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We investigate an optical scheme to conditionally engineer quantum states using a beam splitter, homodyne
detection, and a squeezed vacuum as an ancillar state. This scheme is efficient in producing non-Gaussian
quantum states such as squeezed single photons and superpositions of coherent states �SCSs�. We show that a
SCS with well defined parity and high fidelity can be generated from a Fock state of n�4, and conjecture that
this can be generalized for an arbitrary n Fock state. We describe our experimental demonstration of this
scheme using coherent input states and measuring experimental fidelities that are only achievable using quan-
tum resources.
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I. INTRODUCTION

Quantum state engineering using measurement induced
conditional evolution is an important and useful technique in
the field of quantum optics and quantum information pro-
cessing �1�. It is known that a near deterministic, universal
set of unitary transformations can be achieved for qubit sys-
tems using this principle �2,3�, and that arbitrary optical
states can be engineered conditionally based on discrete
single photon measurements �4�. Recently, there has been
increased interest in conditional evolution based on
continuous-variable measurements �5–8�. In these schemes a
quantum system is interacted with a prepared ancilla, which
is measured via a continuous observable, e.g., a quadrature
variable of the electromagnetic field. This has been experi-
mentally demonstrated for a system using a beam splitter as
the interaction and a vacuum state as the ancilla with condi-
tioning based on homodyne detection to remotely prepare a
qubit state �7�. A similar system using conditioning of adap-
tive phase measurements has also been discussed �8�.

Recently, an optical scheme was suggested to engineer
interesting continuous-variable non-Gaussian quantum states
based on a beam-splitter interaction, using an ancilla
squeezed vacuum state and conditioning homodyne detection
�9�. It is a difficult task to generate and engineer non-
Gaussian continuous-variable quantum states in optical
fields. For example, a superposition of free-traveling coher-
ent states �SCS� is very hard to generate in spite of its po-
tential usefulness for quantum information processing �10�
and fundamental interest in relation to the quantum superpo-
sition �“Schrödinger’s cat”� paradox �11�. As another ex-
ample, it is highly nontrivial to directly squeeze a single
photon in a squeezing apparatus, even though the squeezed
single photon can also be useful for quantum information
processing applications �12–16�. The scheme in Ref. �9� en-
ables one to conditionally squeeze a single photon with an
arbitrarily high fidelity using the squeezed vacuum of any
finite degree of squeezing. It also enables one to transform a
two-photon state into a SCS with an extremely high fidelity.
The principles of the postselection scheme were experimen-
tally demonstrated using coherent states, and experimental
fidelities were measured that are only achievable using quan-
tum resources �9�.

In this paper, we develop the scheme presented in Ref. �9�
and fully describe its experimental demonstration. In particu-
lar, we find that a SCS with well defined parity and high
fidelity can be generated from a Fock state of n�4, and
conjecture that this can be generalized for an arbitrary n. We
also compare the postselection scheme �9� with another
scheme based on the feedforward method using the displace-
ment operation �17�. It is known that the squeezing operation
for an arbitrary input state can be approximately performed
using the highly squeezed vacuum as an ancillar, a beam
splitter, and the feedforward method with the displacement
operation �17�. However, the interesting features of the post-
selection scheme that we described above for non-Gaussian
inputs cannot be achieved using the feedforward method in
Ref. �17�. This shows that quantum state engineering using
postselection is an interesting tool for quantum information
processing. On the other hand, for Gaussian coherent states,
the standard feedforward scheme can be modified to perform
the same transformation with the postselection scheme. In
this case, the postselection scheme can be understood as an
alternative method to the feedforward scheme �17,18�.

II. ENGINEERING VARIOUS INPUT STATES USING
A SQUEEZED VACUUM AND POSTSELECTION

Our conditional transformation scheme is depicted in Fig.
1. The squeezed vacuum used as the ancilla state in our

scheme is represented as Ŝ�s��0� with the squeezing operator

Ŝ�s�=exp�−�s /2��â2− â†2��, where s is the squeezing param-
eter and â is the annihilation operator. The Wigner function
of the squeezed vacuum is

Wsqz��;s� =
2

�
exp�− 2��+�2e−2s − 2��−�2e2s� , �1�

where �=�++ i�− with real quadrature variables �+ and �−.
The first step of our transformation protocol is to interfere
the input field with the ancilla state on a beam splitter as
shown in Fig. 1�a�. The beam-splitter operator B̂ acting on

modes â and b̂ is represented as
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B̂��� = exp��

2
�â†b̂ − b̂†â�� , �2�

where the reflectivity is defined as R=sin2�� /2� and where
T=1−R. A homodyne measurement is performed on the am-
plitude quadrature on the reflected field mode, with the mea-
surement result denoted as Xr

+. The transmitted state is post-
selected for �Xr

+��x0, where the postselection threshold x0 is
determined by the required fidelity between the output state
and the ideal target state. As we will see later in this section,
the postselection process in our scheme plays a crucial role
in engineering non-Gaussian states with finite squeezing re-
sources.

