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In this theoretical paper, we investigate coherence properties of the near-resonant light scattered by two
atoms exposed to a strong monochromatic field. To properly incorporate saturation effects, we use a quantum
Langevin approach. In contrast to the standard optical Bloch equations, this method naturally provides the
inelastic spectrum of the radiated light induced by the quantum electromagnetic vacuum fluctuations. However,
to get the right spectral properties of the scattered light, it is essential to correctly describe the statistical
properties of these vacuum fluctuations. Because of the presence of the two atoms, these statistical properties
are not Gaussian: �i� the spatial two-points correlation function displays a specklelike behavior and �ii� the
three-points correlation function does not vanish. We also explain how to incorporate in a simple way propa-
gation with a frequency-dependent scattering mean-free path, meaning that the two atoms are embedded in an
average scattering dispersive medium. Finally we show that saturation-induced nonlinearities strongly modify
the atomic scattering properties and, as a consequence, provide a source of decoherence in multiple scattering.
This is exemplified by considering the coherent backscattering configuration where interference effects are
blurred by this decoherence mechanism. This leads to a decrease of the so-called coherent backscattering
enhancement factor.
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I. INTRODUCTION

Over the past ten years, cold atomic gases have gradually
become a widely employed and highly tunable tool for test-
ing new ideas in many areas of quantum physics: quantum
phase transitions �Bose-Einstein condensation, Fermi degen-
erate gases, Mott-Hubbard transition� �1–3�, quantum chaos
�4�, applications in metrology �5�, and disordered systems
�6–8� to cite a few. In the latter case, cold atomic vapors act
as dilute gases of randomly distributed atoms multiply scat-
tering an incident monochromatic laser light. In this case, the
scattered light field exhibits a specklelike structure due to
�multiple� interference between all possible scattering paths.
The key point is that the disorder average is insufficient to
erase all interference effects. This gives rise to weak or
strong localization effects in light transport depending on the
strength of disorder �9,10�. A hallmark of this coherent trans-
port regime is the coherent backscattering �CBS� phenom-
enon: the average intensity multiply scattered off an optically
thick sample is up to twice larger than the average back-
ground in a small angular range around the direction of back-
scattering, opposite to the incoming light �11�. This interfer-
ence enhancement of the diffuse reflection off the sample is a
manifestation of a two-wave interference. As such, it probes
the coherence properties of the outgoing light �12�. The CBS
effect in cold atomic gases has been the subject of extensive
studies in the weak localization regime, both from theoretical
and experimental points of view �13�. In particular, modifi-
cations brought by atoms, as compared to classical scatterers,
for light transport properties �mean-free path, coherence
length, CBS enhancement factor� have been highlighted.
They are essentially due to the quantum internal atomic
structure �14,15�.

Another interesting feature of atoms is their ability to dis-
play a nonlinear behavior: the scattered light is no more pro-
portional to the incident one. This leads to a wide variety of
phenomena, like pattern formation, four-wave mixing, self-
focusing effects, dynamical instabilities, etc. �16–19�. For a
weak nonlinearity, introducing an intensity-dependent sus-
ceptibility is enough to properly describe these effects, in-
cluding quantum properties �16,20,21�, e.g., the Kerr effect
�intensity dependence of the refractive index� can be ob-
tained with a ��3� nonlinearity. However, when the incident
intensity is large enough, and this is easily achieved with
atoms, perturbation theories eventually fail and a full nonlin-
ear treatment is required. For a single two-level atom, the
solution is usually given by the so-called optical Bloch �OB�
equations. Together with the quantum regression theorem,
they allow for a complete description of the spectral proper-
ties of the fluorescence light �23�. In particular, these equa-
tions show that the atomic nonlinear behavior is intrinsically
linked to the quantum nature of the electromagnetic field.
More specifically, as opposed to classical nonlinear scatter-
ers, the radiated light exhibits quantum fluctuations charac-
terized by peculiar time correlation properties. They define a
power spectrum, known as the Mollow triplet, emphasizing
inelastic scattering processes at work in the emission process
�23–25�.

