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The Margolus-Levitin lower bound on the minimal time required for a state to be transformed into an
orthogonal state is generalized. It is shown that for some initial states the new bound is stronger than the
Margolus-Levitin one.
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A useful measure of the evolution speed of quantum sys-
tems is the minimal time t1 required for a state to be trans-
formed into an orthogonal state. There exist two basic esti-
mates of t1.

First, t1 obeys

t1 �
��

2�E
�1�

where �E is the energy dispersion of the initial state. Equa-
tion �1� follows easily from the inequality derived by Man-
delstam and Tamm �1� and was studied by many authors
�2–7�.

The second estimate was derived a few years ago by Mar-
golus and Levitin �8�. It is valid for Hamiltonians bounded
from below and reads

t1 �
��

2�E − E0�
; �2�

here � � denotes the initial-state expectation value while E0 is
the ground-state energy.

Both Eqs. �1� and �2� can be derived using similar argu-
ments �8,9�. By virtue of the spectral theorem one writes

���e−itH/���� =� e−itE/�d���PE���

=� cos	 tE

�

d���PE���

− i� sin	 tE

�

d���PE��� �3�

where PE is the spectral measure which enters the spectral
decomposition of H, H=�E dPE. Therefore, denoting
�� �A �����A�, one gets


cos	 t1H

�

� = 0 = 
sin	 t1H

�

� . �4�

Now, consider an inequality of the form

f�x� � A sin x + B cos x �5�

which is assumed to hold for all x�0 �actually, in order to
prove �1� one requires �5� to hold for all x�. Denoting by E0
the lower energy bound one finds from Eq. �5�


 f	 t�H − E0�
�


� � A
sin	 t�H − E0�
�


�
+ B
cos	 t�H − E0�

�

� �6�

provided ��� belongs to the domain of f(t�H−E0� /�). In-
deed, Eq. �6� follows easily from the inequality �5� by noting
that the expectation value of the non-negative function is
non-negative:


 f	 t�H − E0�
�


 − A sin	 t�H − E0�
�


 − B cos	 t�H − E0�
�


�
=� � f	 t�E − E0�

�

 − A sin	 t�E − E0�

�



− B cos	 t�E − E0�
�


�d���PE��� � 0. �7�

In particular, Eqs. �4� and �6� imply that


 f	 t1�H − E0�
�


� � 0 �8�

which imposes some restrictions on t1.
In order to derive a new bound on t1 we use the following

inequality:

x� −
��

2
+

��

2
cos x + ���−1 sin x � 0 �9�

which holds for all x�0 and ��0. Note that Eq. �9� pro-
vides a generalization of the inequality used in Ref. �8�; it
reduces to the latter for �=1. By virtue of Eq. �8�, Eq. �9�
leads to the following bound on t1:

t1 �
��

21/���E − E0���1/� , � � 0 �10�

provided ��� belongs to the domain of �H−E0��. Equation
�10� provides a generalization of the Margolus-Levitin bound
which is attained for �=1.

The estimate �10� is for fixed ��1 neither weaker nor
stronger than the Margolus-Levitin one. Indeed, although the
convexity �concavity� of x→x� for ��1 ���1� allows us
to claim that �E��1/�� �E���E��1/�	 �E��; the additional fac-
tor 21/� makes a priori estimate impossible. Obviously, one
could take the supremum over all ��0 of the right-hand
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side of �10�. However, this is only possible for ��� belonging
to the domains of all �H−E0�� ,��0.

In order to show that, in some cases, the inequality �10�
gives a much better bound for some ��1 one can use a
simple example considered in Ref. �8�. Let us take the initial
state of the form

��� =
a
�2

��0� + �
�� +
b
�2

��n
� + ��n + 1�
��; �11�

the normalization condition implies �a�2+ �b�2=1.
One can easily check that

t1 =
��



. �12�

Computing the relevant expectation value one obtains

21/���E − E0���1/� = �1 + �b�2�n� + �n + 1�� − 1��1/�
 .

�13�

Let us choose b=� /�2�4n with ��0 independent of n. Then,
for �= 1

2 , Eq. �10� gives in the limit of large n��n�1�

t1 �
��


�1 + ���2�2 . �14�

On the other hand, if ���2�n�1, Eq. �2� becomes

t1 �
��


���2�n
. �15�

Also Eq. �1� gives in this limit the much weaker bound

t1 �
�2��


����4 n3
. �16�

We see that for the above state our bound is O�1� while �1�
and �2� are O�1/�4n3� and O�1/�n�, respectively. Therefore,
the new bound may be much better even for such very
simple systems.

The above example may seem quite artificial. However, it
is generic in the sense that it allows us to understand the
status of bounds based on energy distribution moments. In
fact, let us consider the following generalization of our ex-
ample. We assume that the energy spectrum �S� consists of a
number of pairs of levels differing by the same energy
amount 
: S�H�= �E0=0 ,
 ,E1 ,E1+
 ,E2 ,E2+
 , . . . �. Con-
sider the state for which both members of any “doublet”
enter with the same amplitude, i.e.,

��� = �
n

an

�2
��En� + �En + 
��, �

n

�an�2 = 1. �17�

Obviously, the orthogonalization time for this state is given
by Eq. �12�, irrespectively of the values of an and En, n
=0,1 ,2 , . . . . On the other hand

21/���E − E0���1/� = 	�
n

�an�2�En
� + �En + 
���
1/�

. �18�

It is clearly seen from the above equation that our bound
cannot be optimal except for a small number of states �see
below�. However, the advantage of it is that we have a free
parameter � which can be manipulated to get the best pos-
sible estimate for a known spectrum. As we have shown
explicitly above an appropriate choice of � can result in a
much better bound than the Margolus-Levitin one.

The above reasoning also shows clearly that there exists
no optimal bound based on energy distribution only. The
relevant moments generically depend strongly on the values
of Ek and ak which, in turn, are completely irrelevant as far
as the orthogonalization time is concerned. Therefore, it is
desirable to have an a priori estimate that depends on a free
parameter to be adjusted to “minimalize” the role of Ek and
ak.

Let us find the intelligent states saturating �10�. To this
end let us note that the left-hand side of Eq. �9� vanishes only
for x=0 and �. Therefore, only two-level systems can satu-
rate �10�. One easily finds that they must be of the form

��� = c1�E0� + c2�E1�, �c1� = �c2� =
1
�2

. �19�

Finally, let us sketch how one can generalize our result to
the mixed-state case. This can be done according to the lines
of Ref. �10�. To this end, given two density matrices, one
defines the fidelity

F�
,
�� = �Tr��

��
�2. �20�

Given any Hamiltonian H and an initial state 
,


 = �
n

pn��n���n� , �21�

we want to estimate the value of F(
 ,
�t�). To this end we
consider some purification ��� of 
,

��� = �
n

�pn��n���n� . �22�

Assume that all states of an ancillary system evolve trivially
in time. Then the total Hamiltonian governing the time evo-
lution of ��� equals H � I. Therefore, all energy distribution
moments with respect to ��� coincide with those with respect
to 
. From Uhlmann’s theorem �11� the following inequality
holds:

F„
,
�t�… � ������t���2, �23�

which allows us to extend to the mixed-state case any bound
based on energy distribution moments.
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