A. Squeezing a single photon

We first consider a single-photon state input �1� and a

squeezed single photon Ŝ�s���1� as the target state. The
Wigner function of the single photon state is

Win
�1���� =

2

�
exp�− 2���2��4���2 − 1� . �3�

After interference via the beam splitter, the resulting two-
mode state becomes

W�1���,�� = Win
�1��	T� + 	R��Wanc�− 	R� + 	T�� , �4�

where Wanc=Wsqz�� ;s� and �=�++ i�−. Note that the super-
script �1� indicates that the input state was the single-photon
Fock state. We will use this notation �n� for various quanti-
ties throughout the paper to denote that the input state was
the n-photon Fock state. The transmitted state after the ho-
modyne detection of the reflected state is

Wout
�1���;Xr

+� = P�1��Xr
+�−1


−�

�

d�−W�1���,�+ = Xr
+,�−� , �5�

where the normalization parameter is

P�1��Xr
+� = 


−�

�

d2�d�−W�1���,�+ = Xr
+,�−�

=
2e−s−2Xr

+2/�R+Te2s��T2e4s + e2sTR + 4RXr
+2�

��R + Te2s�2	T + e−2s
. �6�

If the measurement result is Xr
+=0, the Wigner function of

the output state becomes

Wout
�1��Xr

+ = 0;�� =
2

�
e−2�e−2s���+�2+e2s���−�2��4e−2s���+�2

+ 4e2s���−�2 − 1� 
 WSSP��� , �7�

where

s� = −
1

2
ln�T + e−2sR� . �8�

One can immediately notice that the output state in Eq. �7� is
exactly the Wigner function Wssp��� of a squeezed single

photon Ŝ�s���1�. We note that the output squeezing s� can be
arbitrarily close to the squeezing of the ancilla state s by
making R close to zero.

For a nonzero postselection threshold criteria �Xr
+��x0 the

corresponding success probability is given by

Ps
�1��x0� = 


−x0

x0

dXr
+P�1��Xr

+� �9�

and the average Wigner function Wave
�1� �� ;x0� is

Wave
�1� ��;x0� =



−x0

x0

dXr
+P�1��Xr

+�Wout
�1���,Xr

+�



−x0

x0

dX̃r
+P�1��X̃r

+�
. �10�

The fidelity between the output state �with the measurement
result Xr

+� and the ideal target state is obtained as

FIG. 1. �Color online� �a� Schematic of the post-selection protocol. X̂in
± : amplitude ��� and phase �	� quadratures of the input state; anc:

ancilla squeezed vacuum state; r: reflected; t: transmitted; out: post-selected output state. R: beam-splitter reflectivity; GD: gate detector; PS:
post-selection protocol. �b� Standard deviation contours of the Wigner functions of an input coherent state �blue� and post-selected output
states �green� for R=0.75 and varying ancilla state squeezing of �i� s=0, �ii� s=0.35, �iii� s=0.69, �iv� s=1.03, and �v� ideal squeezing.
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F�1��Xr
+� = �


−�

�

d2�Wout
�1���;Xr

+�WSSP��� . �11�

The average fidelity of the output state for a postselection
threshold x0 is

Fave
�1� �x0� =



−x0

x0

dXr
+P�1��Xr

+�F�1��Xr
+�



−x0

x0

dX̃r
+P�1��X̃r

+�
. �12�

Alternatively, the average fidelity for a threshold x0 can be
obtained using the average Wigner function as

Fave
�1� �x0� = �


−�

�

d2�Wave
�1� ��;x0�WSSP��� . �13�

We use this average fidelity measure to characterize the effi-
cacy of our protocol for nonzero thresholds.