However, even if all these aspects are well understood in
the case of a single atom exposed to a strong monochromatic
field �23�, the situation changes dramatically in the case of a
large number of atoms where a detailed analysis including
both quantum nonlinear properties and coherence effects is
still lacking. Until now, the nonlinear coupling between the
atoms and the quantum vacuum fluctuations is either in-
cluded in a perturbative scheme �21,22� or simply described
by a classical noise �26–30�. In the dilute regime ��R
where the light wavelength � is much less than the average
particle separation R, one expects the quantum fluctuations to*Electronic address: Benoit.Gremaud@spectro.jussieu.fr
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reduce the degree of coherence of the scattered light. This
will alter not only propagation parameters �mean-free path,
refraction index�, but also weak localization corrections to
transport, and the CBS enhancement factor, which is related
to the coherence properties of the scattered light field
�7,8,12�. We want here to stress that, even beyond interfer-
ence and weak localization phenomena, any transport prop-
erty which may be influenced by saturating the atomic tran-
sition deserves a special and necessary study on its own. The
most striking systems falling in this category where both
nonlinear and disordered descriptions are intimately interwo-
ven are coherent random lasers �31�, where interference ef-
fects lead to localized light modes inside the disordered me-
dium, comparable to resonator eigenmodes in chaotic lasers
�32–35�. Even if, in this case, one would require an active
�i.e., amplifying� medium, a key point is the understanding
of the mutual effects between multiple interference and non-
linear scattering.

In the present paper, we will focus on the rather simple
case of two atoms in vacuum. Our aim is threefold. �i� First
to properly calculate quantum correlations between pairs of
atoms as a crucial step towards a better understanding of the
physical mechanisms at work, �ii� second to implement a
method allowing for a simple incorporation of frequency-
dependent propagation effects, and �iii� finally to understand,
in the CBS situation, the modifications brought by the �quan-
tum� nonlinearity to the interference properties. We hope that
these points, once mastered, can provide an efficient way to
produce realistic computer models to simulate real experi-
ments. Point �i� alone could easily be solved using the stan-
dard OB method �36,37�. But the latter almost becomes use-
less regarding point �ii�, since frequency-dependent
propagation leads to complicated time-correlation functions.
From a numerical point of view, it also leads to such large
linear systems of coupled equations that its practical use is
limited up to only a few atoms, very far from a real experi-
mental situation. For these reasons, we will rather use the
quantum Langevin method for our purposes. This method
not only solves points �i� and �ii�, but also leads to a simple
explanation of point �iii�, through a direct evaluation of the
quantum noise spectrum. Note however that, in the absence
of any effective medium surrounding the two atoms, and as
long as only the numerical results are concerned �but not the
physical interpretation�, the quantum Langevin approach is
completely equivalent to solving the multiatom optical Bloch
equations as in Refs. �36,37�.

This paper divides as follows. In Sec. II, the notations are
defined and the quantum Langevin approach is explained for
the single atom case. In Sec. III, the method is adapted to the
case where two atoms are weakly coupled by the dipole in-
teraction. The validity and relevance of the method is con-
trolled by a comparison with a direct calculation using OB
equations. Then, in the CBS configuration, numerical results
for different values of the laser intensity and detuning are
presented and discussed in Sec. IV. In particular, possible
reasons for the reduction of the enhancement factor are put
forward. Conclusions and possible continuations are given in
Sec. V.

II. SINGLE TWO-LEVEL ATOM CASE

A. Time-domain approach

We consider an atom with a zero angular momentum elec-
tronic ground state �Jg=0� exposed to a monochromatic light
field. The light field frequency �L is near-resonant with an
optical dipole transition connecting this ground state to an
excited state with angular momentum Je=1. The angular fre-
quency separation between these two states is �0 and the
natural linewidth of the excited state is �. We will denote
hereafter by �L=�L−�0 the laser detuning. The ground state
is denoted by �00� while the excited states are denoted by
�1me�, with me=−1,0 ,1 the Zeeman magnetic quantum num-
ber. As we assume no magnetic field to be present throughout
this paper, the excited state is triply degenerate.

In the Heisenberg picture, this two-level atom is entirely
characterized by the following set of 16 time-dependent op-
erators:

�g = �00��00�, �meme�
e = �1me��1me��,

Dme

+ = �1me��00�, Dme

− = �00��1me� . �1�

The atomic operators obey the completeness constraint

1 = �g + �e, �2�

where �g and �e=�me
�meme

e are the ground and excited state
atomic population operators.

