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We study the back action of a single-photon detector on the electromagnetic field upon a photodetection by
considering a microscopic model in which the detector is constituted of a sensor and an amplification mecha-
nism. Using the quantum trajectories approach we determine the quantum jump superoperator �QJS� that
describes the action of the detector on the field state immediately after the photocount. The resulting QJS
consists of two parts: the bright-count term, representing the real photoabsorptions, and the dark-count term,
representing the amplification of intrinsic excitations inside the detector. First we compare our results for the
counting rates to experimental data, showing good agreement. Then we point out that by modifying the field
frequency one can engineer the form of the QJS, obtaining the QJS’s proposed previously in an ad hoc manner.
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I. INTRODUCTION

Single photon detectors �SPD’s� represent the ultimate
sensitivity limit for quantum photodetectors, and many
quantum-optics and quantum-information applications are
based on its existence �1�. Nowadays, there are several avail-
able types of SPD’s sensitive to different light wavelengths
and with a varying range of quantum efficiencies �2–12�.
Among many applications, SPD’s are the main ingredient in
the situations where one measures the electromagnetic �EM�
field with few photons enclosed in a cavity, the photons be-
ing counted one by one. A theoretical treatment of such a
scheme, known as the continuous photodetection model
�CPM�, was proposed by Srinivas and Davies �SD� in 1981
�13� and has found many applications since then �14–16�.

In the SD scheme, in each infinitesimal time interval the
photodetector has only two possible outcomes: either a
single photon is detected �“click” of the detector�, or it is not.
In both cases the state of the field changes as time goes on:
for a click, the field loses one photon and suffers a quantum
jump; for no click the field state is modified continuously
and nonunitarily due to the monitoring of the detector
�17,18�. Thus, besides allowing determination of the statisti-
cal properties of the EM field through photocount statistics,
the detector also exerts a back action on the field by which
the outcome of the measurement modifies the cavity field
state �19�. This phenomenon was widely used for different
theoretical proposals, e.g., for changing the field statistics
from sub-Poissonian to super-Poissonian �20�, controlling
the entanglement between two field modes �15�, or inducing
spin squeezing in a cavity �16�. However, no experimental
verification of the CPM has been made until now, though
nowadays it is quite realistic to make simple photocounting
experiments for testing the theory, provided one takes into
account inevitable losses present in the experiment and in-
cludes them into the model �21,22�.

Here we study how the field state after the click depends
on the detector’s parameters. It is worth considering how
SPD’s actually operate: despite technical and structural dif-
ferences associated with every kind of detector, the photode-
tection process is based on the same principle: the “sensor”
initially set in a “ground state” interacts with the field and is
likely to absorb a photon, making a transition to the “excited
state.” After some time the sensor decays back to the ground
state, emitting a photoelectron that triggers the “amplifica-
tion mechanism” �AM� of the SPD �e.g., by an avalanche
process�, producing a pulse of macroscopic electric current
or voltage, which originates a registered click of the detector,
representing one count. Additionally, in real photodetectors
there is a phenomenon called dark counts: photoelectrons
originated due to the intrinsic excitations within the AM, and
not due to the absorption of one photon from the field. The
influence of dark counts on the results of various experi-
ments was considered in �23–27�, and different schemes of
calculating dark-count probability and single-photon quan-
tum efficiency were used in �28–30�.

In the CPM, all the results concerning the photodetection
process are described by means of a single entity character-
izing the photodetector—the quantum jump superoperator

�QJS� Ĵ, which represents the back action of the detector on
the field upon a single photodetection. Immediately after the
photodetection an initial field state described by the statisti-

cal operator � changes abruptly to ��= Ĵ� /Tr�Ĵ��, and the
probability for registering one count during the time interval

�t , t+�t� is Tr�Ĵ���t, where �t is the time resolution of the
detector. It is supposed that �t is small compared to other
characteristic time scales and that the QJS is time indepen-
dent, in an ideal case being given by

Ĵ� � �OÔ�Ô†, �1�

where Ô is a lowering operator responsible for subtracting
one photon from the field and �O is roughly the counting rate
�18� with dimension �time�−1.