The average fidelity Fave
�1� and success probability Ps

�1�

have been plotted for a couple of cases in Fig. 2. Suppose
that the ancillar squeezing is s=0.7 �6.08 dB phase squeez-
ing� with the beam splitter ratio R=0.98 and the post-
selection threshold is x0=0.025. Then, the output squeezing
is s�=0.67 �5.82 dB� and the average fidelity is Fave

�1� =0.99
with the success probability Ps

�1�=0.003. As another
example, if s=−0.7 �6.08 dB amplitude squeezing� and
x0=0.04 with R=1/2 are assumed, the results are
s�=−0.464 �4.03 dB� and Fave

�1� =0.99 with Ps
�1�=0.016. The

average Wigner functions corresponding to an average fidel-

ity Fave
�1� =0.99 for these cases are shown in Fig. 3.

We emphasize that squeezing a single photon using the
squeezed vacuum with such high fidelities and high degrees
of the output squeezing cannot be achieved by the feedfor-
ward method �17� unless the ancillar squeezing becomes
extremely high �which is not realistic�. However, our scheme
enables one to perform this interesting task with any finite
degree of the ancillar squeezing. Figure 4 shows that the
output states obtained by the feedforward method are dis-
torted but the postselection for an appropriate threshold re-
sults in the desired state. Figure 5 explains the role of the
postselection for a non-Gaussian input: if the homodyne re-
sult X+ is far from zero, the shape of the output state become
distorted, i.e., the output state loses the non-Gaussian char-
acteristics. Therefore, it cannot be corrected by the feedfor-
ward with any electronic gain, and the postselection is nec-
essary to select non-Gaussian output states. In other words,
postselection around Xr

+=0 preserves the non-Gaussian fea-
tures of the input state.

B. Converting Fock states to superposition of coherent states

We now examine Fock states for n
2 as input states. Our
target states are the SCSs

�SCS±� =
1

	2 ± 2e−2���2
���� ± �− ��� , �14�

where ��� is a coherent state of amplitude �=�++ i�−. The
SCSs are often referred to as “Schrödinger cat states” due to
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FIG. 2. �a� The average fidelity Fave
�1� between the post-selected

output state of an input single photon state �1� and the ideal

squeezed single photon target state Ŝ�s���1�. �b� The success prob-
ability Ps

�1� against the post-selection threshold x0. Solid line:
beam-splitter reflectivity R=0.98, ancillary state squeezing s=0.7,
and target state squeezing of s�=0.67. Dashed line: beam-splitter
reflectivity of R=0.5, ancillary state squeezing s=−0.7, and target
state squeezing of s=−0.464.

FIG. 3. �Color online� The average Wigner function Wave
�1� ��� of

the output state corresponding to Fave
�1� =0.99 �a� for x0=0.025,

R=0.98, s=0.7, and Ps
�1�=0.003 and for �b� x0=0.04, R=1/2,

s=−0.7, and Ps
�1�=0.016.
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their characteristics as superpositions of macroscopically dis-
tinguishable states. The SCSs �SCS+� and �SCS−� are called
even and odd SCSs, respectively. The even SCS contains
only even number of photons and becomes the vacuum as
the amplitude goes to zero, i.e., �→0. On the other hand, the
odd SCS contains only odd number of photons and ap-
proaches the single photon state �1� as the amplitude goes to
zero. The Wigner representations of the even and odd SCSs
are

WSCS
± ��� = N±�e−2�� − ��2 + e−2�� + ��2 ± e−2���2

��e−2�� + ��*��−�� + e−2��+���� − ��*
�� , �15�

where N±= ���1±e−2���2��−1. In this subsection, we shall as-

sume � to be pure imaginary for simplicity of equations
without losing generality.

The output Wigner function, average fidelity and success
probability can be obtained in the same way described in
Eqs. �4�–�13�. The Wigner function of the output state for the
two-photon input with the measurement result Xr

+ and the
beam-splitter reflectivity R=1/2 is given by

Wout
�2���;Xr

+� = N2e−G�1 + 2Z + �3 + 16�i
2�Z2 + �4 − 16�i

2�Z3

+ �2 − 32�i
2 + 64�i

4�Z4 + 4�r�
4�1 + Z�4

− 4�r�
2�1 + Z�2�1 + 3Z + �2 − 8�i

2�Z�� , �16�

where G=2�i
2+�r�

2+Z−1��r−X+�2+2�i
2 tanh�s�, �r�=�r+X+,

FIG. 4. �Color online� �a� The average Wigner function Wave
�1�

���� of the output state obtained from the single-photon input with
s=0.7 and R=0.98 using the feedforward scheme with the unity
gain. The non-Gaussian quantum characteristics are washed away.
�b� If the result obtained by the feedforward method is postselected
for x=0.3, the non-Gaussian characteristic begins to emerge. �c�
The average fidelity Fave

�1� =0.87 and the minimum negative value
Wave

�1� �0��−0.48 are obtained for threshold x0=0.1.