The full atom-field Hamiltonian H is the sum of the free
atom Hamiltonian HA= ��0�e, of the free quantized field
Hamiltonian HF=�k,��k��kak�

† ak� and of the dipolar inter-
action V=−d · �EL+EV� between the atomic dipole d, the
classical laser field EL, and the quantum electromagnetic
vacuum field EV. Performing the usual approximations of
quantum optics, i.e., neglecting nonresonant terms �rotating
wave approximation� and assuming Markov-type correla-
tions between the atomic operators and the vacuum field, one
obtains the quantum Langevin equations controlling the time
evolution of any atomic operator O in the rotating frame
�23,26�:

dO
dt

= i�L�O,�e� −
i

2�
q

�− 1�q�O,Dq
+�	−q

L+�R�

−
i

2�
q

�O,Dq
−�	q

L−�R� −
�

2
�O�e + �eO�

+ ��
q

Dq
+ODq

− + FO�R,t� , �3�

where 	q
L+ �	q

L−� are the components of the Rabi frequency
of the positive �negative� frequency parts of the incident la-
ser beam, i.e., ��=−dE where d is the dipole strength. Fi-
nally FO�t� is the Langevin force depicting the effects of the
quantum fluctuations of the vacuum electromagnetic field
and reads
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FO�t� = −
i

2�
q

�− 1�q�O,Dq
+�	−q

0+�R,t�

−
i

2�
q

	q
0−�R,t��O,Dq

−� , �4�

where 	0+�R , t� is the vacuum Rabi field operator

�0+�R,t� = −
2id

�
�

k,��k
E����ak��t0�eik·R−i��−�L��t−t0� �5�

with t0 an initial time far in the past. In the case of a sur-
rounding cavity, one would expand the vacuum Rabi field
onto the cavity modes �34� instead of the free space modes
�ak��t0�eik·R−i��−�L��t−t0�. From the preceding expression, one
can calculate the time correlation functions of the vacuum
field �38�

�− 1�q�	−q
0+�R,t�,	q�

0−�R,t��� = 4��qq�f�t − t�� , �6�

where f�
� is a function centered around 
=0, whose width

c is much smaller than any characteristic atomic time scale
�i.e., 
c��0

−1��−1� and whose time integral is equal to
unity. Thus, hereafter, f�
� will be safely replaced by a �
function f�
�→��
�.

The time evolution for the expectation values is obtained
by averaging over the initial density matrix ��t0�, i.e.,
�O�t��=Tr�O�t���t0��. Since the atom and the vacuum field
are supposed to be decoupled initially, ��t0� is simply
�at�t0� � �0��0� ��0� being the vacuum field state�. Because of
the normal ordering, one immediately gets

�FO�t�� = 0, �7�

and the time correlation functions of the Langevin forces

�FO�t�FO��t���

= − �	�
q

�O�t�,Dq
+�t���O��t��,Dq

−�t���
��t − t�� .

�8�

The physical picture of the quantum Langevin approach is
to represent quantum fluctuations by a fluctuating force act-
ing on the system, in analogy with the usual Brownian mo-
tion. Not surprisingly, this leads to a diffusivelike behavior
of expectation values. More precisely, because of the � func-
tion in Eq. �8�, we can set t�= t for the atomic operators and
we finally obtain in the stationary regime t� t0:

�FO�t�FO��t��� =
�

4
DOO���t − t�� , �9�

where D is a matrix of diffusion constants depending only on
the stationary values of the atomic operators. The stationary
hypothesis also results from the fact that these correlation
functions only depend on the time difference t− t�.

From this, it is possible to prove that the quantum regres-
sion theorem applies �23,39�, allowing for the calculation of
two-times correlation functions of the atomic operators and
of their expectation values. From their Fourier transforms,
one can obtain the spectrum of the radiated light. But, for the

reasons mentioned in the Introduction, we will explain how
these properties can be obtained in a much simpler way by
directly translating the Langevin equations in the Fourier do-
main �39�.

B. Frequency-domain approach

First, because of the constraint �2�, only 15 atomic opera-
tors are actually independent. More specifically, we will use
the following set, denoted by the column vector X:

�me

z =
1

2
��meme

e − �g� ,

�meme�
e = �1me��1me��, me � me�,

Dme

+ = �1me��00� ,

Dme

− = �00��1me� .