Srinivas and Davies proposed ad hoc Ô= â, where â is the
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bosonic lowering operator. In spite of having some inconsis-
tencies as noted by the authors themselves, this QJS has been
widely used since then. Recently, another QJS defined by

Ô= Ê−��n̂+1�−1/2â �where n̂� â†â� was proposed, also ad
hoc, in �31,32�—we named it the E model for simplicity. The
differences between these two QJS’s were studied in �18�,
showing that the inconsistencies of the SD model are indeed
eliminated.

In �33� we proposed a microscopic model �some other
models were considered in �34,35�� for the field-detector in-
teraction, where we showed that both QJS’s proposed ad hoc
are particular cases that can be derived from a general time-
dependent transition superoperator. However, there we con-
sidered a simplified model of the detector at zero tempera-
ture, by assuming that there were no intrinsic excitations
inside the photodetector and that the sensor was at exact
resonance with the field mode. Here we relax these condi-
tions, being less stringent, we take into account the effects
implied by a nonzero-temperature detector possessing intrin-
sic excitations and allow a detuning between the field and
sensor frequencies. Moreover, we attribute numerical values
to the model parameters in order to reproduce experimental
data both qualitatively and quantitatively. We show that the
dark counts appear naturally in our model, and comparing
the predicted counting rates and signal-to-noise ratio with
experimental data, we get good qualitative and quantitative
agreement. Furthermore, we demonstrate that the actual ex-
pression for the QJS should be incremented as �cf. Ref. �23��

Ĵ� = �OÔ�Ô† + �DD̂�D̂†, �2�

where �D is roughly the dark-count rate and the operator D̂
describes the back action of the detector on the field due to
dark counts. Finally, we point out that by simply modifying
the field frequency we are able to engineer the QJS, thus
obtaining either the SD model or the E model in specific
regimes.

The paper is organized as follows. In Sec. II we model the
sensor of the photodetector as a two-level system, according
to the well-known Jaynes-Cummings model; taking into ac-
count the effects of the sensor-AM coupling, we obtain an
explicit form of the transition superoperator, from which we
derive a general expression for the QJS. In Sec. III we com-
pare our results for counting rates with experimental data and
obtain specific expressions for the QJS’s for different field
wavelengths. Section IV contains the summary and
conclusions.

II. MODELING THE PHOTODETECTOR

We assume that the SPD is constituted of two parts: the
sensor and the AM. The sensor is modeled as a two-level
quantum object with resonant frequency �0, interacting with
the monomodal EM field with frequency � �for the multimo-
dal field one should just consider a frequency distribution�. It
has a ground and an excited state �g� and �e� �before and after
the photoabsorption�, so we describe it by the usual Jaynes-
Cummings Hamiltonian �36� �for its applicability see, e.g.,
�37,38� and references therein�

H0 =
1

2
�0�0 + �n̂ + gâ�+ + g*â†�−, �3�

where g is the sensor-field coupling constant, and the sensor
operators are �0= �e��e�− �g��g�, �+= �e��g�, and �−= �g��e�.
We assume g to be real, since only its absolute value enters
the final expressions.

Upon absorbing a photon the sensor initially in the ground
state jumps to the excited state and some time later it decays
back, emitting a photoelectron into the AM. The AM is a
complex macroscopic structure that depends on the type of
SPD; it amplifies the photoelectron and originates some ob-
servable macroscopic effect, giving rise to the clicks of the
detector. In order to describe general features of the AM
independent of the type of SPD, we model it as a thermal
reservoir with a mean intrinsic excitation number n̄. Thus,
the whole system field-SPD is described by the effective
standard master equation �39�

�̇T =
1

i
�H0,�T� − �n̄��−�+�T − 2�+�T�− + �T�−�+�

− ��n̄ + 1���+�−�T − 2�−�T�+ + �T�+�−� , �4�

where � is the sensor-AM coupling constant �we do not con-
sider the field damping due to cavity losses�.