FIG. 5. �Color online� The Wigner function Wout
�1���� of the out-

put state obtained from the single-photon input with s=0.7 and
R=0.98. �a� If the measurement result is Xr

+=0, an ideal squeezed
single photon with s�=0.67 is obtained, i.e., the fidelity is F�1��Xr

+

=0�=1. However, the non-Gaussian shape is distorted as the mea-
surement results deviate from zero as �b� F�1��Xr

+=−0.1�=0.67 and
�c� F�1��Xr

+=−0.5�=0.03. The non-Gaussian characteristics cannot
be recovered by the classical feedforward methods after such dis-
tortions. It is clear from this figure that the postselection is neces-
sary to preserve the non-Gaussian feature for the output state.
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Z=e2s, and N2 is the normalization factor. The success prob-
ability is Ps

�2��x0�=�−x0

x0 dXr
+P�2��Xr

+� with

P�2��Xr
+� =

Je−s−4Xr
+2/K

	��1 + e−2s�J4
, �17�

where J = 4e6s + 2e8s + �1−8Xr
+2�2 + 2e2s�1+8Xr

+2� + e4s�3
+ 32Xr

+2� and K=1+e2s. The fidelity is calculated as F�2�

��Xr
+�=��−�

� d2�Wout
�2��� ;Xr

+�WSCS
+ ���. If the measurement re-

sult is Xr
+=0 with R=1/2, the fidelity between the ideal even

SCS in Eq. �15� and the output state �16� is simplified as

F�2��Xr
+ = 0� =

AK5/2�1 + 4e2s + �3 − 8�2�e4s�2

�1 + e2�2
��1 + 3e2s�5�1 + 2e4s�

, �18�

where A=4	2exp��2+s+�2 sinh s / �2 cosh s�+sinh s�. If the
ancillar squeezing is s=−0.37 �3.21 dB�, the fidelity be-
comes F�2��Xr

+=0��0.9997 for �=1.1i, i.e., a SCS of ampli-
tude ���=1.1 with extremely high fidelity can be obtained
from a two-photon Fock state using the squeezed vacuum of
3.21 dB squeezing.

Our calculation can be extended for the cases of n=3 and
n=4. We have obtained the fidelity between the output state
Wout

�3���� and the ideal odd SCS for Xr
+=0 as

F�3��Xr
+ = 0� =

4�2e2sAK7/2L2�coth �2 − 1�
3�3 + 2e4s��1 + 3e2s�7 , �19�

where L=3+12e2s+ �9−8�2�e4s. The even state is the target
state for n=4, and in this case the fidelity for Xr

+=0 is

F�4��Xr
+ = 0� =

AK9/2M2

3�1 + e2�2
��1 + 3e2s�9�3 + 24e4s + 8e8s�

�20�

with M =3 + 24e2s + �66 − 48�2�e4s − 24�8�2−3�e6s + �64�4

−144�2+27�e8s. The fidelities �18�–�20� for the maximized
squeezed parameter, i.e., maxs F�n��X=0�, have been plotted
for amplitude � of the SCSs in Fig. 6. It shows that the
fidelity becomes close to one, for a given number n, when
the squeezed parameter and the amplitude are properly
optimized. One can find the amplitude of the cat state that
maximizes the fidelity for a given number n. The maximum
fidelity F�2�=0.9997 is obtained when s=−0.37 �2.95 dB�

and �=1.1i. The same result F�3�=0.9999 �F�4�=0.9997� can
be obtained for n=3 �n=4� when s=−0.34 �s=−0.37� and
�=1.29i ��=1.49i�.

