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We present a simple quantum many-body system—a two-dimensional lattice of qubits with a Hamiltonian
composed of nearest-neighbor two-body interactions—such that the ground state is a universal resource for
quantum computation using single-qubit measurements. This ground state approximates a cluster state that is
encoded into a larger number of physical qubits. The Hamiltonian we use is motivated by the projected
entangled pair states, which provide a transparent mechanism to produce such approximate encoded cluster
states on square or other lattice structures �as well as a variety of other quantum states� as the ground state. We
show that the error in this approximation takes the form of independent errors on bonds occurring with a fixed
probability. The energy gap of such a system, which in part determines its usefulness for quantum computation,
is shown to be independent of the size of the lattice. In addition, we show that the scaling of this energy gap
in terms of the coupling constants of the Hamiltonian is directly determined by the lattice geometry. As a result,
the approximate encoded cluster state obtained on a hexagonal lattice �a resource that is also universal for
quantum computation� can be shown to have a larger energy gap than one on a square lattice with an equivalent
Hamiltonian.
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The state of a quantum many-body system can serve as a
universal resource for quantum computing, where computa-
tion proceeds through single-qubit measurements alone
�1–3�. This observation raises the intriguing possibility that
there exist physical systems which are “naturally” quantum
computers. More precisely, one may ask whether there exist
quantum many-body systems which, when cooled suffi-
ciently close to the ground state, can be used for quantum
computation by simply making individual measurements on
the constituent particles.

It is straightforward to write down a Hamiltonian for a
many-body spin system for which this is the case—one
needs only to take the �negative� sum of the stabilizer opera-
tors corresponding to, say, a square lattice cluster state �4�.
This Hamiltonian is somewhat unsatisfactory, however, be-
cause it involves five-body interactions, and fundamental in-
teractions are strictly between two bodies. Using the results
of Haselgrove et al. �5�, Nielsen proved the following nega-
tive result: a cluster state suitable for quantum computation
cannot arise as the exact ground state of any Hamiltonian
involving only local two-body interactions �3�. However, Ol-
iveira and Terhal �6�, building on the results of Kempe, Ki-
taev, and Regev �7�, demonstrated that cluster states �and
other such states that are universal� can be approximated by
the ground state of a local two-body Hamiltonian. The key
idea of their result is to make use of “mediating” ancilla
qubits to create an effective many-body coupling out of two-
body interactions.

Here, we provide a simple and explicit scheme for cluster-
state quantum computation using the ground state of a
Hamiltonian consisting of only two-body interactions. Our
approach, which provides an alternative to the use of medi-
ating systems as in �6,7�, is motivated by the projected en-
tangled pair states �PEPSs� as proposed by Verstraete and
Cirac �8�. Using PEPSs, it was demonstrated that the cluster

state can be obtained through a projection of a number of
virtual qubits prepared in maximally entangled states down
to a lesser number of physical qubits. We turn this construc-
tion around, and consider how, through the use of nearest-
neighbor two-body Hamiltonians, we may effect a similar
projection—but in this instance of a number of physical qu-
bits down to a lesser number of logical qubits. The system
we investigate is gapped, as the energy difference between
the ground and first excited states is independent of the size
of the lattice. The low-energy theory is described by an ef-
fective five-body interaction Hamiltonian that is precisely
equal to the �negative� sum of the stabilizer operators acting
on the logical qubits. That is, a cluster state encoded as a
logical state is approximated by the ground state of a larger
number of physical qubits. This encoding provides a very
transparent mechanism for achieving the effective many-
body coupling out of two-body interactions, which can be of
Ising and Heisenberg form, and is naturally extendible to
other PEPS constructions. Crucially, despite using logical
qubits consisting of several physical qubits, measurement-
based quantum computation can proceed on the encoded
cluster state using only single-qubit measurements.

We also investigate the usefulness of this ground state for
measurement-based quantum computation. Specifically, we
analyze the errors associated with the fact that the ground
state only approximates the encoded cluster state, and dem-
onstrate that the �fixed� energy gap is directly determined by
the lattice geometry.

The PEPS on a square lattice �8� consists of a two-
dimensional lattice of virtual qubits following the Archime-
dian tiling 4.8.8 �also known as a “CaVO” lattice� �9�, as
shown in Fig. 1. Quadruples of virtual qubits on the vertices
of the four-vertex tiles �such as those circled� form sites.
Pairs of virtual qubits at neighboring sites, connected by
dashed-line bonds in Fig. 1, are prepared in the two-qubit
cluster state
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The four virtual qubits at each site are projected down to a
single physical qubit using the projector

P = �0��0000� + �1��1111� . �2�

The resulting state of the physical qubits on the lattice is the
cluster state �8�.