According to the CPM the trace of the QJS gives the
probability density p�t� for photodetection, i.e., emission of a
photoelectron at time t, given that at time t=0 the detector-
field system was in the state

�0 = �g��g� � � , �5�

where the field state is �. Microscopically this means that in
the time interval �0, t� the sensor has undergone a transition
�g�→ �e� due to the absorption of one photon, and p�t��t is
the probability for decaying back to the ground state during
the time interval �t , t+�t�, emitting a photoelectron that will
later originate one click. Following the quantum trajectories
approach �39�, p�t� is calculated from the master equation �4�
by identifying the sensor decay superoperator

R̂�0 = 2��n̄ + 1��−�0�+ �6�

describing the instantaneous �e�→ �g� decay and the conse-
quent emission of a photoelectron. The no-decay superopera-

tor Ût�0=�U�t� describes the nonunitary evolution of the
field-SPD system from t=0 to t�0 without emission of pho-
toelectrons; �U�t� is the solution to the master equation �4�
without the decay term �6�:

d

dt
�U = − i�He�U − �UHe

†� + 2�n̄�+�U�−, �7�

where the effective non-Hermitian Hamiltonian is

He =
��0 − i��

2
�0 + �n̂ + gâ�+ + gâ†�− − i�	n̄ +

1

2

 . �8�

Thus the probability density for the observation of a photo-
count, or a click, at time t is equal to
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p�t� = TrF-D�R̂Ût�0� ,

where R̂Ût�0 represents the evolution of the field-SPD sys-
tem from initial state �0 at time t=0 to time t without any
decay of the sensor, and an instantaneous decay at the time t.
Moreover, taking the trace only of the detector variables, one
obtains the expression describing the action of the detector
on the field upon the click—a predecessor of the QJS that we
call the transition superoperator

�̂�t�� = TrD�R̂Ût�0� , �9�

from which the probability density for a count is p�t�
=Tr���t���.

Thus, for obtaining the transition superoperator one

should first determine the no-decay superoperator Ût and
then evaluate Eq. �9� using the initial state �5�. In order to
solve Eq. �7� we do the transformation

�U = Xt�̃UXt
†, �10�

where

Xt = exp�− iHet� , �11�

and obtain a simple equation for �̃U,

d

dt
�̃U = 2�n̄�̃+�̃U�̃−, �12�

�̃+ = X−t�+Xt, �̃− = �̃+
† , �13�

whose formal solution is

�̃U�t� = �0 + 2�n̄�
0

t

dt��̃+�t���̃U�t���̃−�t�� . �14�

Now one iterates Eq. �14� and obtains a power expansion in
terms of n̄, substitutes the result into Eq. �10�, and then
evaluates Eq. �9�, finally obtaining

�̂�t�� = 2bg�1 + n̄��
l=0

�

�2�n̄�l�̂l�t�� , �15�

where for l�0

�̂l�t�� = �
0

t

dt1 ¯ �
0

tl−1

dtl	̂l�	̂l
†, �16�

	̂l�t,t1, . . . ,tl� = �e�Xt�̃+�t1��̃+�t2� ¯ �̃+�tl��g� . �17�

For l=0 the integrals and the terms �̃+ should be dropped
out:

�̂0�t�� = 	̂0�	̂0
†, 	̂0�t� = �e�Xt�g� . �18�

After some algebraic manipulations �40,41� we get for
�11�

Xt = exp�− �t�n̄ + 1/2� − i�n̂t� 
 ��n̂+1�t��e��e� + �n̂�− t��g��g�

− ie−i�t/2Sn̂+1�t�â�+ − iei�t/2Sn̂�t�â†�−� , �19�

where

Cn̂�t� = cos��tBn̂/b�, Sn̂�t� = sin��tBn̂/b�/Bn̂, �20�

�n̂ = e−i�t/2�Cn̂�t� − i�Sn̂�t�� , �21�

Bn̂ = 
n̂ + �2, �22�

� = �q − ib�/2, q � ��0 − ��/g, b � �/g . �23�

As will be shown later, in realistic cases we need only the
first three terms of the expansion �15�, whose constituents
are found to be

	̂0 = − ie−�t�n̄+1/2�−i��n̂+1/2�tSn̂+1�t�â , �24�

	̂1 = e−�t�n̄+1/2�−i�n̂t�n̂+1�t − t1��n̂�− t1� , �25�

	̂2 = − ie−�t�n̄+1/2�−i��n̂−1/2�t�n̂+1�t − t1�


 Sn̂�t1 − t2��n̂−1�− t2�â†. �26�

Substituting these expressions into Eqs. �15�–�18�, the
transition superoperator turns out to be time dependent, con-
trary to the definition of a QJS. We proceed as in �33�, de-
fining the QJS as the time average of the transition superop-
erator over the time T �to be determined later� during which
the photoelectron is emitted with high probability:

Ĵ� �
1

T
�

0

T

dt�̂�t�� . �27�

Considering the weak coupling, � ,�0
� , �g�, under which
both the Jaynes-Cummings Hamiltonian �3� and the master
equation �4� are valid, and expressing the field density op-
erator in Fock basis as

� = �
m,n=0

�

�mn�m��n� , �28�

after the averaging in �27� the off-diagonal elements of Ĵ�
vanish due to rapid oscillations of the terms exp�±i�t�. This
means that the photodetection destroys the coherence of the
density matrix. This can be understood from the point of
view of information theory: information flows from the field-
sensor system to the AM, so decoherence is active; more-
over, since counting photons informs only about diagonal
elements, which are proportional to the number of photons,
nondiagonal elements can be completely ignored. Therefore,

from now on we shall treat only the diagonal elements of Ĵ�

in �27�. Applying the superoperators �̂l on the density matrix
as in �15�, after evaluating Eq. �27� one is left with

Ĵ� = �
n=0

�

�nn�nJn
�B��n − 1��n − 1� + Jn

�D��n��n� + �n + 1�Jn
�E��n + 1�


�n + 1� + ¯ � . �29�

After some lengthy but straightforward calculations one
obtains the following expression for the first term in �29�:
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Jn
�B� =

bg�1 + n̄�
�

Fn − Gn

�Bn�2
, �30�

Gn =
1

�1 + 2n̄�2 + �n
2 �1 + 2n̄ − exp�− ��1 + 2n̄��


 ��1 + 2n̄�cos���n� − �n sin���n��� , �31�

Fn = � �

2
+

1 − exp�− 2��1 + 2n̄��
4�1 + 2n̄�

if �n = ± �1 + 2n̄� ,

Gn��n → i�n� otherwise,
�
�32�

� � �T, �n �
2 Re�Bn�

b
, �n �

2 Im�Bn�
b

. �33�

Since expression �30� is too involved to be interpreted ana-
lytically, we shall treat it numerically, as well as ongoing
terms. In order to evaluate them we expand the time-
dependent functions �Cn and Sn, Eq. �20�� in terms of expo-
nentials and integrate the resulting expressions, obtaining for
the second term in �29� �here, for complex Bn defined by Eq.
�22��

Jn
�D� =

gn̄b2�1 + n̄�
�

�
j,k=1

4
WjWk

*

yj − yk
*�

l=1

2

�− 1�l1 − ei�l�

�l
, �34�

where

�1 = i�1 + 2n̄� + �� j − �k
*�/b ,

�2 = �1 + �yj − yk
*�/b ,

W1�2� = �1 − �/Bn+1��1 − �+ ��/Bn� ,

W3�4� = W1�2��Bn+1 → − Bn+1� ,

w1 = w2 = − w3 = − w4 = Bn+1,

y1 = − y4 = − �Bn+1 + Bn� ,

y2 = − y3 = Bn − Bn+1.

In the same manner one can obtain exactly all the further
terms, but we shall not write the resulting expressions here.

The QJS �29� contains an infinite number of terms, so
every time the detector emits a click, the field state � is
reduced to an incoherent mixture �due to the decoherence
process described above� of different states, each one with its
corresponding probability. Let us examine these terms more
closely. The first term, with coefficient Jn

�B�, takes out a pho-
ton from the field and modifies the relative weight of the
state components, so it represents a click preceded by a
photoabsorption—we call this event a bright count. The sec-
ond term, dependent on Jn

�D� and proportional to n̄ �quite
small as will be shown below�, does not subtract photons
from the field but only modifies the relative weight of the

state components—it represents the dark count, when the
detector emits a click due to the amplification of its intrinsic
excitations. All further terms in Eq. �29� are proportional to
n̄l, l�2; they describe emissions of several photons into the
field upon a click, so we call the first of these terms Jn

�E� the
emission term. We would like to stress again that all these
processes happen simultaneously with different probabilities
upon a click of the detector, so the postmeasurement state of
the field is a classical mixture of these events. We also note
that there are many different phenomena that give rise to
dark counts �5,12,28�; our model takes into account only
those of them that cause the transition of the sensor from the
ground to the excited state, and since the sensor state de-
pends on the sensor-field interaction, the dark counts modify
indirectly the relative weight between the field components,
thus depending on n. The other physical phenomena that do
not cause this transition should not in principle modify the
relation between the field components and should be ex-
pressed by a constant term equal to the corresponding dark
counting rate. We shall not consider these effects since we
assume that all the intrinsic excitations occur within the sen-
sor.