We have calculated the success probability Ps
�n��x0� and

the average fidelity Fave
�n� for n=2 to n=4 as described above

and plotted for varying threshold x0 in Fig. 7. Our numerical
calculations show that Fave

�2� =0.999 is obtained for 1.4%
when X0=0.022 for the two-photon input state, and Fave

�3�

=0.999 �Fave
�4� =0.999� is obtained for 0.8% �0.6%� when X0

=0.017 �X0=0.014�. The success probability is improved if
the required fidelity is Fave

�n� =0.99. Using the same condi-
tions, Fave

�2� =0.99 is obtained for 5.2% when X0=0.084. The
same fidelity Fave

�3� =0.99 �Fave
�4� =0.99� is obtained for 2.8%

�2.4%� when X0=0.058 �X0=0.055�. In Fig. 8, the average
output Wigner functions Wave

�n� for the input n-photon
Fock states look identical to the Wigner functions of the
corresponding even and odd SCSs due to the high fidelities
�=0.99�.

Based on our results, we can conjecture that an n-photon
Fock state can be converted to an SCS using our scheme,
and the parity of the SCS is determined by the parity of the
input Fock state. It will be interesting to prove our conjecture
for an arbitrary number n, which is yet beyond the scope of
our paper.

C. Squeezing coherent states

We now consider the case of a Gaussian state, i.e., an
unknown coherent state ��� as the input. The postselection

FIG. 6. The fidelity F�n� between the ideal SCSs WSCS
± ��� with

amplitude ��� and the output states Wout
�n��� ;Xr

+ = 0� from the
n-photon input Fock states for n=2 �solid line�, n=3 �dashed line�,
and n=4 �dotted line�. Note that the target state is the ideal even
�odd� SCS when n is an even �odd� number.
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FIG. 7. �a� The average fidelity Fave
�n� between the ideal SCS and

the output state of the input Fock state �n� and �b� the success
probability Ps

�n� for varying threshold x0. The beam splitter reflec-
tivity is R=1/2. Solid line: n=2, the ancillar squeezing is s=
−0.37, and the amplitude of the target SCS is ���=1.1. Dashed line:
n=3, the ancillar squeezing is s=−0.34, and the amplitude of the
target SCS is ���=1.29. Dotted line: n=4, the ancillar squeezing is
s=−0.37, and the amplitude of the target SCS is ���=1.49.
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scheme for Xr
+=0 transforms the coherent state as

D����0� → D�	T�e2s��+ + i�−��S�s���0� , �21�

where D���=exp��â†−�*â� is the displacement operator and
the output squeezing s� is

s� = −
1

2
ln�T + e−2sR� �22�

with the ancillar squeezing s. These relations can be obtained
by analyzing the input and output Wigner functions. Note
that Eq. �22� for coherent state inputs is identical to Eq. �8�
for single photon inputs. The transform in Eq. �21�, illus-
trated in Fig. 1�b�, has an interesting property in that it pre-
serves the purity of the input coherent state, i.e., the output is
a minimum uncertainty state, independent of the amount of
squeezing of the ancilla state. In the ideal limit of perfect
phase squeezing of the ancilla state s→�, the post-selection
scheme works as an ideal single-mode squeezer for arbitrary
input coherent states D����0�→S�s��D����0�. In this case,
the output squeezing is s�→−ln�T� /2. On the other hand, if
s�0, s� is not limited by the beam splitter ratio while the

transformation does not work as an ideal squeezer in the
limit of the infinite squeezing.

It is interesting to note that the transformation �21� using
the postselection scheme outperforms the feedforward
scheme with the standard gain �17� to squeeze unknown co-
herent states for small amplitudes as shown in Fig. 9. The
standard gain for the feedforward scheme is

g =	R

T
�23�

which makes the center of the average output state the same
as that of the input state. Figure 9 also implies that when the
ancillar squeezing becomes larger, the postselection scheme
outperforms the feedforward scheme for the larger area of �.
However, it can be shown for a coherent state input that the
feedforward scheme also works as the purity preserving
transform in Eq. �21� when the electronic gain is set to be

g =
�1 − e−2s�	RT

�e−2sR + T�
. �24�

Therefore, the postselection scheme can perform interesting
tasks which cannot be achieved by the feedforward scheme

FIG. 8. �Color online� The average Wigner functions Wave
�n� of the output state corresponding to Fave

�n� =0.99 for �a� n=2, x0=0.084, and
Ps

�2�=0.055, for �b� n=3, x0=0.0583, and Ps
�3�=0.0309, and for �c� n=4, x0=0.0555, and Ps

�4�=0.0254. It is clearly observed that the average
output Wigner functions �left-hand side� are virtually identical to those of ideal even �n=2,4� and odd �n=3� SCSs �right-hand side� with
the corresponding amplitudes.
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for non-Gaussian inputs, while its transformation for Gauss-
ian inputs can be achieved by a modification of the feedfor-
ward scheme �18�.

