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Hyperfine structure in the hydrogen molecular ion
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The hyperfine splitting of energy levels in the H,* molecular ion is calculated within the framework of the
spin-dependent part of the Breit-Pauli Hamiltonian. This is the first ab initio calculation based on the precise

variational solution of the three-body Schrodinger equation. It is shown that inclusion of the nuclear spin-spin
tensor interaction, neglected in previous theoretical considerations, brings agreement with the most precise
hyperfine transition measurements obtained by Jefferts to about 1 kHz for the lower-frequency intervals in the
5-100 MHz range. Finally, we investigate the hyperfine structure of some transitions, candidates for high-

precision two-photon spectroscopy.
DOI: 10.1103/PhysRevA.74.040502

The present study of the hydrogen molecular ion is moti-
vated by recent projects of precise spectroscopy experiments
[1,2] aimed at a sub-ppb precision. The accuracy of the non-
relativistic energies for the rovibrational states of H; was
constantly increased during recent years [3-8] and achieved
a precision of 10715-1072* a.u. The leading-order relativistic
and radiative corrections required for precise theoretical de-
termination of the optical transition frequencies became
available recently [9,10].

The knowledge of the hyperfine splitting is of great im-
portance for accurate comparison between theory and experi-
ment to comply with the aimed goals of sub-ppb spectros-
copy. Beyond that, hyperfine structure has a fundamental
interest in studies of nuclear properties [11] and in astrophys-
ics [12]. So far, several radio-frequency experiments have
provided information on the hyperfine structure of Hj
[13,14]; in [13] an uncertainty of +1.5 kHz was assigned to
the measured hyperfine transition frequencies. Theoretical
calculations of the spin Hamiltonian coupling constants were
performed in many works by means of the adiabatic approxi-
mation (see, for example, Refs. [12,15]). Nonadiabatic cor-
rections were considered in Ref. [16], and shown to be of
great importance, in particular for the leading electron-
nuclear spin-spin interaction, where they contribute at about
the 600 kHz level. The nuclear spin-rotation coupling con-
stant has been calculated in Ref. [17] with a reasonably good
accuracy.

The aim of this work is to present extended variational
calculation of the hyperfine coupling constants of the rovi-
brational levels in the H} molecular ion. We restrict our-
selves to the Breit-Pauli interaction only, still taking account
of the anomalous magnetic moment of an electron. This al-
lows us to say that our theoretical results for the coupling
constants are limited to the relative accuracy of o(e?). Tt
corresponds to maximal uncertainty of about 50—100 kHz in
determination of the hyperfine splitting of a rovibrational
level.

The following notations are used throughout this paper.
P,, P,, and p, are the momenta and R;, R,, r, are the coor-
dinates of protons and electron with respect to the center of
mass of a molecule, and
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PACS number(s): 33.15.Pw, 31.15.Ar, 31.15.Pf

r1=re—R1, r2=re—R2, R=R2—R1.

m,=—(1+k,) is the magnetic moment of an electron in Bohr
magnetons, while u,=1+ k, is the magnetic moments of pro-
ton in nuclear magnetons. I;, I, and s, are the spin operators
of nuclei and electron. We use the CODATAO2 recom-
mended values of the fundamental constants [18] for our
calculations.

The variational bound-state wave functions were obtained
by solving the three-body Schrodinger equation with Cou-
lomb interaction using the variational approach, which has
been discussed in a variety of works [19,20]. Details and the
particular strategy of choice of the variational nonlinear pa-
rameters and basis structure that have been adopted in the
present work can be found in [4].

Briefly, the wave function for a state with a total orbital
angular momentum L and of a total spatial parity 7=(-1)is
expanded as follows:

VIR = X VIERE)GT (Rry,ry),

l+ly=L

N
GlLl;Tz(R’rl’rZ) = E [C,Re(e~R=Pu1=7ur2)

n=1
+ Dnlm(e_anR_ﬁnrl_'yan)] s ( 1 )

where the complex exponents «, 3, and vy are generated in a
pseudorandom way. The use of complex exponents instead
of real ones allows us to improve the convergence rate.