III. EXPERIMENTS AND QJS ENGINEERING

Now we shall compare the predictions of our model with
the available experimental data. Experimentally, the depen-
dences of both bright and dark counting rates are set as func-
tions of the wavelength of the light and the bias parameter
�BP� of the detector. In the BP we include such quantities as
bias voltage, bias current, or any other physical parameter
the experimentalist adjusts in order to achieve simulta-
neously the best signal-to-noise ratio �SNR� RSNR and the
highest bright counting rate. The SNR is the ratio between
the bright counting rate �BCR� RB and the dark one �DCR�
RD, RSNR=RB /RD, and it has the following useful property:
as one increases the value of the BP, the bright counting rate
increases while the SNR remains the same until the break-
down value of the BP, after which the SNR starts to fall
rapidly as a function of BP. So most detectors usually operate
near the breakdown BP in order to achieve the optimal per-
formance. Experimentally �4�, the BCR is determined by di-
recting laser pulses containing single photons at a given rep-
etition rate onto the detector and calculating the rate of
counts, so in our model it is described by the term J1

�B�;
analogously, the DCR is calculated in the absence of any
input signal, so it is given by J0

�D�.
To do the comparison with experimental results first we

need to set the values of our model free parameters �0, g, �,
and n̄; for the sake of better comparison we shall express the
frequencies �0 and � in terms of the respective wavelengths
�0 and �. Thus we are left with only two experimental vari-
ables: � and b, where b plays the role of the BP. Meanwhile,
our general model cannot take into account the BP depen-
dence on b for every kind of detector; nevertheless, one can
argue that BP and b must be proportional to each other, since
for zero BP one should also have b=0, since in this case the
detector would be turned off. Fortunately, we do not need to
know the exact dependence of BP on b provided we deter-
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mine the breakdown value bB corresponding to the break-
down BP at the resonance and take it as a measure of b. So
bB will be our last fixed parameter, even though dependent
on the free parameters, needed to compare the model predic-
tions with experiment.

After several numerical simulations we have chosen the
following values for our model free parameters that repro-
duce qualitatively the common experimental behavior �3–6�
and lie within the applicability region of the Jaynes-
Cummings Hamiltonian �3� and the master equation �4�: �0
=500 nm, g=1011 Hz, �=5
105, and n̄=10−11, so bB�380,
as shown in Fig. 1. Notice that �1� the values of RSNR
�105 at the resonance ��=500 nm, q=0� and 102 far away
from it ��=1.5 �m, q
1� are quite realistic, and �2� the
chosen mean number of intrinsic excitations n̄ is much larger
than the number of thermal photons as calculated from
Planck’s distribution for room temperature �n̄P�10−30�,
meaning that the contribution from defects within the detec-
tor is much stronger than the one from thermal photons
�remember that we are considering a specific part of dark
counts, as described in Sec. II�. Moreover, we verified that
below bB both the BCR and DCR depend approximately lin-
early on b, which is in agreement with our qualitative argu-
ments.

In Fig. 2 we have a plot of the BCR for two different
values of b as a function of the field wavelength, which
shows good agreement, qualitatively and quantitatively, with
experimental results and illustrates the fact that the BCR
increases proportionally to b. We can confirm numerically
that the DCR does not depend on the field wavelength as
expected, because the dark counts are the detector’s internal
events.

So our model agrees qualitatively in all aspects with the
experimental data. Now we turn to our main goal: how does
the QJS depend on the experimental detector parameters?
First, we check that for the chosen parameters the emission
terms �Jn

�E� and further terms in Eq. �29�� are at least ten
orders of magnitude smaller than the dark-count term and
even more for the bright-count term, which confirms that

detectors indeed do not emit photons into the field. Intu-
itively, the photon emissions by the detector would be pos-
sible only at temperatures much higher than room tempera-
ture through blackbody radiation, which is not the case in
experiments.

Thus, in practice one is dealing only with bright- and
dark-count terms that act on the field simultaneously every
time a count is registered, so the QJS has the following
�diagonal� form in the Fock basis:

Ĵ� = diag��ĴB + ĴD��� . �35�

In Fig. 3 we show the dependence of the normalized bright-
count term Jn

�B� /J1
�B� on n in double-logarithmic scale �for

better visualization we joined the points�. We note that near
and far away from resonance one has the nearly polynomial
dependence �linear in the double-logarithmic scale�

FIG. 1. Signal-to-noise ratio as function of b at resonance
��=500 nm� and far from it ��=1500 nm� in the inset. The esti-
mated breakdown value is bB�380.