III. EXPERIMENTAL DEMONSTRATION
FOR COHERENT STATE INPUTS

As shown in the theoretical section, the postselection pro-
tocol is highly efficient for transforming both non-Gaussian
input Fock states and Gaussian input coherent states. We
experimentally demonstrated the principle of the postselec-
tion protocol using displaced coherent input states with real-
izable ancilla state squeezing. We characterized the efficacy
of the postselection protocol by measuring the fidelity of
postselected output state compared to the target state which
is the ideal squeezed transform of the input state in the case
of perfect ancillary state squeezing. For the experiment, the
quantum states we considered reside at the sideband fre-
quency �
� of the electromagnetic field. Without the loss of
generality, we denote the quadratures of these quantum states

as X̂±= �X̂±�+�X̂±, where �X̂±� are the quadrature expectation

values, and where the quadrature variances are expressed by

V±= ���X̂±�2�.
Figure 10 shows the experimental setup for the postselec-

tion protocol. We used a hemilithic cavity MgO:LiNbO3
below-threshold optical parametric amplifier, to produce an
amplitude squeezed field at 1064 nm with a squeezing coef-
ficient of s=0.52±0.03, corresponding to quadrature vari-
ances of Vanc

+ =−4.5±0.2 dB and Vanc
− = +8.5±0.1 dB with re-

spect to the quantum noise limit. The amplitude squeezed
state was a slightly mixed state due to decoherence as a
result of losses in the optical parametric amplifier. More de-
tail of this experimental production of squeezing is given in
Ref. �19�. The displaced coherent states were produced at the
sideband frequency of 6.81 MHz of the 1064 nm laser field
using standard amplitude and phase electro-optic modulation
techniques of the laser field �19�. To produce the phase
squeezed ancillary state required in the protocol, the ampli-

tude squeezed ancilla state X̂anc
± was transformed to a phase

squeezed state by interfering it with the displaced input co-

herent state X̂in
± , which had a much larger coherent amplitude,

on the beam splitter �with reflectivity R� with a relative op-
tical phase shift of � /2. This optical interference yielded two
output states that were phase squeezed. The optical fringe
visibility between the two fields was �vis=0.96±0.01.

We directly detected the amplitude quadrature of the re-

flected state X̂r
+ using a detector, denoted by the gate detector

in Fig. 10, which had a quantum efficiency of �det=0.92 and
an electronic noise of 6.5 dB below the quantum noise limit.
The postselection process could, in principle, be achieved
using an all optical setup, using an optical switch for ex-
ample, but here we postselected a posteriori the quadrature

measurements of the transmitted state X̂tran
± , which were mea-

sured using a balanced homodyne detector. The total homo-
dyne detector efficiency was �hom=0.89, with the electronic
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FIG. 9. The average fidelity Fave between the output state from
a coherent state input ��� and an ideally squeezed coherent state by
the feedforward scheme �solid line� and the post-selection scheme
�dashed lime� against the ancillar squeezing s of the resource
squeezed vacuum. R=1/2, �X��0.025, and s�=0.346574. The co-
herent amplitudes are �a� ���=0.5, �b� ���=1, and �c� ���=2. The
threshold for the postselection scheme is x0=0.025.

FIG. 10. �a� Schematic of the postselection protocol. X̂in
± : ampli-

tude ��� and phase �	� quadratures of the input state; anc: ancilla
state; r: reflected; t: transmitted; and out: postselected output state.
R: beam-splitter reflectivity; GD: gate detector; RM: removable
mirror; OPA: optical parametric amplifier; LO: local oscillator; AM/
PM: amplitude/phase modulator; �1 /�2: optical phase delay; HP/
LP: high/low pass filters; G: radio frequency amplifier; 
: fre-
quency of displaced coherent state at 6.81 MHz; �: electronic local
oscillator at 6.875 MHz; DAQ: data acquisition system.
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noise of each detector 8.5 dB below the quantum noise limit.
To characterize the protocol, for each experimental run we
also measured the quadratures of the input displaced coher-
ent state X̂in

± using the same homodyne detector via a pair of
removable mirrors �Fig. 10�. To ensure accurate results, the
total homodyne detector inefficiency was inferred out of all
quadrature measurements for the postselected and input
quantum states �19�.

