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We propose a scheme that provides all-optically-controlled steering of light beam. The system is based on
steep dispersion of a coherently driven medium. Using the eikonal equation, we study the steering angle, the
spread of the optical beam, and the limits set by residual absorption of the medium under conditions of
electromagnetically induced transparency. Implementation of another scheme for ultrashort pulses is also
discussed.
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I. INTRODUCTION

Optical beam deflection is an important technology in
modern optics. It has applications in the fields of radar, op-
tical imaging, laser machining, and free space communica-
tion. Many physical mechanisms have been used to obtain
the deflection �1,2�. Among them mechanical motion �3–5� is
the simplest and most convenient way, since it only mechani-
cally moves or rotates the deflector �mirror, grating, etc.�. A
thermal gradient �6�, acousto-optical interaction �7–9�, and
the electro-optic effect �10–12� all can induce a refractive
index gradient which deflects the light. The electro-optic de-
flectors are faster than their acousto-optic counterparts as
compared in Ref. �13�. Nowadays with the development of
new materials and devices, attention has been focused on
using photonic crystals �14,15� and phased arrays �16–18� to
get fast beam steering. For a recent review of electro-optical
systems, see Ref. �19�.

Light can also change the propagation direction of another
beam of light through interaction with matter. Beam deflec-
tions have been reported in sodium vapor via optical pump-
ing �20� and in rubidium vapor via saturated absorption and
hyperfine pumping �21�. Electromagnetically induced trans-
parency �EIT� provides another mechanism since the refrac-
tive index can change near the transparency center �22–24�.
Moseley et al. first observed the electromagnetically induced
focusing and defocusing effects in a rubidium vapor �25,26�,
which come from the spatial Gaussian distribution of the
pump field. These authors included both refraction and ab-
sorption modification in the numerical calculation and found
a qualitative accordance with experiment. Mitsunaga et al.
observed absorption imaging in cold sodium atoms �27�. The
probe is mostly absorbed after the atom cloud except for the
focal point of the pump beam. Transmission through this EIT
point can reach almost 200%, which is obviously a focusing
feature. Another example based on EIT is electromagneti-
cally induced waveguiding �28–30� which uses the driving
field as a fiber to confine the probe field. Raman spatial soli-
tons have been demonstrated by Walker et al. �31–33�. As an
alternative to the near-resonant configuration used in the
above papers, the pump and probe can both be detuned to the
blue side and remain in two-photon resonance. Induced fo-
cusing and waveguiding in such a � system have been dis-
cussed under EIT �34� and coherent population trapping
�CPT� conditions �35�. Shpaisman et al. �36� have discussed

both these cases and have extended the method to double-�
systems, where one � system can induce waveguiding in the
other. The maximum Rabi frequency of the pump was cho-
sen near the EIT or CPT threshold to ensure low absorption
and significant focusing.

In this paper we explore the possibilities and limits of
beam deflection through the EIT effect. An inhomogeneous
pump field intensity produces a refractive index gradient for
the probe. Ray optics is adopted to analyze the steering angle
and absorption for each probe ray. Under optimal pump dis-
tribution rays of the same frequency can be deflected at the
same angle, unaffected by the starting position. For a single
frequency we can also obtain exact focusing. Finally we
show that even a whole beam with spatial and spectral width
can be deflected together using a specific setup.

II. BEAM PROPAGATION IN AN INHOMOGENEOUS
MEDIUM

The idea of all-optical steering of an electromagnetic
wave is as follows. Consider a pulse of central frequency �
propagating through a three-level EIT medium as shown in
Fig. 1. We assume that the spectral width of the pulse lies
well within the EIT window such that the inequalities �� ,
��� are satisfied. Here � is the Rabi frequency of the
driving field resonant with an a-c transition, � is the atomic
decay rate, and ��=�−�ab is the detuning of the probe
frequency � with the atomic transition a-b. Now in order to
steer the incident pulse in a different direction, we introduce
a phase shift for the different transverse positions x of the
pulse at the output by modulating the Rabi frequency of the
driving field. Thus the whole pulse has a different direction
while coming out of the EIT medium. Here we derive a
simple expression for the beam steering angle and the corre-
sponding losses.