In our approach, we choose a nearest-neighbor two-body
Ising-type Hamiltonian so as to effectively implement the
above projection on four physical, rather than virtual, qubits.
Consider a lattice of physical qubits with the same lattice
structure as the virtual qubits above, as in Fig. 1. We label
sites of four physical qubits by a Greek character, e.g., �,
and define S to be the set of all sites. Qubits at each site
interact with nearest neighbors via a site Hamiltonian HS that
is of Ising form

HS = − 	
��S

	
i
i�

���,i�
z

� ���,i��
z , �3�

where the first sum is over all sites, i
 i� denotes pairs of
neighboring qubits at site ��S connected by solid-line
bonds in Fig. 1, and ���,i�

z is the Pauli z operator for the
physical qubit i at site �.

The bonds between sites in Fig. 1 indicate a different
two-body interaction, given by a two-body Hamiltonian of
the form

V = − 	
��,i�
��,j�

����,i�
z

� ���,j�
x + ���,i�

x
� ���,j�

z � , �4�

where �x is a physical Pauli x operator, and �� , i�
�� , j�
denotes pairs of neighboring qubits connected by dashed-line
bonds in Fig. 1.

The total Hamiltonian for the lattice is given by the sum
of these terms, H=gHS+�V, where g and � have units of
energy. To investigate the spectrum of this Hamiltonian, we
will use perturbation theory in � /g, with gHS the unper-
turbed Hamiltonian.

We first investigate the spectrum of the unperturbed
Hamiltonian gHS. At a single site, there are three energy
levels. The ground state is degenerate, two dimensional, and
spanned by the states

�0000� � �0L�, �1111� � �1L� . �5�

The ground state space of the unperturbed Hamiltonian, then,
can be viewed as a logical qubit. The energy of this ground
state space is −4g. The first excited state is 12-fold degener-
ate, and has energy of 0. The second excited state is two-fold
degenerate and has energy of 4g.

Consider a lattice as in Fig. 1 consisting of NS sites
with periodic boundary conditions. The spectrum of the
unperturbed Hamiltonian gHS is straightforward. The
ground-state space has energy E0

�0�=−4gNS, is
2NS-dimensional, and is spanned by all logical states of NS
qubits. We denote this space HL. A convenient basis for this
ground state space is as follows: let �C� denote the logical
cluster state, and let �C�� ,� , . . . 
� denote the logical cluster

state with logical Z errors on the sites � ,� , . . .. �The logical Z
operator is Z��0L��0L �−�1L��1L�.� The set of states
��C� , �C��
� , �C�� ,�
� , . . . 
, running over logical Z errors at
all possible sites, forms a basis for this ground-state space.

The first excited space is �12NS�2NS−1�-dimensional, and
has energy E1

�0�=−4g�NS−1�. Thus, for the unperturbed
Hamiltonian gHS, the gap from the ground to the first excited
space is 4g. The second excited space has energy E1

�0�=
−4g�NS−2�. These energies will serve as the zeroth-order
energies in perturbation theory for the total Hamiltonian.

We now turn to perturbation theory. The term �V in the
Hamiltonian, representing the coupling on the bonds, breaks
the degeneracy of the ground-state space; however, as we
will see, it only does so at a fourth-order perturbation in � /g.
Let �L be the projection onto the ground-state space of the
unperturbed Hamiltonian gHS, i.e., onto the logical space. It
is straightforward to show that �LV�L=0, and thus there is
no first-order correction to the energies. It is also straightfor-
ward to show that

�LV2�L = 2 � �number of bonds� = 4NS�L. �6�

�This constant arises from the fact that each Pauli term in V
squares to the identity.� Thus, there is a constant second-
order correction to the ground-state energy—a shift—given
by

�2E0
�2� =

4NS�2

E0
�0� − E1

�0� = − NS
�2

g
. �7�

There is no third-order correction to the ground-state energy,
following from the fact that �LV3�L=0. Finally, at fourth
order, the degeneracy is broken. To calculate the correction