The electronic photocurrents of the detected quantum
states �at a sideband frequency of 6.81 MHz� from the gate
and homodyne detectors were electronically filtered, ampli-
fied, and demodulated down to 25 kHz using an electronic
local oscillator at 6.785 MHz. The resulting photocurrents
were digitally recorded using a NI PXI 5112 data acquisition
system operating at a sample rate of 100 kS/s. Typically, 5
�105 �2�106� samples of data were taken for the X̂in

± �X̂t
±

and X̂r
±� quadrature measurements, while 5�105 samples of

data were taken for the noise calibration data. We used com-
putational methods to apply a 25 kHz band-pass filter to the
data centered at 25 kHz, removing technical noise at 0 Hz,
and ensuring that the resulting frequency noise spectrum was
homogenous. The data was demodulated to 0 Hz using a
digital local oscillator at 25 kHz, and down-sampled to a
sample rate of 25 kHz, so that it could be directly analyzed
in the temporal domain.

We postselected the quadrature measurements of the
transmitted state X̂t

± which satisfied the threshold criteria
�Xr

+��x0. The postselection threshold was dependent on the
beam-splitter reflectivity used in the protocol. For a beam-
splitter reflectivity of R=0.75 and R=0.5 we used an experi-
mentally optimized threshold of x0=0.009 and x0=0.005 re-
spectively. Hence, the postselection threshold was
independent of the input state, but dependent on the beam-
splitter reflectivity.

We characterized the efficacy of the postselection protocol
as an ideal single mode squeezer, by determining the fidelity
of the postselected output state with a target state that is an
ideal squeezed operation of the input state �Eq. �21��. The
Wigner function of the ideal squeezed input state is given by
Wout�� ;s��, where s→� and s�→−ln�T� /2. In this case, the
fidelity is given by F�Xr

+���−�
� d2�Wexpt�� ;Xr

+�Wout�� ;s��,
where Wexpt�� ;Xr

+� is the Wigner function of the postselected
output state. From this expression the average fidelity Fave
for a postselection threshold x0 can be calculated. This cor-
responds to unity fidelity Fave=1 in the limit of ideal ancilla
state squeezing and Xr

+=0. In the experiment, the input state
was not coherent, but rather a slightly mixed state due to
inherent low-frequency classical noise on the laser beam,
with quadrature variances of Vin

+ =1.13±0.02 and Vin
−

=1.05±0.02, with respect to the quantum noise limit. Hence,
we calculated the fidelity with respect to the ideal squeezing
transform of the experimental input state. Figure 11 shows
the classical fidelity limit, in the case where the ancilla
squeezed state is replaced with a vacuum state. The classical
fidelity limit Fclas, is maximized by considering additional
classical noise on the phase quadrature of the input vacuum
state �Fig. 11�. Exceeding this classical fidelity limit can only
be achieved using quantum resources.

Figure 11 shows the experimental fidelity for varying am-
plitude quadrature expectation values of the input states

��+�
��X̂in
+ ��. We point out that for the majority of the input

states, both the amplitude and phase quadrature expectation

values were approximately equal with �X̂in
+ ���X̂in

− �. For a
beam-splitter reflectivity of R=0.75, we achieved a best fi-

delity of Fave=0.90±0.02 for an input state �X̂in
+ �

=0.18±0.01, which exceeds the maximum classical fidelity
of Fclas=4/5=0.8 �see Fig. 12�. This postselected output
state had quadrature variances of Vout

+ =4.70±0.11 and Vout
−

=0.51±0.01. The mean quadrature displacement gains g±

= �X̂out
± � / �X̂in

± �, which measure the ratio of the quadrature ex-
pectation values of the postselected output state with respect
to the input state, were measured to be g+=0.71±0.16 and
g−=0.50±0.06. This is compared with the ideal case of per-
fect ancilla state squeezing and a postselection threshold of

X̂r
+=0, where the ideal theoretical gains are gideal

+ =2 and
gideal

− =1/2. The phase gain was controlled by the beam-

FIG. 11. �Color online� Experimental fidelity of the postselected
output state for varying amplitude quadrature expectation values of

the input coherent state ��+�
�X̂in
+ �, for R=0.75 and x0=0.009. Dark

grey region: classical fidelity limit for an ancilla vacuum state,
Light grey region: classical fidelity limit. Dot-dashed line: calcu-
lated theoretical curve including experimental losses and the finite
postselection threshold.