For Hj the variational solution with this basis set provides
an accuracy of about 107'¥~10715 a.u. for the nonrelativistic
energies at basis lengths of N=4000-5000.

The leading correction to the nonrelativistic energy is the
a?-order relativistic correction determined by the Breit-Pauli
Hamiltonian. Its derivation can be found in many textbooks;
see, for example, Refs. [21,22]. For a composite particle the
finite-size electromagnetic structure should be taken into ac-
count; the interaction of such a particle with an electromag-
netic field in the relativistic formalism is discussed in Ref.
[23]. Kinoshita and Nio have shown how the electromagnetic
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TABLE 1. Coefficients of the effective spin Hamiltonian (3) (in
MHz); relative theoretical accuracy is O(a?). a[b]=a X 10°.

L v br Ce cr d, d,

1 0 922992 424163 -4.168 [-02] 128.490 -0.2975
1 1 898.809 39.8122 -4.035[-02] 120.337 -0.2849
1 2 876454 37.3276 -3.893[-02] 112.579 -0.2722
1 3 855812 34.9468 -3.742[-02] 105.169 -0.2593
1 4 836.784 32.6546 -3.583[-02] 98.0587 —0.2462
1 5 819.280 304372 -3.415[-02] 91.2043 -0.2330
3 0 917591 41.7866 -4.076 [-02] 127.013 -0.2917
3 1 893.755 39.2152 -3.944[-02] 118.940 -0.2791
3 2 871728 36.7608 -3.803 [-02] 111.255 -0.2665
3 3 851.398 34.4078 -3.654 [-02] 103.910 -0.2538
3 4 832,668 32.1416 -3.496 [-02] 96.8597 -0.2409
L v C, L v C,

2 0 42.1625 4 0 41.2942

2 1 39.5716 4 1 38.7483

2 2 37.0992 4 2 36.3175

2 3 34.7295 4 3 33.9864

2 4 32.4479 4 4 31.7404

structure of nuclei can be incorporated into the Breit-Pauli
Hamiltonian using nonrelativistic QED theory [24].

The Breit-Pauli Hamiltonian for a system of three par-
ticles is defined by a sum of pairwise interactions. The
electron-proton and proton-proton interactions are expressed
as

1+ 2k,
Vep=a|: o ( (r1Xp6)+ ;(rZXpe)> S,

e

1
( = X Py + q(r2XP2)>
r 5

1+2k

1
- —22<_3(1'1 X POI + —5(ry X P2)12>
2mp I 5

1+ kK

(1 1
+ _L(_3(r1 X pJ)I; + 5(ry X Pe)Iz)
memy, \ry r

ST R S0 (s, 1) + 8(e) (s, - )]

3 mgm,
2
S, I;) =3(r;-s,)(r; - I
+ueup(n<e ) =30, 5)(r 1)+(1H2)”
memp r
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)| 142k, (-RXP)I; (RXP)IL,
Vpp=a’| = 2 3 + 3
2mp R R’
—RXP)L, (RXP,I 8
_/-_L%(( - 1)2+( 32) 1) W—L5(R)
m, R R 3 mp
RYI,-L)-3(R-I,)(R-I
(I, L) + 4< (1) - 3R - L) »ﬂ_(z)
n, R

Nuclear spin-spin contact interaction is either negligible, for
even L, or vanishes, for odd L, and it will be omitted from
further consideration.

After averaging over space variables one can express in-
teraction in terms of an effective spin Hamiltonian:

Heff= bF(I ' Se) + Ce(L ! Se) + CI(L : I)

d,

2
m< SLs,) - [(L-D(L-s,)

_d (1
+(L'Se)(L'I)]> T aL- 1)(2L+3)<3 T

wen-wen). G)
In our notation for the effective Hamiltonian we tried to fol-
low Ref. [25]. Coefficients are obtained numerically by
evaluating vector and tensor operators from (2), which de-
pend on the spatial degrees of freedom. An analytical inte-
gration of the matrix elements is then reduced to integrals of
the form

Lpn(eB.y) = f f rrrh

where some of the indices (I/,m,n) may acquire negative
values up to —4. The integrals in this case are divergent, but
in operators they are encountered in such combinations that
the final expression is finite; thus the divergent terms are
canceled out. In our calculation we follow the numerical
scheme described in [26].