FIG. 2. Bright counting rate as function of wavelength of the
field for different values of b, showing that the BCR increases pro-
portionally to b. The resonant wavelength is �0=500 nm.

FIG. 3. Normalized bright-count term as a function of n in
double-logarithmic scale at breakdown bB for different field wave-
lengths. At resonance ��=500 nm� we have ��1/2 and far away
from resonance ��=1000 nm� ��0.

ENGINEERING QUANTUM JUMP SUPEROPERATORS FOR… PHYSICAL REVIEW A 74, 033823 �2006�

033823-5



Jn
�B� � J1

�B�n−2� = RBn−2� �36�

with ��1/2 at resonance and ��0 far away from it. Thus,
in these cases one can write the operator dependence of the
bright-count term as

ĴB� = RB�n̂ + 1�−�â�â†�n̂ + 1�−�, �37�

thus recovering the E model with ��1/2 at the resonance
and the SD model with ��0 far away from it ��=1 �m�.
This is an important result: by just modifying the wavelength
of the field one can engineer the QJS, obtaining one of the ad
hoc proposals or another.

Now we turn to the normalized dark-count term Jn
�D� /J0

�D�,
shown in Fig. 4 in linear scale and in double-logarithmic
scale in the inset. First, we see that out of resonance ��
=1 �m� Jn

�D� is almost independent of n, so we can set in this
case Jn

�D��RD=const. At resonance ��=500 nm�, we see
that for n=0 one gets J0

�D�=RD and for n�0 we have Jn�0
�D�

�dRDn−2�, where ��1/2 and d is a number less than 1.
This means that at resonance the dark counts are suppressed
by the presence of light, being generated predominantly by
vacuum fluctuations. This can be understood by the follow-
ing argument: the dark counts occur when the detector, in the
ground state, is intrinsically excited by its excitations; but at
resonance, the rate of excitations by field photons is much
greater than the one by the intrinsic excitations, so the dark

counts “have no time” to appear and therefore become sup-
pressed. Thus, the operator form of the dark-count term in
Eq. �29� is

ĴD� = RD��0��0 + d�n̂−��n̂−��� , �38�

where �0��0��0�, ��1−�0, and at resonance we have the
E model with ��1/2 and d�1. Far away from the reso-
nance we recover the SD model with ��0 and d=1. Thus
by operating near the breakdown BP and by varying the
wavelength of the field one can engineer the QJS and predict
its bright- and dark-count term behavior; the only inconve-
nience for obtaining the SD model is that the SNR is smaller
than for the E model, since in this case one should operate
far away from the resonance. For the sake of completeness
we could also add to the right-hand side of Eq. �38� a con-
stant term �RD� �� for the dark counts that do not cause the
transition �g�→ �e� inside the sensor; however, the present
model does not embrace such phenomena.

IV. SUMMARY AND CONCLUSIONS

We presented a microscopic model for a realistic photo-
detector in which we modeled it as a two-level quantum
sensor plus a macroscopic amplification mechanism. Using
the quantum trajectories approach we deduced a general QJS
describing the back action of the detector on the field upon a
photocount and showed that it can be represented formally as
an infinite sum of terms. In that sum we have identified the
terms corresponding to the bright counts �real photoabsorp-
tions�, the dark counts, and emission events, each one occur-
ring with its corresponding probability. Adjusting the free
parameters of the model to fit experimental data, we showed
that the emission terms can be disregarded in realistic situa-
tions since their contribution becomes insignificant, so the
QJS consists effectively only of bright- and dark-count
terms. Moreover, we reproduced qualitatively and quantita-
tively the experimental behavior of the counting rates and the
signal-to-noise ratio, showing the breakdown phenomenon.
Finally, we showed that with the detector operating near its
breakdown bias one can engineer the QJS by modifying the
wavelength of the field. In particular, one recovers the QJS’s
proposed previously ad hoc: at resonance one gets the E
model, and far away from it the SD model is identified. Last
but not least, the contribution of the dark counts to the QJS
was derived within the context of a photocount model.
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