
energy density can be written as

E��� = EFG�� +
c1

a�1/3 + c2r0�1/3� . �1�

Here,

EFG��� =
3

10
�3�2�2/3�2

m
�5/3 �2�

is the energy density of the free Fermi gas. The first two
terms of the functional have been discussed in Ref. �17�; the
third term is motivated through a simple scaling argument
given below. The universal constant � has been computed by
several authors. Monte Carlo calculations by Carlson et al.
�21�, Astrakharchik et al. �22�, and Bulgac et al. �23� agree
well with each other and yield ��0.44±0.01, �
�0.42±0.01, and ��0.42, respectively. A calculation by
Steele �26� based on effective field theory yields �=4/9,
while an application of density-functional theory �DFT�

�27,28� yields ��0.42 �29�. A many-body approach incorpo-
rating pairing fluctuations beyond mean field by Perali et al.
�24� yields ��0.455. Other calculations deviate considerably
from these results. Heiselberg �19� obtained �=0.326, while
Baker �30� found �=0.326 and �=0.568 from different Padé
approximations to Fermi gas expansions. Engelbrecht et al.
�31� obtained �=0.59 in a calculation based on BCS theory,
and Bruun �25� obtained �=0.7 by modeling an interacting
system of atoms and molecules, while a very recent Monte
Carlo simulation by Lee �32� yields ��0.25. The experimen-
tal values are ��0.74±0.07 �6�, �=0.51±0.04 �12�, ��0.7
�4�, and �=0.27−0.09

+0.12 �9�. These values can, e.g., be extracted
from the density profiles of the trapped gases �see, e.g., �24��
or from a test of the equation of states �see, e.g., Ref. �17��.
The constant c1 in Eq. �1� has also been determined. The
Monte Carlo results by Chang et al. �33� and by Astra-
kharchik et al. �22� yield c1�−0.28 �17� and are very close
to Steele’s analytical result �26�. We are not aware of any
estimate for the constant c2 in Eq. �1� that concerns the cor-
rection due to a small effective range. It is the purpose of this
work to fill this gap. This is particularly interesting as experi-
ments also have control over the effective range. Note that
the regime of a large effective range has recently been dis-
cussed by Schwenk and Pethick �20� and that superfluid
properties in the BCS approximation have been investigated
for finite range potentials by De Palo et al. �34�

In this work, we determine the coefficients c1 and c2 via
density-functional theory. Recall that the density functional
is supposed to be universal; i.e., it can be used to solve the
N-fermion system for any particle number N and for any
external potential. Unfortunately, the exact density functional
is not known. However, the unitary limit poses severe con-
straints on the LDA of the exact density functional and this
approximation is quite accurate in the unitary regime even
for nonuniform densities �29�. Exploiting the universality of
the density functional, the parameters c1 and c2 can be ob-
tained from a fit to an analytically known solution—i.e., the
harmonically trapped two-fermion system �35�. This simple
approach has recently been applied �29� to determine the
universal constant � and will be followed and extended be-
low.

Let us briefly turn to the harmonically trapped two-
fermion system. The wave function u�r� in the relative coor-
dinate r=r1−r2 of the spin-singlet state is given in terms of
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the parabolic cylinder function U�−� ,r /�� �35–37�. Here,
��� is the energy of the relative motion and �=�� / �m��
denotes the oscillator length. We are dealing with a short-
ranged two-body interaction and quantize the energy through
the boundary condition at the origin,

	 �ru�r�
u�r�

	
r=0

= k cot 	 , �3�

where �2k2 /m=��� and 	 denotes the s-wave phase shift.
The evaluation of Eq. �3� for the parabolic cylinder function
yields

�2

�3/4 − �/2�

�1/4 − �/2�

=
�

a
−

r0�

2�
. �4�

Here, we have employed the effective range expansion of the
phase shift—i.e., k cot 	=−1/a+r0k2 /2. Note that Eq. �4� is
valid for arbitrary values of the scattering length a and the
effective range r0. In what follows, we employ density-
functional theory within the LDA. Our approach is based on
the scaling law