�10�

The Langevin equations for X then formally read as follows

d

dt
X�t� = MX�t� + L + F�t� , �11�

where M is a time-independent matrix depending on the laser
Rabi frequency 	L±, L is a constant vector scaling with �
and F�t� is a vector characterizing the Langevin forces at
work on the atom �for simplicity, we have dropped the ex-
plicit position dependence�. The stationary expectation val-
ues are then simply given by

�X� = − M−1L . �12�

The Fourier transforms of the different quantities are de-
fined as follows:

f��� =� dtf�t�ei�t,

f�t� =� d�

2

f���e−i�t, �13�

leading to the Langevin equations in the frequency domain

�− i�1 − M�X��� = 2
����L + F��� . �14�

Introducing the Green’s function G���= �−i�1−M�−1, the
solution of the preceding equations simply reads

X��� = G����2
����L + F���� . �15�

Using G�0�=−M−1 and Eq. �12�, this solution separates
into a nonfluctuating part XL��� and a fluctuating
�frequency-dependent� part XF���:

XL��� = 2
�����X� ,

XF��� = G���F��� . �16�

From the linearity of the Fourier transform, we still have
�F����=0 implying �XF����=0. The time correlation func-
tions for the Langevin force components, Eq. �8�, become
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�Fi����F j���� = 2
���� + ���Dij , �17�

where the 2
����+�� function is a direct consequence of
the time-translation invariance, i.e., that we calculate the cor-
relation functions in the stationary regime. This implies that
the correlation function for the components of XF in the
frequency domain are

�„XF����…i„XF���… j� = 2
��� + ����GDtG�ij , �18�

where the superscript t means matrix transposition.
The field radiated at frequency � by the atom at a distance

r�� �far-field regime� reads as follows:

�− 1�q	−q
+ ��� = −

3

2
�Pqq�

r Dq�
− ���

eikr

kr
, �19�

where we use implicit sum over repeated indices. Pr is the
projector onto the plane perpendicular to vector r:

Pqq�
r = �̄qPr�q� = �̄q�1 −

r tr

r2 
�q� = �qq� − �− 1�q
r−qrq�

r2 ,

�20�

where the overbar denotes complex conjugation and where
�r tr� is a dyadic tensor.

The correlation functions �	q�
− ����	q

+���� of the light
emitted by the atom is then proportional to �Dq�

+ ����Dq
−����

and read

�	q�
− ����	q

+���� � �2
�2����������Dq�
+ ��Dq

−�

+ 2
���� + ���
j�j

Gi�j�����Gij���Dj�j ,

�21�

where the index i �i�� corresponds to Dq
− �Dq�

+ �. The nonfluc-
tuating part gives rise to a spectral component of the emitted
light at exactly the incident laser frequency and is thus natu-
rally called the elastic part. The fluctuating part gives rise to
the inelastic Mollow triplet spectrum �41�, whose properties
�position and width of the peaks� are given by the poles of
G���, i.e., by the complex eigenvalues of M. Actually, we
simply recover the results of the quantum regression theo-
rem, which states that the atomic time correlation functions
evolve with the same equations than the expectation values

�X�˙ =M�X�+L �23,24�.

III. TWO-ATOM CASE

A. Optical Bloch equations

We now consider two isolated atoms, located at fixed po-
sitions R1 and R2. Defining R=R2−R1=Ru �with R= �R�
and u the unit vector joining atom 1 to atom 2�, we assume
the far-field condition R�� to hold. We also assume that R
is sufficiently small for the light propagation time R /c to
be much smaller than any typical atomic time scales
��−1 ,�−1 ,	L

−1�. In this regime, all quantities involving the
two atoms are to be computed at the same time t. The con-
tribution of the atom-atom dipole interaction in the Langevin
equation for any atomic operator O reads

� dO
dt
�

dip.
= i

3�

4
���O,Dq

1+�Pqq�
R Dq�

2− + �O,Dq
2+�Pqq�

R Dq�
1−�

eikR

kR

+ �Dq
1+Pqq�

R �O,Dq�
2−� + Dq

2+Pqq�
R �O,Dq�

1−��
e−ikR

kR
� .