The results of calculation of the coupling constants of Eq.
(3) are presented in Table I. The nuclear spin-spin tensor
interaction is small, but, as will be seen soon, remains an
essential contribution to the hyperfine transition frequencies
and its neglect in Eq. (5) is not justified. The major coupling
is defined by the spin-spin electron-proton interaction. This
interaction determines the principal splitting of the rovibra-
tional levels of H; With this consideration in mind, the pref-
erable coupling scheme of angular momentum operators is

_ml_ﬁrz_wlzdrldrzdrlz,

TABLE II. Comparison of calculated coefficients of the effective spin Hamiltonian (in MHz).

by p d f
v [16] This work [16] This work [16] This work [17] This work
0 922.990 922.992 128.482 128.490 42.421 42.416 -0.0417 -0.0417
4 836.773 836.784 98.008 98.059 32.658 32.655 -0.0362 -0.0358
5 819.268 819.280 91.145 91.204 30.441 30.437 -0.0346 -0.0341
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TABLE III. Hyperfine splitting (in MHz) of the rovibrational levels in the H; molecular ion. The states

are (F,J).

1 1 1 1 3 3 3 1 3 1 3 3 1 1 1 1
L v (z.L-z| [5.L+2] |5.L-3] |5.L-2] |5.L+2] |5+ L v (5.L-2] |5.L+3

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 0 -910.7579 -930.4332 385.3985 481.9534 474.1063 2 0 -63.2438 42.1625
1 4 -827.1063 -842.4774 359.8495 433.8744 428.1542 2 4 -48.6718 32.4479
1 5 -810.1969 -824.5781 355.0781 424.0096 418.7520 2 5 -45.3600 30.2400
3 0 —-894.6614 -941.1034 341.5540 423.6342 489.5257 507.2568 4 0 -103.236 82.5884
3 1 —-872.0486 -915.7408 336.9246 413.6810 475.5771 492.3817 4 1 -96.8707 77.4966
3 2 -851.2013 -892.2611 332.8619 404.5553 462.6345 478.5441 4 2 -90.7937 72.6350

F=I+s,, J=L+F. (4) The hyperfine splitting of the lower rovibrational levels of

Note that due to the Pauli symmetrization the total nuclear
spin I=1,+1, is equal to O when L is even, and to 1 when L
is odd. As a consequence, the hyperfine structure is much
simpler for the states of even L, where only the value F
=1/2 is allowed.

In early works [13-15] an effective Hamiltonian of a
slightly different form has been used:

H=b(I-s,) +cFs.+d(L-s,) +f(L-1), (5)
where the coupling constants are related to ours as follows
(for L#0):

b=bp—cl3, f=cy. (6)
Our effective Hamiltonian also takes into account the tensor
term of the nuclear spin-spin interaction, which has not been
considered in previous work.

Table II contains a comparison with the most accurate
calculated values of the coupling constants. As is seen from
the table, agreement is almost complete for the ground vibra-
tional state. However, with increase of v the results slightly
depart from each other and for v=5 the disagreement be-
comes of about 20—40 kHz. In our case, the numerical accu-
racy of the calculated matrix elements has been carefully
checked, which allows us to claim that the computational
uncertainty may be neglected.

C=d1, d=Ce,

7 is presented in Table III. The results were obtained by
diagonalization of the effective spin Hamiltonian (3).