We assume that we have a highly dispersive medium. For
a large enough �, the index of refraction for the probe field
can be written as

n� � 1 +
��

2
� 1 + ��� , �1�

where N is the atomic density and �=N���2 /2	0
�2 with �
being the atomic dipole moment on the a-b transition. Inho-
mogeneous ��x� leads to inhomogeneous n��x�.
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The trajectory of the light rays propagating in an inhomo-
geneous medium can be found by using the eikonal approxi-
mation �37�. We start with Maxwell’s equation, which de-
scribes the propagation of the electromagnetic waves,

�2E −
1

c2

�2E

�t2 = �0
�2P

�t2 . �2�

We can expand the field and the polarization in terms of the
slowly varying amplitudes E� and P� and the eikonal 
 as

E = �
�

E�e−i�t+ik
, P = �
�

P�e−i�t+ik
. �3�

Here k=� /c. The polarization of the medium is related to the
field intensity as P�=	0��E�, where the susceptibility is ��

=���+ i���. If we neglect the second-order derivative over co-
ordinates for the amplitude E�, the eikonal equation is given
by

��
�2 = 1 + ��� � n�2. �4�

So we can write down �
=n�dR /ds and obtain the geo-
metrical optics differential equation in the vector form

d

ds
�n�

dR

ds
	 = �n�, �5�

where R is the point of the ray. Here R�x ,z�=X�z�x̂+zẑ and
x̂ , ẑ are unit vectors along the axes. Then, for the x and z
components,

d

ds
�n�

dX

ds
	 =

�n�

�x
and

d

ds
�n�

dz

ds
	 =

�n�

�z
. �6�

The equation describing the amplitude of the electromag-
netic field can be obtained in a similar manner. It follows
from the imaginary part of Eq. �2� that

2k � 
 � E� + k��2
�E� = −
�2

c2 ��E�. �7�

The solution of the above equation has the following form

E� =
E0�


n�
exp�− �

s1

s2 ����

2n�c
ds	 . �8�

In the next section we will discuss several inhomogeneous
driving field distributions and their steering effects.

III. DISCUSSION

A. Single-frequency deflection

For the first case assume that

��x� = �0/
1 + �x , �9�

where � is the parameter that determines the inhomogeneous
distribution of the driving field. The refractive index is there-
fore of the form n��x��1+�0���1+�x� with �0

=N���2 /2	0
�0
2. This form leads to constant �n� for a single

frequency. In the following we show that, for such a situa-
tion, we obtain the same steering angle for all the transverse
positions x as shown in Fig. 2�a�. If the dependence of the
driving field has a different form then there will be a spread
of the optical rays as shown in Fig. 2�b�. In Eq. �6� using
ds=
dX�z�2+dz2 and n�=1+�0���1+�x�, we obtain

d

ds
�n�

dX

ds
	 = �0��� and

d

ds
�n�

dz

ds
	 = 0. �10�

The ordinary differential equation to describe the ray trajec-
tory is given by

d2X�z�
dz2 =

1 + �0���1 + �X�z��
�1 + �0���1 + �X0��2�0��� � �0��� ,

�11�

and its solution is

(b)

x

z

a

c

b

p

(a)

FIG. 1. �Color online� �a� The schematics of the three-level
atomic system with the fields. �b� A slab of the three-level atomic
medium turns the probe light via an inhomogeneous driving field.
�c� The real �1� and imaginary �2� parts of the atomic susceptibility,
and the spectrum of probe pulse �3� vs probe frequency.

(a) (b) (c)

FIG. 2. �Color online� For different distributions of the driving
field, different regimes of probe light propagation take place. �a�
The light deflection angle is the same for all the light rays; �b� the
probe light turns but spreads; �c� focusing of the probe.

SUN, ROSTOVTSEV, AND ZUBAIRY PHYSICAL REVIEW A 74, 033819 �2006�

033819-2



X�z� � X0 +
�0���z2

2
. �12�

The light turning angle � can be found from dX�z� /dz
=tan ���. The resulting angle is