�22�

In the OB equations, the two-atom system is entirely de-
scribed by the set of 256 operators Xij made of all possible
products Xi

1Xj
2. The stationary expectation values �Xij� are

then obtained as solutions of a linear system resembling Eq.
�12�. This is the approach used in Ref. �37�, where such
optical Bloch equations are solved.

Since the two atoms are far enough from each other, the
electromagnetic field radiated by one atom onto the other can
be treated as a perturbation with respect to the incident laser
field. More precisely, the solutions �Xij� can be expanded up
to second order in powers of g and ḡ:

�Xij� = �Xij��0� + g�Xij��g� + ḡ�Xij��ḡ� + gḡ�Xij��gḡ�

+ g2�Xij��gg� + ḡ2�Xij��ḡḡ�, �23�

where the complex coupling constant g is

g = i
3�

2

exp�ikR�
kR

. �24�

In fact, it will be shown below that both terms in g2 and ḡ2

give a vanishing contribution to the coherent backscattering
signal.

As explained in the Introduction, this approach has two
drawbacks: �i� the solutions obtained in this way are global
and, thus, do not provide a simple understanding of the prop-
erties of the emitted light and �ii� when the two atoms are
embedded in a medium whose susceptibility strongly de-
pends on the frequency, the field radiated by one atom onto
the other at a given time t now depends on the atomic op-
erators of the first atom at earlier times �since retardation
effects become frequency dependent�. Time correlation func-
tions in the dipole interaction then explicitly show up.

B. Langevin approach

The Langevin equations for the two sets of atomic opera-
tors X�, with �=1,2, formally read

Ẋ� = M�X� + L + F� + gTq+X�Pqq�
R Dq�

�− + ḡDq
�+Pqq�

R Tq�−X�,

�25�

where � denotes the other atom and where Tq± are 15�15
matrices defined by �Xi ,Dq

±�= ±2Tij
q±Xj. Taking the Fourier

transform of these equations, one gets

X���� = G�����2
����L + F�����

+ gG����Tq+Pqq�
R �X�

� Dq�
�−����

− ḡG����Pqq�
R Tq�−�Dq

�+
� X����� , �26�

where � is the convolution operator
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�A � B���� =
1

2

� � d�1d�2���1 + �2 − ��A��1�B��2� .

�27�

Introducing, for simplicity, the following notations:

X��0�
��� = G�����2
����L + F����� ,

G�q
+
��� = G����Tq�+Pq�q

R ,

G�q
−
��� = G����Tq�−Pqq�

R , �28�

Eq. �26� becomes

X���� = X��0�
��� + gG�q

+
����X�

� Dq
�−����

− ḡG�q
−
����Dq

�+
� X����� , �29�

from which one gets the expansion in power of g and ḡ �up
to gḡ� for the atomic operators:

Xi
���� = Xi

��0�
��� + gGij

�q
+

����Xj
��0�

� Dq
�−�0�

����

− ḡGij
�q

−

����Dq
�+�0�

� Xj
��0�

����

− gḡ�Gij
�q

+

����Xj
��0�

� GDq
−j�

�p
−

�Dp
�+�0�

� Xj�
��0�

�����

+ Gij
�q

+

����Gjj�
�p

−

�Dp
�+�0�

� Xj�
��0�

� � Dq
�−�0�

����

+ Gij
�q

−

����Dq
�+�0�

� Gjj�
�p

+

�Xj�
��0�

� Dp
�−�0�

�����

+ Gij
�q

−

����GDq
−j�

�p
+

�Xj�
��0�

� Dp
�−�0�

� � Xj
��0�

����� ,

�30�

where the notation GDq
−j�

�p
−

means the matrix element Gi�j� with

i� such that Xi�=Dq
−. A schematic representation of the pre-

ceding equation is shown in Fig. 1. The thick arrows depict
the incident laser intensity �the pump field�. The continuous
arrows depict the propagation of the components of the posi-
tive frequency part of electromagnetic field �i.e., 	+�,
whereas the dashed arrows correspond to the negative fre-
quency part �i.e., 	−�. Figure 1�a� represents thus the g co-
efficient in Eq. �30�: the atom � is pumped by the incident
laser field and thus emits light �elastic and inelastic� �dipole