FIG. 1. �Color online� Schematic of the spin lattice, with cou-
plings. Solid lines represent an Ising-type interaction, as in the
Hamiltonian of Eq. �3�. The dashed lines represent a coupling as in
the Hamiltonian of Eq. �4�. Groups of four physical qubits bound by
the Ising interaction, as within the circle, form a site—a logical
qubit.
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to the energies, we will make use of two convenient proper-
ties of our encoding. First, we note that the product of all
four �x operators on a single site �one on each physical qu-
bit� results in a logical X operator

X� = �0L��1L� + �1L��0L� = ���,1�
x ���,2�

x ���,3�
x ���,4�

x . �8�

Second, we note that a single �z operator acting on any of
the four qubits at a site is equivalent to a logical Z at that site.
With these facts, we find that

�LV4�L − ��LV2�L�2 = 4! 	
��S

K�, �9�

where

K� � X� �
�
�

Z� �10�

is a stabilizer of the logical cluster state. In this expression,
X� is a logical X acting at the site �, and Z� is a logical Z
acting on a site that is connected to � by a bond.

The operator �LV4�L is already diagonal in our chosen
basis �the states of the form �C�� ,� , . . . 
��. The fourth-order
energy corrections for these states are determined by their
eigenvalues, which are straightforward to calculate using the
properties of stabilizers. First, we note that the cluster state
�C� is an eigenstate of all stabilizers in the sum Eq. �9� with
eigenvalue +1, and thus the fourth-order correction for the
energy associated with this state is

�4E�C�
�4� =

4! NS�4

�E0
�0� − E1

�0��2�E0
�0� − E2

�0��
= − NS

3

16

�4

g3 . �11�

Next, consider a state �C��
�=Z� �C�, a cluster state with a
single Z error at the site �. This state is also an eigenstate of
all stabilizers in the sum Eq. �9� with eigenvalue +1 except
for the stabilizer K� which has eigenvalue −1. �This result is
due to the fact that X� and Z� anticommute.� Thus, to fourth
order, the spectrum of the Hamiltonian H=gHS+�V is as
follows. The component of the ground state in HL is the
cluster state �C�, with energy

E0 = − 4gNS − NS
�2

g
− NS

3

16

�4

g3 . �12�

The nth excited space is �NS

n � dimensional. The component

of this space in HL is spanned by states obtained from �C�
with n logical Z errors. These states have energy En=E0
+n	, up to n=NS, where

	 � E1 − E0 =
3

16

�4

g3 . �13�

�Above n=NS, there is a large gap of order 6g to the first
manifold of illogical states, which are those that include a
single physical �x error.� We note that the gap 	 is indepen-
dent of the size of the lattice. Intuitively, then, one may as-
sociate logical Z errors on any site with a fixed energy
	=3�4 / �16g3� each.

Although the ground-state energy degeneracy of the un-
perturbed Hamiltonian gHS is not broken until fourth order,

the lowest-energy eigenstates are corrected even at first
order as they will include terms from the higher-energy
eigenspaces of gHS. A simple counting of the states involved,
and the magnitude of the components, will allow us to cal-
culate the overlap of the first-order-corrected ground state
with the exact cluster state. It will also allow for a simple
determination of an error probability per bond associated
with this correction.

At first order, a state in the ground-state space �we will
use �C� as an example, but this calculation holds for any
state� will be corrected to include components from states �
�
in the first excited space of gHS whenever �
 �V �C� is non-
zero. We note that every term of the form �x � �z or �z

� �x from V acting across a bond will connect �C� to a
unique excited state, all of which form an orthogonal set;
thus, summing over all the terms in V, there will be 4NS
orthogonal states, denoted �k�, for which �k �V �C��0. The
first-order-corrected ground state �E0� is

�E0� = �1 +
NS

4

�2

g2�−1/2��C� −
�

4g
	
k=1

4NS

�k�� . �14�

We now consider how measurement-based quantum com-
putation can proceed using such a state. First, we need to
verify that single-qubit measurements alone suffice to per-
form universal quantum computation with an encoded cluster
state. The logical cluster qubits consist of four physical qu-
bits, and cluster-state computation requires making projec-
tive measurements on the logical qubits onto entangled su-
perpositions of physical qubits the form �0L�±e−i� �1L�. By
performing separate projective measurements on three of the
four physical qubits in the �± � basis, the logical qubit is
decoded into the state of the fourth physical qubit with at
worst the addition of a known Z error if an odd number of
�−� outcomes are obtained �11,20�. Such errors are easily
compensated for by adapting future measurement bases in
the manner standard for cluster-state computing.

