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A method is developed to calculate all excitations of trapped gases using hydrodynamics at zero temperature
for any equation of state �=��n� and for any trapping potential. It is shown that a natural scalar product can
be defined for the mode functions, by which the wave operator is Hermitian and the mode functions are
orthogonal. It is also shown that the Kohn modes are exact for harmonic trapping in the hydrodynamic theory.
Excitations for fermions are calculated in the Bardeen-Cooper-Schrieffer–Bose-Einstein condensation transi-
tion region using the equation of state of the mean-field Leggett model for isotropic harmonic trap potential.
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I. INTRODUCTION

Several experiments on trapped ultracold gases probed in
the past decade the collective excitations of atomic gases.
Earlier measurements on bosons �1,2� and more recent mea-
surements on fermions �3,4� near Feshbach resonances can
be explained rather satisfactorily using hydrodynamics at
zero temperature. In his seminal paper �5� Stringari applied
first hydrodynamics for trapped bosons undergoing Bose-
Einstein condensation. His predictions were confirmed by
experiments �1,2�. Later, using the same approach, he pre-
dicted �6� also the qualitative behavior of low-lying modes
for fermions in the whole crossover region from a BCS-type
superfluid Fermi gas to a molecular Bose-Einstein condensa-
tion �BEC� �7–9�. Now, several recent theoretical papers ap-
peared in the literature �10–16� using hydrodynamic theory
to better explain the measurements on the BCS-BEC transi-
tion. In general, no exact solution to the hydrodynamic equa-
tions are known, except when the equation of state has the
polytropic form ��n��n� �11�.

The hydrodynamic approach leads to a wave equation for
the density oscillations. In principle, this wave equation can
be solved for a single oscillating mode if the boundary con-
ditions for the density oscillations are known. Bulgac et al.
�13� has written the eigenvalue equation for a single mode in
such a way that the two sides were Hermitian, but did not
address the question of the function space to which all the
excitations should belong. Here we use a different approach.
For a general equation of state �=��n� it is usually very
difficult to prescribe appropriate boundary conditions at the
surface of the gas. There are a few examples where this
problem is circumvented using some ansätze on the spatial
forms of the excitations �12,15�. Here we shall introduce a
natural scalar product, by which the wave operator itself is
Hermitian and the mode functions are square integrable
functions. The scalar product we shall use automatically en-
sures particle conservation. After calculating the matrix ele-
ments of the wave operator with the natural scalar product
the eigenvalues give the squared frequencies of the excita-
tions. We shall demonstrate the procedure for the mean-field
model of the BCS-BEC transition for isotropic trap poten-
tials. Finite-temperature effects �16,17� are briefly discussed
in Sec. IV.

II. THEORY

In hydrodynamic theory for trapped gases at zero tem-
perature, density oscillations are given by the continuity
equation and the Euler equation
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where u is the velocity field, n is the density, t is the time, P
is the pressure, m is the particle mass, and V is the external
trapping potential.

Knowing the equation of state �=��n� at zero tempera-
ture in the corresponding homogeneous system the equilib-
rium density in the trapped case can be determined from the
local chemical potential

� = ��r� � �„n0�r�… = �0 − V�r� , �3�

where �0 is the overall constant chemical potential. For con-
fining potentials the solution of this equation for positive
n0�r� supplies an equilibrium density, which has a finite sup-
port with a well-defined boundary. Typically, n0 decreases to
zero by approaching the boundary. Using the thermodynamic
identity
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valid also at T=0, the gradient of Eq. �3� gives
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At zero temperature A0�r�=mc�r�2, where c�r� is the local
speed of sound. In mechanical equilibrium, the equilibrium
pressure P0 must satisfy

�P0�r� = − n0�r� � V�r� , �6�

otherwise the right-hand side of Eq. �2� will not vanish for
u=0 �Eq. �6� is the local form of the Archimedes law for a
general external potential�. Close to equilibrium, u and
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�n�r , t�=n�r , t�−n0�r� are small, and P can be expanded to
first order in �n as

P�r,t� = P0�r� + � �P

�n
�

0
�n�r,t� . �7�

Linearizing the continuity equation �1� and the Euler equa-
tion �2� in �n and u using Eqs. �5� and �6�, the linearized
hydrodynamic equations can be written as

��n

�t
+ � · �n0u� = 0, �8�

�u

�t
= − �� A0

n0m
�n	 . �9�

Let us introduce a new field by

��r,t� =
A0�r�
n0�r�

�n�r,t� , �10�

where � has the same support as n0, A0, and �n. From now
on, we allow complex field � �which is more convenient for
problems, where angular momentum is conserved�. Eliminat-
ing u from Eqs. �8� and �9� gives a wave equation �t