In Table IV the theoretical transition frequencies between
hyperfine levels are compared with the most precise experi-
mental measurements by Jefferts [13]. The third line for each
v corresponds to theoretical predictions obtained by using
the “old” effective spin Hamiltonian of Eq. (5). As can be
seen from this comparison, for transitions between substates
of the same multiplet F the matching is at the level of 1 kHz,
i.e., within experimental accuracy. The similar is for the
even L, where only the electron spin-orbit interaction con-
tribute to the splitting. For the spin-flip transitions
(F=3/2)—(F=1/2) the discrepancy is approximately
80 kHz. This result is not surprising, since the theoretical
limit of the present model of the spin Hamiltonian is
O(a?)=~5x 1073, and better agreement can only be achieved
by inclusion of higher-order corrections. Similar agreement
was found for the other levels investigated in [13], i.e., L
=1,2 and v=6-8.

In order to show the implications of this work for precise
spectroscopy of H}, we now investigate the hyperfine struc-
ture of two-photon transitions. Av=1 transitions are the most
intense, and can be reached by recently developed quantum
cascade lasers; among them, v=0—v=1 transitions are the
most attractive, because detection of excitation by state-
selective photodissociation can be easily implemented [27].
Here we calculate the spectrum of two transitions: (v,L)
=(0,1)—(1,1) (A=9.166 um) and (v,L)=(0,2)—(1,2)

TABLE IV. Comparison of transition frequencies (in MHz) with experiment [13]. States are labeled
(F,J), where F is the total spin and J is the total angular momentum of the hydrogen molecular ion.

L=1 L:2

: a3 B3HRa] Baas) B3l B3Gs) BIE)

Experiment 5.721 74.027 15.371 1270.550 1276.271 81.121

4 H (3) 5.720 74.025 15.371 1270.632 1276.352 81.120
H (5) 5.762 74.103 15.375 1270.624 1276.386

Experiment 5.258 68.933 14.381 1243.251 1248.509 75.601

5 H (3) 5.258 68.932 14.381 1243.330 1248.588 75.600
H (5) 5.297 69.005 14.385 1243.323 1248.620
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FIG. 1. Intensities of the hyperfine components of the (v,L)
=(0,1)—(1,1) (a) and (0,2)—(1,2) (b) two-photon transitions.
The plotted quantity is the two-photon transition squared matrix
element |Q|?, averaged over the possible values of the magnetic
quantum number M, as a function of frequency v— 1w, where v is
the spin-independent frequency.

(A=9.141 pm). Assuming a linearly polarized laser field
(along Oz), the transition probability is proportional to the
squared matrix element of the two-photon transition operator

Q(E)=d(E-H)'d,, (7)

where E is the middle energy between initial and final states.
Figure 1 shows the intensities of the different hyperfine com-
ponents for the two selected transitions. A squared matrix
element |Q?|=0.2 corresponds to a transition probability I’
=70 s~! assuming a laser power of 50 mW focused on a
1 mm? spot in a cavity of finesse 1000, and an instrumental
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width y,=10 kHz. Such an excitation rate ensures the feasi-
bility of a two-photon spectroscopy experiment in ion traps,
where the ion lifetime is typically of several seconds. Tran-
sitions between states of even L [like the L=2 transition in
Fig. 1(b)] are especially attractive because of their simple
hyperfine structure.

In summary, we present the first ab initio variational cal-
culation of the hyperfine coupling constants in the rovibra-
tional states of the H3. The main conclusion is that the
nuclear spin-spin tensor interaction is required in the effec-
tive spin Hamiltonian in order to get proper interpretation of
the experimental results of Jefferts. The obtained numerical
values allow theoretical prediction for the hyperfine splitting
at the level of 50—100 kHz. We have also shown the hyper-
fine structure of experimentally relevant two-photon transi-
tions. In order to achieve the aimed sub-ppb level and to get
the improved electron-to-proton mass ratio, further calcula-
tions are required, which will take into account the O(ma®)
relativistic and radiative corrections as well as finite-size ef-
fects like the Zemach electromagnetic radius [28] of the pro-
ton. At this stage a consideration of an indirect (via proton-
electron spin-spin coupling) nuclear spin-spin interaction
[29] is equally desirable.
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