operator Dq
�−�0�

�, which is then scattered by the atom � �non-

linear susceptibilities Gij
�q

+

Xj
��0�

�. Figure 1�b� depicts the ḡ co-
efficient corresponding to the case where a forward four-
wave mixing �FFWM� process occurs at the atom �; i.e., the
components of the negative frequency part of the electro-
magnetic field emitted by the atom � and the components of
the positive frequency part of the incident laser field are non-
linearly mixed at the atom � resulting in a radiated field with
a positive frequency part �see Sec. IV C for more details�.
Figure 2�a� corresponds to the first gḡ coefficient and must
be read as follows: the atom � emits light �the negative fre-

quency components Dp
�+�0�

�, which undergoes a FFWM pro-

cess at the atom � �term GDq
−j�

�p
−

Xj�
��0�

�, the resulting field is

then scattered by the atom � �term Gij
�q

+

Xj
��0�

�. Figure 2�b�
corresponds to the second gḡ coefficient and depicts the fol-
lowing process: the positive frequency components of the

FIG. 1. �Color online� A schematic representation of Eq. �30�.
The thick arrows depict the incident laser intensity �the pump field�.
The continuous arrows depict the propagation of the components of
the positive frequency part of electromagnetic field �i.e., 	+�,
whereas the dashed arrows correspond to the negative frequency
part �i.e., 	−�. �a� represents thus the g coefficient in Eq. �30�: the
atom � is pumped by the incident laser field and thus emits light

�elastic and inelastic� �dipole operator Dq
�−�0�

�, which is then scat-

tered by the atom � �nonlinear susceptibilities Gij
�q

+

Xj
��0�

�. The dia-
gram �b� depicts the ḡ coefficient corresponding to the case where a
forward four-wave mixing �FFWM� process occurs at the atom �;
i.e., the components of the negative frequency part of the electro-
magnetic field emitted by the atom � and the components of the
positive frequency part of the incident laser field are non-linearly
mixed at the atom �, resulting in a radiated field with a positive
frequency part �see Sec. IV C for more details�. Figure 2�a� corre-
sponds to the first gḡ coefficient and must be read as follows: the

atom � emits light �the negative frequency components Dp
�+�0�

�,

which undergoes a FFWM process at the atom � �term GDq
−j�

�p
−

Xj�
��0�

�;

the resulting field is then scattered by the atom � �term Gij
�q

+

Xj
��0�

�.
Figure 2�b� corresponds to the second gḡ coefficient and depicts the
following process: the positive frequency components of the light

emitted by the atom � �term Dq
�−�0�

� are scattered by the atom �
with nonlinear susceptibilities which are modified by the negative
frequency components emitted by the atom � �term

Gij
�q

+

Gjj�
�p

−

Dp
�+�0�

Xj�
��0�

�. Finally the �c� �third gḡ coefficient� is analog to
Fig. 2�b� with an additional FFWM process at the atom � and Fig.
2�d� �fourth gḡ coefficient� is analog to Fig. 2�a� with a FFWM
process also at the atom �.
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light emitted by the atom � �term Dq
�−�0�

� are scattered by the
atom � with nonlinear susceptibilities which are modified by
the negative frequency components emitted by the atom �

�term Gij
�q

+

Gjj�
�p

−

Dp
�+�0�

Xj�
��0�

�. Finally, Fig. 2�c� �third gḡ coeffi-
cient� is analog to Fig. 2�b� with an additional FFWM pro-
cess at the atom � and Fig. 2�d� �fourth gḡ coefficient� is
analog to Fig. 2�a� with also a FFWM process at the atom �.
For all these figures, one must notice that the regular nonlin-
ear susceptibilities only depend on the intensity of the inci-
dent laser field, whereas the FFWM processes also depend
on the phase of the laser. These properties will play a crucial
role for the calculation of the CBS signal �see Sec. IV C�.