� � �0���L =
N���2

2	0
�0
2���L . �13�

A calculation based on the full expression of � �38� shows
that these simple estimations Eqs. �12� and �13� are valid for
small deflections. With the parameters �=5000 m−1, L
=1 cm, �0=50� MHz, N=1015 cm−3, �=0.5 �m, �ab=�rad
=2� MHz, �cb=1 kHz we get Fig. 3. A probe beam with
detuning ��=3.3 MHz �Figs. 3�a� and 3�b�� will experience
the same deflection angle 5.76°, although the ray starting
position X0 ranges from 0 to 0.2 mm. The transmission de-
creases at larger X0 because there � is smaller. Figures 3�c�
and 3�d� show the linear dependence of the deflection angle
on detuning. Now X0 is fixed at 0 and �� varies from
−4 to 4 MHz. The transmission at negative �� is larger be-
cause the ray goes to the negative x direction where � is
larger. In this paper we have assumed the medium to be
homogeneously broadened. For an inhomogeneously broad-
ened medium the transmission would be many orders
smaller. However, the steering angle could still be the same.
Another factor that influences the transmission is �cb. This
decay rate can be much larger under high density. If �cb
=104 Hz then the transmission will be ten times smaller
while the angle will remain unaffected. On further increasing
�cb the transmission will decrease much faster.

To study the behavior of a beam with a finite diameter we
perform some numerical simulation. Consider a monochro-
matic electromagnetic wave with frequency �; the Helm-
holtz equation is given by

�2E + 2 � �E · ��ln n�� +
�2

c2 n2E = 0 , �14�

where n=n�+ in�=
1+�. For this inhomogeneous medium,
n0=1 and �n�r�=n�r�−n0, k0=�n0 /c, r= �r� ,z�, E�r , t�
=exp�ik0z− i�t�A�r� ,z�. We assume that the field has linear
polarization set to the y direction, and at the entrance it is
given by

A�x,0� = A0 exp�− � x − x0

w0
	2
ŷ , �15�

where w0=0.1 mm is the beam waist. x0=0.1 mm is the
beam center at the entrance.

To get an accurate result we go beyond the paraxial limit,
following the method of Refs. �39,40�. Separating the field
into transverse and longitudinal components and expanding
the equation in the small parameters � /w0 and �n, we obtain

i
�Ay

�z
=

1

2n0k0
� �2�n

�x2 Ay + 2
��n

�x

�Ay

�x
+ �n

�2Ay

�x2 	 −
1

2k0

�2Ay

�x2

−
k0�n

n0
Ay . �16�

It is then straightforward to get the beam distribution at z
�0. To compare with the result in Figs. 3�a� and 3�b� we use
the same parameters. The only difference is now it is a beam
instead of a ray. The simulation result is shown in Fig. 4. It
clearly shows the beam being deflected and absorbed as it
propagates along the z axis. The peak of the beam goes to
X1=0.556 mm. This is a little smaller than the value X1
=0.600 mm of a ray starting from X0=0.1 mm, which is rea-
sonable since the absorption increases with x and thus lowers
the peak position. The peak intensity of the beam is
�Ay /A0�2=0.0664, slightly higher than the ray transmission
0.0555. The deflection angle from the simulation is 5.75°,
matching the former result precisely. This angle is almost a
constant for the whole beam despite its extremely slow in-
crease with z.

From this example we see that the deflection angle could
be as large as

(a)

(b)

(c)

(d)

FIG. 3. �Color online� Deflection angle and transmission
�E� /E0��2 for ��x�=�0 /
1+�x. In �a�, �b� the detuning is fixed at
��=3.3 MHz; the angle is constant when X0 varies from
0 to 0.2 mm. In �c�, �d� X0=0 while �� changes from
−4 to 4 MHz; the angle follows the detuning linearly.

FIG. 4. �Color online� Numerical simulation for beam propaga-
tion. Here the detuning ��=3.3 MHz.
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� � 0.1 rad, �17�

with affordable losses, which shows a potential for all-
optical light steering. Here the deflection angle is only con-
stant for a single frequency, but this is not a big problem for
a probe pulse with narrow bandwidth.

As we have mentioned before, other driving field distri-
butions will lead to spread of the probe pulse because the
refractive index gradient depends on the spatial coordinates
�see Fig. 2�b��. Consider the simplest case ��x�=�0�1
+�x�, which gives n��x�=1+�0�� / �1+�x�2. �=1500 m−1

and all the other parameters are the same as in the first case.
Now probe rays with ��=3.3 MHz starting from different
X0 have different deflection angles, as shown in Fig. 5. There
is spreading even for a single frequency, so this is not suit-
able for beam steering.