FIG. 12. �Color online� Experimental fidelity of the postselected

output state for varying amplitudes �X̂in
+ � of the input coherent state,

for R=0.75 and x0=0.009.
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splitter transmittivity, while the amplitude gain was less than
the ideal case due to finite ancilla state squeezing, finite post-
selection threshold and experimental losses. The quantum
nature of the postselection protocol is demonstrated by the
experimental fidelity results that exceed the classical fidelity
limit in Fig. 11. For large input states �X̂in

+ �, the experimental
fidelity was less than the theoretical prediction due to elec-
tronic detector noise and the finite resolution of the data
acquisition system, resulting in a smaller postselected output
state �X̂in

+ � and a corresponding decrease in the experimental
fidelity.

Figure 13�a� illustrates how the experimental fidelity of a
postselected state transitions from the classical to the quan-
tum fidelity region by decreasing the postselection threshold
and corresponding probability of success. Figure 13�b�
shows how the corresponding mean amplitude quadrature
displacement gain g+ increases as a result of this process,
while the phase gain remains approximately unchanged.
Similarly, Fig. 13�c� shows how the amplitude quadrature
variance of the postselected state Vout

+ is reduced, whilst the
phase quadrature variance Vout

− remains approximately un-
changed, as the postselection threshold is decreased

We also characterized the experiment in terms of
the purity of the postselected output state, defined as
P=tr��out

2 �. In the case of Gaussian states, the purity of the
output state can be expressed as P= �Vout

+ Vout
− �−1/2. In the ideal

case of a lossless experiment and a postselection threshold
Xr

+=0, the protocol is a purity preserving transform, indepen-
dent of the input state and the amount of squeezing of the
ancilla state. In the experiment, as the input states were
slightly mixed, we calculated the purity of the postselected
output state, normalized to the purity of the input state,
which is given by Pnorm�Vout

+ Vout
− �−1/2 / �Vin

+ Vin
− �−1/2. Figure

14�a� shows the experimental purity of the postselected out-
put state for varying input states, which illustrates how the
purity is improved via the postselection process. For a beam-
splitter reflectivity of R=0.75 we achieved a best purity of

Pnorm=0.81±0.04 for an input state of �X̂in
+ �=2.03±0.02.

Figure 14�a� shows that the purity of the postselected output
states were approximately independent of the input states, for
a large range of input states.

We also implemented the postselection scheme for a
beam-splitter reflectivity of R=0.5. In this case, we measured

a best fidelity of Fave=0.96±0.01, which exceeded the maxi-
mum classical fidelity of Fclas=	8/3�0.94 as shown in Fig.
12. We measured a best experimental normalized purity of
Pnorm=0.80±0.04 which is shown in Fig. 14�b�.

IV. REMARKS

We have investigated a continuous-variable conditioning
scheme based on a beam-splitter interaction, homodyne de-
tection, and an ancilla squeezed vacuum state �9�. It trans-
forms input Fock states to squeezed single photons and
SCSs, which have applications in the field of quantum infor-
mation, with realizable squeezing of the ancilla state �9�. We
have found that an SCS with well defined parity and high
fidelity can be generated from a Fock state of n�4, and we
conjecture that this can be generalized for an arbitrary n.
Further, for Gaussian coherent states, this technique provides
an alternative to continuous electro-optic feedforward
schemes. The postselection scheme provides an interesting
transformation for coherent states which results in higher fi-
delities to the ideal squeezing operation when amplitudes are
small. All the interesting features of the postselection scheme
for non-Gaussian inputs discussed in this paper cannot be
achieved using the feedforward method in Ref. �17�. We

FIG. 13. �Color online� �a� Experimental fidelity of the postselected output state for varying success probability corresponding to varying

postselection threshold. R=0.5 and �X̂in
+ �=0.71. Light grey region: classical fidelity region. �b� Experimental optical quadrature gains

g±= �X̂out
± � / �X̂in

± � for varying success probability. �c� Experimental quadrature variances of the postselected output state Vout
± for varying

success probability.

FIG. 14. �Color online� �a� Experimental normalized purity for

varying input states �X̂in
+ �, for R=0.75 and x0=0.009. Dash arrows

show purity prior to �diamonds� and after �circles� postselection.
Dot-dashed line: calculated theoretical prediction of the experiment.

�b� Experimental purity for varying input state �X̂in
+ �, for R=0.5 and

x0=0.005.
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have described, in detail, the experimental demonstration of
the principles of this scheme using coherent states, where
fidelities were measured that are only achievable using quan-
tum resources �9�.
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