� � �−3, �5�

which relates the density to the oscillator length.
As an introductory example, we consider the case of a

dilute Fermi gas with a small value of the �positive� scatter-
ing length a�� and zero range. We expand Eq. �4� around
the energy of the noninteracting system as �=3/2+�. The
energy correction fulfills ��1, and we find

� =� 2

�

a

�
. �6�

Thus, Eqs. �6� and �5� suggest that the energy density of the
weakly interacting system is that of the noninteracting sys-
tem plus the term

E��� = c�a�1/3�
�2

m
�5/3, �7�

which is due to the scattering length. We want to determine
the coefficient c in Eq. �7�. Recall that Kohn-Sham DFT is
variational and that we are dealing with a small perturbation
a�1/3�1. Thus, we can insert the density of the noninteract-
ing system ��r�=2�−3/2�−3e−r2/�2

into Eq. �7� and integrate
over all space. Equating the result with the energy correction
given by Eq. �6� yields c=�, which is in full agreement with
many-body perturbation theory �38–40�. This result is not
really surprising. The interaction is a contact interaction, and
the energy correction given by Eq. �7� is the Hartree-Fock
approximation of this interaction. Nevertheless, it is encour-
aging that the simple DFT approach via the two-body system
yields a result in agreement with many-body theory.

Let us turn to the vicinity of the unitary regime. Consider
the case of a large scattering length a�� and zero range. We
expand Eq. �4� around the energy corresponding to the uni-
tary regime as �=1/2+� and find

� = −� 2

�

�

a
. �8�

This expression and the scaling law �5� indicate that the cor-
rection to the energy density �EFG in the unitary limit is of
the form

E1��� =
c1

a�1/3EFG��� , �9�

in agreement with Eq. �1�. We insert the exact density at the
unitary regime,

��r� =
4e−2�r/��2

�3/2�2r



0

r/�

dxex2
=

2e−2r2/�2

��2r
Erfi�r/�� , �10�

into the correction given by Eq. �9� and integrate. Equating
the result with the exact result �8� yields c1=−0.244. Monte
Carlo calculations predict c1�−0.28. Our result deviates
only 13% from the results of the Monte Carlo calculations
�see Fig. 1�. The deviation is due to the fact that the simple
functional in Eq. �9� is the LDA of the �unknown� exact
density functional. Given the simplicity of our approach, the
estimate is remarkably accurate.

Let us consider the corrections due to a nonzero effective
range r0��. Again, we expand Eq. �4� around the energy of
the unitary regime as �=1/2+� and find

� =
1

�8�

r0

�
. �11�

The form of this energy correction and the scaling law �5�
imply that the term

E2��� = c2r0�1/3EFG��� �12�

has to be added to the energy density �EFG �see Eq. �1��. For
a determination of the coefficient c2, we insert the density
given by Eq. �10� into Eq. �12� and integrate. Comparison of
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FIG. 1. �Color online� Energy per particle �in units of the free
Fermi gas� as a function of �kFa�−1 in the vicinity of the unitary
regime. Solid line: slope estimated in this work. Data points: Monte
Carlo results from Ref. �21� �dots� and from Ref. �22� �squares�,
respectively.
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the result with the exact result �11� yields c2=0.142. This is
one of the main results of this work. We estimate that the
systematic error of this coefficient �due to the LDA� is about
5%–15%, as this is the deviation by which the DFT estimates
for � �29� and c1 deviate from the Monte Carlo predictions
�21,22�. The estimate for c2 enables us to discuss a small
systematic correction of the universal constant obtained from
Monte Carlo calculations. Recall that the Monte Carlo cal-
culations �21,22� are based on potentials with a small effec-
tive range of about r0�1/3�0.05 and r0�1/3=0.01, respec-
tively. This suggests that their predictions for the universal
constant � involve the effect of a very small finite range and
are therefore overestimated by c2r0�1/3�0.007 and c2r0�1/3

�0.001, respectively. These small corrections are within the
statistical error of these simulations.