B. Focusing and defocusing

Next we show that, by controlling the spatial dependence
of the Rabi frequency of the driving field, we can have a
focusing or defocusing coherent medium, which adds addi-
tional flexibility to handle the probe field. Thus the coherent
medium not only can act as an effective beam deflector but
also can be transformed into a lens with controllable focal
distance. We recall that both Moseley et al. �25� and Mitsu-
naga et al. �27� are using Gaussian coupling beams so the
focusing is not very intense. Here we assume that the Rabi
frequency of the driving field depends on the transverse co-
ordinate via

��x� =
�0


1 − �x2
. �18�

The space-dependent refractive index is then given by
n��x�=1+�0���1−�x2�. This creates the ray structure
shown in Fig. 2�c�. To see this, we consider a ray that starts
at X0. As a simple estimate, it goes out of the cell at X1
=X�L��X0�1−�0���L2� and the deflection angle is ��
−2�0���LX0. This ray passes the axis at the distance

F =
X1

− �
�

1 − �0���L2

2�0���L
, �19�

which is independent of the initial position of the ray, X0.
This represents a lens with a focal distance F.

A calculation based on the full expression also supports
these estimates. Consider a system with ��=3.3 MHz, �
=106 m−2 and all the other parameters the same as in the first
case. It is obvious from Fig. 6�a� that F does not change after
X0. So the focal distance F is well defined for a single fre-
quency. However, this distance changes for different fre-
quencies �see Fig. 6�c�� as in Eq. �19�. It decreases for large
detuning which is easy to understand since large detuning
has a rapid refractive index change and the beam deflects
quickly. The focal distance F can also be controlled by vary-
ing �0 or �. Both smaller �0 and larger � can lead to
smaller focal distance. The reason is the same as above. Fi-
nally, by using a negative � or negative �� we can obtain
good defocusing effect. If both � and �� are negative we get
focusing again. This is more applicable for experiment since
the highest driving field required is �0 at the center. Note
that here the driving field depends on x so this is only a
two-dimensional focusing. To simulate a real lens it should
depend on r�.

C. Short-pulse deflection

Up to now our discussion applies to the propagation of
continuous waves and pulses that have time duration long
enough to fit the EIT window, i.e., �2T /��1, where T is the
pulse width. The problem with shorter pulses is that they
have a broad spectrum that may not fit the EIT window,
leading to substantial absorption and a nonlinear dispersion.
As a result, we may encounter strong reshaping and absorp-
tion while the pulse propagates through the EIT medium.

Recently, we proposed a solution to the problem of broad-
band pulse propagation through an EIT medium �41�. The

FIG. 5. �Color online� Deflection angle for ��x�=�0�1+�x�.
The detuning is fixed at ��=3.3 MHz. The angle is not a constant
for varying X0.

(a)

(b)

(c)

(d)

FIG. 6. �Color online� Focusing effect for ��x�=�0 /
1−�x2.
In �a�, �b� the detuning is fixed at ��=3.3 MHz; the focal distance
is constant when X0 varies from −0.6 to 0.6 mm. In �c�, �d� X0=0
while �� changes from 0.1 to 3 MHz; the angle follows Eq. �19�.
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main idea is that we can extend the absorptionless linear
dispersion of the EIT three-level system using an inhomoge-
neous medium where we maintain the resonance with the
optical field by shifting the atomic level via an inhomoge-
neous magnetic field. In our scheme, we have a gradient of
the index of refraction due to the gradient of the magnetic
field, because the detuning is position dependent.

The scheme is depicted in Fig. 7. The system consists of a
set of prisms �or diffraction gratings� with total dispersion
equal to zero. The first prism disperses the probe pulse into a
divergent beam. The second prism transforms the beam into
a parallel beam, with different frequencies shifted in space.
When the beam goes into the EIT cell with cold atoms, an
inhomogeneous magnetic field moves the level b only so that
each frequency is resonant with the local a↔b transition. At
the same time, the constant driving field propagates along the
x direction, which is resonant with the a↔c transition.

Now a single-frequency ray at different x positions will
experience different detunings and refractive indexes be-
cause �ab changes with x due to the applied inhomogeneous
magnetic field. Such a refractive index gradient will cause
deflection. For an ideal system, the frequency distribution
after the second prism is linear, i.e., d� /dx is a constant.
Also d�ab /dx should be the same to match the field. We
assume that a ray of frequency � enters the EIT cell at x0
position, and define �x=x−xc where xc is the position at
which the ray is resonant, i.e., �=�ab�xc�. So the detuning at
position x is

����x� = � − �ab�x� = �ab�xc� − �ab�x� = − �x
d�ab

dx
.