2�

+ Ĝ��=0, where

Ĝ� = −
A0�r�
n0�r�

· � ·
n0�r�

m
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The main advantage of the field � is that its wave operator

Ĝ� is manifestly Hermitian �19� with respect to the scalar
product

��1��2 = �
n0�r��0

d3r�1
*�r��2�r� . �12�

The scalar product �12� is trivially the correct one for a ho-
mogeneous system with periodic boundary conditions. It was
used for a weakly interacting trapped Bose gas �20�, where
��n��n. The same idea of finding a proper scalar product for
eigenmodes of a trapped, noninteracting Bose or Fermi gas
at finite temperature using the hydrodynamic approach was
applied in Ref. �21�. A single eigenmode �i�r , t�=sin��it
+	0��i�r� fulfills

�i
2�i�r� = Ĝ��i�r� . �13�

Solutions to Eq. �13� can be chosen to be orthonormal as

�ij = �
n0�r��0

d3r�i
*�r�� j�r� . �14�

�0�r�=const

n0�r� /A0�r� is always a formal solution of
Eq. �13� with �0=0. An important restriction for the density
mode �ni is particle conservation �d3r�ni�r , t�=0. Equation
�10� implies that �ni=�0�i, thus the orthogonality relation
�14� shows that all the modes with i�0 are automatically
particle conserving and the mode �0 should be canceled
from the solutions.

Taking a complete orthonormal basis, i.e., �i,j = ��i �� j,
the squared excitation frequencies �2 can be obtained from

the eigenvalues of the matrix Gi,j = ��i�Ĝ��� j. The matrix
elements require the knowledge or the numerical evaluation
of spatial derivatives of the basis functions �19�. Usually this
causes big numerical errors because the high-lying modes are
rapidly oscillating functions. In practice, it is much better to
apply the spatial derivatives to the �spatially varying� coeffi-
cients of the wave equation, which are usually not oscillating
too much.

The wave operator �11� has the structure Ĝ�

=−R ·� ·Q ·� ·R. If there exists a similar system for which
the boundary is the same and the wave operator also has the

structure Ĝ0=−R0 ·�Q0 ·�R0 but with known spectra and
eigenfunctions

Ĝ0�i = �i
�0��i, �15�

then one can eliminate the unwanted spatial derivatives of
the basis functions in the matrix elements if the basis is given
by �i �i=0,1 , . . . �. Let us introduce  and � by

 = �r� = Q/Q0, � = ��r� = R/R0, �16�

then the matrix elements can be written as

Gi,j =� d3r�i
*�r�� j�r�Gi,j�r� , �17�

where
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�i

�0� + � j
�0�

2
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2Q0�� · ���� · ��

+
1

2
R0

2 � �Q0�2���� . �18�

For an isotropic harmonic-trapping potential V�r�
=m�0

2r2 /2 and for any equation of state �=��n� a whole
series of exact solutions of the wave equation can be given.
If ��r� is chosen to be

��r� = const 

n0�r�
A0�r�

rlYl
m��,	�, l � 0, �19�

then this mode function fulfills the wave equation with ei-
genvalue �2=�0

2l. The three l=1 modes are the Kohn modes
�see Refs. �13,16�� for isotropic trapping.

III. NUMERICAL RESULTS

As a specific, nontrivial model let us consider the mean-
field model of Leggett �7� for the BCS-BEC transition. The
Leggett model is fixed in homogeneous systems by the gap
equation

�
k

1

2
� 1

Ek
−

1

�k
� = −

m

4��2a
�20�

and by the number equation
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N = �
k
�1 −

�k − �

Ek
� , �21�

where Ek=
��k−��2+�2, �k=�2k2 / �2m�, � is the pairing
gap, and a is the s-wave scattering length. The equation of
state �=��n� is implicitly given by the model. This model
captures the essential features of the BCS-BEC transition.
However, recent Monte Carlo data show �15� that there are
corrections to the mean-field results, which should be taken
into account for the equation of state, especially close to
unitarity �i.e., around the a=� point�. Here we study the
above model for simplicity. In the trapped case we use the
��n� function taken from the model and solve Eq. �3� for the
density profile keeping N=�d3r n�r� to be fixed. The equi-
librium pressure for any trap potential V�r� can be calculated
from the local form of the Archimedes law �Eq. �6��. From
the pressure and the density the calculation of A0�r� with the
help of Eq. �5� is straightforward. The details of the full
calculation for the Leggett model will be published else-
where �22�.