Next, consider the effect of the perturbative correction to
the ground state of Eq. �14� in terms of its usefulness for
quantum computation. Clearly, replacing the superposition of
Eq. �14� with an incoherent mixture of the state �C� and the
states �k� can only decrease the usefulness of the ground state
for quantum computation. With this replacement, the result-
ing density matrix describing the ground state is a mixture of
cluster states �C� with errors �x � �z �and �z � �x� applied to
all bonds independently with probability p��2 / �4g�2. Note
that this probability is independent of the size of the lattice,
and thus these errors can be viewed as independent errors in
the bonds between sites.

These errors take the system outside of the logical Hilbert
space, because �x on, say, the first physical qubit on a site
maps logical states to states spanned by �1000� and �0111�.
However, these errors manifest themselves in the single-
logical-qubit measurements described above as effective
Pauli errors in the measurement. Thus, standard techniques
for fault tolerance in cluster-state quantum computation
�12–14� can be applied, provided the error probability p
��2 / �4g�2 is below some appropriate threshold.

Errors can also arise due to the finite energy gap 	

SIMPLE NEAREST-NEIGHBOR TWO-BODY… PHYSICAL REVIEW A 74, 040302�R� �2006�

RAPID COMMUNICATIONS

040302-3



=3�4 / �16g3�. As we are using perturbation theory, we re-
quire ��g for the ground state to closely approximate the
encoded cluster state. However, we emphasize that the en-
ergy scale � need only be small relative to g, and not in any
absolute sense. The gap 	 is in turn small relative to �.
Consideration of the relative magnitudes of these energy
scales, in conjunction with determining how cold such a lat-
tice can be maintained, will determine whether this gap is
sufficiently large to allow for quantum computation. Specifi-
cally, consider the effects of using a finite-temperature ther-
mal state of this Hamiltonian. As investigated by �15�, the
thermal state will be a mixture of cluster states with logical Z
errors occurring independently at each site with probability
p= �1+exp�	 /kBT��−1. The critical temperature above which
the cluster state becomes too noisy to be useful for quantum
computation scales as kBTcrit
	 �4,15�, which in this case is
kBTcrit
�� /g�3�. Thus, the critical temperature is determined
by the energy scale � and the order of perturbation theory at
which the degeneracy is broken. �For the square lattice, the
latter is four, leading to the �� /g�3 dependence.�

In relation to this point, we note that similar techniques to
those presented here can be used to construct systems for any
type of cluster state, not just on a square lattice, and a large
number of other quantum states on a graph. This result fol-
lows directly from the origins of our method in the PEPS
formalism. To generalize the above method, the number of
physical qubits at each site must equal the number of bonds,
i.e., the number of other sites that are directly connected to
that site. For example, line or ring clusters can be created
using only two physical qubits per site, a hexagonal lattice
cluster state using three per site, and a cubic lattice cluster
state using six per site. We note that the number of qubits per
site determines the order in perturbation theory at which the
ground-state degeneracy is broken. Continuing our argument

from the previous paragraph, it is therefore interesting to
consider the use of a hexagonal lattice cluster state of this
form. Such a cluster state is a universal resource for quantum
computation �21�, and as the degeneracy is broken at third
order, the energy gap �and thus the critical temperature� be-
haves as 	hex
�3 /g2. This larger energy gap, as compared
with the square lattice scaling of 	sq
�4 /g3, may make this
state easier to prepare and maintain.

It is worthwhile to consider whether alternative local two-
body Hamiltonians also yield an encoded cluster state as
their ground state, or yield a noncluster state that is nonethe-
less universal for quantum computation. For example, using
a Heisenberg antiferromagnetic coupling on bonds and alter-
nating sites between ZZ-type and XX-type Ising interactions
leads to a similar result as above, where the ground state
approximates an encoded cluster state. �To obtain this result,
the choice of logical basis at each site must be alternated.� In
the dynamical approach to cluster-state creation, it has been
shown that the Heisenberg interaction can be used instead of
the Ising interaction �16�, and logical encodings for this pur-
pose have been investigated �17�. A future line of research
would be to investigate if lattices with entirely Heisenberg
interactions �or other “natural” interactions on sites and
bonds� can yield a computationally useful state as the ground
state. We note that our lattice of Fig. 1, and the hexagonal
lattice with three physical qubits per site, have identical
structure to the CaVO-type lattices and star lattices, respec-
tively, for which the Heisenberg antiferromagnetic coupling
can lead to exotic quantum states �9,18,19�.
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