We also tried to improve the accuracy of our estimates for
c1 and c2 by going beyond the LDA through the inclusion of
gradient terms. The main idea consists of adding gradient
terms to the energy functional and to use Kohn-Sham DFT.
The systematic inclusion of the nonlocal kinetic energy den-
sity in the energy functional can lead to improvements in the
density and energy spectrum �41,42�. Here, we follow a phe-
nomenological approach. We replace the functional in Eq.
�1� by the functional �29�

E��� = �E���� +
c1

a�1/3Ea��� + c2�r0�1/3�Er0
��� . �13�

Here

E���� =
�2

m
� f�

2 �
j=1

N

��� j�2 + �1 − f��
3

10
�3�2�2/3�5/3� ,

�14�

and similar expressions with parameters fa and fr0
are em-

ployed for the terms involving the scattering length and the
effective range, respectively. Note that the functional �1� is
the Thomas-Fermi approximation of the functional �13� and
that both functionals are identical for f�= fa= fr0

=0. Note
also that the density-dependent term in Eq. �14� is the
Thomas-Fermi approximation of the corresponding gradient
term. Thus, the functional �13� differs from the LDA �1� by
explicit gradient terms while keeping the Thomas-Fermi
limit unchanged. In Ref. �29�, the universal constant � was
determined by a density functional of this form. In particular,
the universal constant � was very insensitive to variations of
the parameter f�. This robustness can be traced back to the
approximate equality of the integrals d3r� j=1

N 1
2 ��� j�2 and

d3r 3
10�3�2�2/3�5/3 when evaluated for the density �10�. This

is very different for the parameter pairs �c1 , fa� and �c2 , fr0
�,

as the corresponding integrals energy differ by a factor of 2.1
and 0.7, respectively, from each other. This finding indicates
that the functionals Ea��� and Er0

��� exhibit considerable
finite-size corrections �as the gradient terms differ from their
respective Thomas-Fermi limits for the two-body system�.
For this reason, we do not use phenomenological gradient
corrections for a more accurate determination of the con-
stants c1 and c2.

Let us also investigate the deep bound-state limit ��→

−�� of the two-body system corresponding to a positive scat-
tering length a�� and zero range. Taking this limit in Eq.
�4� and noting that 
�x+1/2� /
�x�→�x for x→�, we find
that the binding energy is ���=−�2 / �ma2�. Thus, one can
trivially write down the density functional for the system in
this limit as

EB��� = −
�2

2ma2� �15�

and the energy per particle is − �2

2ma2 . Interestingly, this value
coincides exactly with the 1/a2 correction that Bulgac and
Bertsch �17� obtained from a fit to Monte Carlo results close
to the unitary regime, and it is about 20% larger than the
analytical result that can be inferred from Steele’s work �26�.

Finally, we apply Eq. �1� to neutron matter, for which a
=−18.3 fm and r0=2.7 fm. We drop the r0�1/3 term in Eq.
�1�, as this correction is only small for very small densities.
In Fig. 2 we compare our results to the equation of state
�EOS� obtained by Friedman and Pandharipande �43�. Their
calculation is based on a variational approach and employs a
realistic Hamiltonian, which includes higher partial waves
and three-body interactions. Recall that our approach is lim-
ited to s waves and a two-body interaction. The inset of Fig.
2 shows the comparison for very small densities; here, the
correction due to the effective range is included and the re-
striction to s waves is justified. We note that the inclusion of
the effective range correction for values of r0�1/3 less than
0.6 improves the DFT result.

To summarize, we have considered interacting dilute
Fermi systems near the unitary regime and computed the
corrections to its energy density due to a large scattering
length and a finite effective range of the two-body interac-
tion. Our calculations are based on the universality of the
density functional, and we determine its local density ap-
proximation through comparison with exact results for the
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FIG. 2. Energy per particle for symmetric neutron matter as a
function of the density. Solid line: equation of state by Friedman
and Pandharipande �43�. Dashed line: result from density-functional
theory �DFT�. Dotted curve: Fermi gas in unitary regime. The inset
shows the DFT result and includes finite-range corrections.
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harmonically trapped two-fermion system. The correction
due to the large scattering length agrees well with results
from Monte Carlo calculations and effective field theory,
while the correction due to the finite range implies a small
systematic correction of order 0.01 to the universal constant
extracted from Monte Carlo results. The phenomenological
inclusion of gradient terms is difficult due to finite-size cor-
rections. We also applied our results to neutron matter.
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