For isotropic harmonic trapping there is a dimensionless
coupling parameter: �=d / �aN1/6�, where d=
� /m�0 is the
oscillator length. The spectra depends only on �. In three
cases the spectra is exactly known �6,10,11� because the
equation of state has a polytropic form: ��n�. These par-
ticular values are �=−� �BCS limit�, �=0 �unitarity limit�,
and �=� �BEC limit�. In these cases all the mode functions
can be constructed exactly �10�, even in the nonisotropic
case. �The methods of Refs. �20,23� can be easily employed
to the polytropic equation of state.� We used the �=−� mode
functions �24� on the BCS side and the �=� mode functions
�11� on the BEC side as basis functions. Our numerical re-
sults for different angular momentum l can be seen on Fig. 1.
Arrows on both sides show the limiting well-known collec-
tive oscillation frequencies �6�. In Fig. 2 the behavior of the

lowest l=0 quadrupole mode can be seen as a function of �.
This mode is the lowest �-dependent mode in Fig. 1. The
scaling ansatz approach �12� gives quite a good result for this
particular mode. On the scale of Fig. 2 the two curves would
be practically indistinguishable.

In order to give a quantitative measure about the quality
of the latter approach we compare in Fig. 3 our excitation
frequencies with those given by the scaling ansatz. In the
isotropic harmonic-trapping-potential case �sc

2 is given
�12,15� by �sc

2 /�0
2=9�n�� /�n / �2�V�−1, where the average

of a quantity like V is taken as �V=�d3rV�r�n0�r�. From the
figure it is clearly seen that the scaling ansatz is exact at �
=0, ±�, but between these values it is not. However, the
differences in the isotropic case are so small that they are
much less than the experimental resolution. In Ref. �15� the
scaling ansatz is further improved in several ways �see Fig. 2
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FIG. 1. Excitation frequencies �=� /�0 of the Leggett model as
a function of �=d / �aN1/6� for isotropic harmonic trapping. Differ-
ent curves belong to different l �l=0, full line; l=1, dashed line; l
=2, dotted line; l=3, dashed-dotted line�. Arrows on the left �right�
denote the excitations for a noninteracting Fermi gas �for a weakly
interacting Bose gas�.
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FIG. 2. The lowest l=0 excitation frequency �=� /�0 as a
function of �=d / �aN1/6� on both sides of the BCS-BEC transition
for isotropic harmonic trapping. The arrow on the left �right� de-
notes the excitation for a noninteracting Fermi gas �for a weakly
interacting Bose gas�.
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FIG. 3. Comparison of the exact frequencies and those given by
the scaling ansatz as a function of �=d / �aN1/6� for the lowest l
=0 monopole mode. ��2 is defined as ��2= ��2−�sc

2 � /�0
2 �see the

text for �sc
2 �.
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of Ref. �15��. We expect that a similar comparison with those
modes gives much smaller values for the same differences.

We have preliminary data �22� for the excitation frequen-
cies for the experimentally relevant axially symmetric har-
monic trapping as well. Once again the scaling ansatz differs
a little for the axial quadrupole mode for a general interme-
diate coupling �. For such large anisotropies as in Refs. �3,4�
however, the deviation ��2 for the radial mode is much big-
ger than in the isotropic case.

IV. DISCUSSION

Hydrodynamical approach is a long-wavelength approxi-
mation and gives good results for the elementary excitations
at low frequency. Here we gave a straightforward method on
how to solve the hydrodynamic equations at zero tempera-
ture in the trapped case if the equation of state is known. We
introduced a natural scalar product for the transformed wave
operator by which the operator is Hermitian. Collective ex-
citations by our method can be found by the diagonalization
of the matrix of the wave operator on some basis. We can
predict the behavior of the excitations also for those modes
for which no scaling ansatz is known. The method is not

limited to a particular trap potential �isotropic or not�, nor a
given mode. There is no additional approximation; the
method calculates the �numerically� exact modes given by
the hydrodynamic theory at zero temperature. Extension of
this work to finite temperature can be possible based on the
results of Taylor and Griffin �16�. In that paper the coupling
effects of the normal and superfluid part of the gas is dis-
cussed concentrating on nondissipative dynamics. We specu-
late that from the Lagrangian formalism of Ref. �16� one can
also derive a multidimensional scalar product as here. Vis-
cous effects, which can explain satisfactorily the experimen-
tally observed dampings, are difficult to incorporate. The first
step in that direction is the approach of Bruun and Smith �17�
based on the Boltzmann equation, or that of Nikuni and Grif-
fin �18�.
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��1�Ĝ���2=�d3r�n0 /m����1
*
A0 /n0� · ���2


A0 /n0�
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