�20�

The refractive index will be

n�� ��x� � 1 + �0����x� = 1 − �0�x
d�

dx
. �21�

The refractive gradient �n�=−�0�d� /dx�x̂ is a constant.
It follows from Eqs. �12� and �13� that �x1−�x0
���n��L2 /2 and sin ����n� �L for small deflection. They do
not depend on �x0 or �. So all the rays go through parallel
paths. This is crucial for the recombination of the pulse. Thus
a probe beam with finite bandwidth and finite diameter can
be deflected perfectly.

The above is only a simple estimate. In Fig. 8 we show
some numerical results for d� /dx=−1011 Hz/m, L=1 mm
and all the other parameters the same as in the first case. In
Figs. 8�a� and 8�b� we can see the rays of frequency 2�
�6�1014 Hz starting from different �x0. The deflection
angles are around 3.47° although a little larger for nonzero
�x0. The transmission for �x0=0 is the highest �0.98� but it
decreases quickly for other starting positions. This is good
enough since we can always put the central rays, which are
the main part for an ordinary beam, at �x0=0. Unlike the first
case, now the frequency does not influence the deflection
angle. A calculation for � varying by 1010 Hz still gives the
same curve, which is reasonable because only local decays
are slightly changed. As a result the whole beam, despite its
diameter and bandwidth, deflects at the same angle. If the
diameter is small enough to fit within �x0= ±0.05 mm, the
whole pulse will be deflected with transmission �1.

We can control the angle by varying the drive Rabi fre-
quency, as shown in Figs. 8�c� and 8�d�. The parameters are
still the same, �=5000 Å, �x0=0, only � varying from 2�
�1.25�107 Hz to 2��3�107 Hz. It is easy to find from
the graph that a larger deflection angle accompanies smaller
transmission. Angles greater than 10° are even achievable at
small driving field. But then the side rays �nonzero �x0� suf-
fer substantial absorption. For large driving field the system
goes to the limit angle �→0 and transmission→1.

Since the level b can be moved by a magnetic field, it
must be a magnetic sublevel with M �0 and have some non-
degenerate magnetic sublevels nearby. If we include them in
the calculation, the population in level b will decrease, which
effectively decreases the optical density. The residual absorp-
tion due to these off-resonance levels can be avoided by
using a circularly polarized probe to interact with only level
b.

IV. CONCLUSION

We have shown that for a single-frequency or a narrow-
bandwidth probe field, high-quality deflection and focusing

EIT

pump

probeprobe

Anti-Helmholtz

FIG. 7. �Color online� A scheme of optical steering for broad-
band pulses using a magnetic field gradient created by a pair of
anti-Helmholtz coils.

(a)

(b)

(c)

(d)

FIG. 8. �Color online� Dependence of the light deflection angle
�a�, �c� and the probe transmission �b�, �d� on the position of the
probe ray, �x0, and on the magnitude of the Rabi frequency.
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can be achieved under optimal pump distribution. The prac-
tical difficulty is how to generate such a distribution. One
possible way is to put a screen with the desired transmission
function as in Eqs. �9� and �18� behind the driving field.
Pump diffraction may not be so severe if the propagation
distance is short. Then we can control the deflection angle or
focal distance by varying only the input driving field inten-
sity ���0�. This method is convenient and continuous. How-
ever, the scan speed is limited by the EIT establishment time,
which is about the radiative lifetime 1/�rad.

A short pulse can also be deflected to the same angle in
the proposed scheme. The key point is here that the magnetic
gradient provides the same refractive index gradient for all
the frequency components. The deflection angle can also be
controlled by the driving intensity. This method is promising
due to its broadband ability. Here the problem is that the
lowest-frequency gradient of a real prism system is

1014 Hz/m and it is only approximately constant. We need a
better system to provide larger spatial dispersion.

In both of the deflection schemes the maximum deflection
angle without significant absorption is �0.1 rad. Larger de-
flection always comes with larger absorption. This is deter-
mined by the relation between refractive index and absorp-
tion coefficient in EIT. Note that 0.1 rad is already good
enough for some applications, and additional devices like
multiple birefringent prisms or holographic glass with mul-
tiple holograms can further increase the angle.
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