Two-body term expansions, obtained from Eq. �30�, read
as follows:

Xi�
� ����Xi

���� = Xi�
��0�

����Xi
��0�

���

+ g�Xi�
��0�

����Gij
�q

+

����Xj
��0�

� Dq
�−�0�

����

+ Gi�j�
�q

+

�����Xj�
��0�

� Dq
�−�0�

�����Xi
��0�

����

− ḡ�Xi�
��0�

����Gij
�q

−

����Dq
�+�0�

� Xj
��0�

����

+ Gi�j�
�q

−

�����Dq
�+�0�

� Xj�
��0�

�����Xi
��0�

����

− gḡ �see Eq. �A1�� ,

Xi�
� ����Xi

���� = Xi�
��0�

����Xi
��0�

���

+ g�Xi�
��0�

����Gij
�q

+

����Xj
��0�

� Dq
�−�0�

����

+ Gi�j�
�q

+

�����Xj�
��0�

� Dq
�−�0�

�����Xi
��0�

����

− ḡ�Xi�
��0�

����Gij
�q

−

����Dq
�+�0�

� Xj
��0�

����

+ Gi�j�
�q

−

�����Dq
�+�0�

� Xj�
��0�

�����Xi
��0�

����

− gḡ �see Eq. �A2�� . �31�

The quantities involved in the preceding equations are opera-
tors acting on both atomic and electromagnetic field spaces.
In particular, the quantum fluctuations due to the vacuum
electromagnetic field still appear through the Langevin
terms. A full numerical simulation of these equations would
then take place in the framework of the quantum stochastic
calculus �40�. However, as in the one atom case, we will
show that, from these equations, one can directly obtain the
power expansion of the expectation values �i.e., quantities
averaged over the quantum fluctuations�. The latter can be
derived from the quantum average of the preceding equa-
tions, but not as easily as it seems. Indeed, if one formally
writes

Xi�
������Xi

���� = �
ab

O�a,b�gaḡb,

�Xi�
������Xi

����� = �
ab

C�a,b�gaḡb, �32�

then C�a ,b� is not simply equal to �O�a ,b��. Actually,
C�a ,b� depends on all �O�a� ,b��� for �a� ,b��� �a ,b�, and
this for two reasons.

For a given atom �, the frequency correlation functions
�Fp

�����Fq
����� are given by 2
����+��Dpq, where Dpq de-

pends on the stationary values. But the latter are modified by
the second atom and, thus, must also be expanded in power
of g and ḡ. This implies, for example, that the first term

Xi�
��0�

����Xi
��0�

��� in the expansion of Xi�
� ����Xi

���� �Eq. �31��
will contribute to all coefficients of �Xi�

� ����Xi
�����.

The Langevin forces acting on two different atoms are
correlated since they both originate from the vacuum quan-
tum field. More precisely, their frequency correlation func-
tions depend on their relative distance. This dependence is
analogous to the correlation function of a speckle pattern
�resulting from the random superposition of plane waves
with the same wavelength but arbitrary directions�:

�Fi�
� ����Fi

����� = 2
���� + ��
3

2
�

sin kR

kR
Ti�j�

q�+Pq�q
R Tij

q−�Xj�
� Xj

��

= −
1

2
�g + ḡ�2
���� + ��Ti�j�

q�+Pq�q
R Tij

q−�Xj�
� Xj

��

= −
1

2
�g + ḡ�2
���� + ��Di�i

��. �33�

Thus, terms such as Xi�
��0�

�����Xj
��0�

� Dq
�−�0�

���� appearing in
Eq. �31� will also contribute to higher-order coefficients in
the power expansion of �Xi�

� ����Xi
�����. One must note that,

when R→0, Pq�q
R → 2

3�q�q and one recovers the single atom
correlation functions given by Eq. �17�, which emphasizes
the consistency of the present approach.

C. Comparison with optical Bloch results

Despite these subtleties, it is nevertheless possible to cal-
culate power expansions of the atomic correlation functions.
More precisely, in order to emphasize the validity of the
present approach, we will compare the results obtained from
the OB equations and from the Langevin approach. Indeed
from the atomic correlation functions, the stationary solu-
tions can be calculated by inverse Fourier transform as fol-
lows:

�Xi�
�Xi

��� =
1

�2
�2 � � d��d��Xi�
� ����Xi

������ . �34�

As a specific example, the coefficient proportional to g in the
perturbative expansion of �Xi�

� ����Xi
����� is given by
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�Xi�
� ����Xi

������g�

= �Xi�
��0�

����Xi
��0�

�����g�

+ �Xi�
��0�

����Gij
�q

+

����Xj
��0�

� Dq
�−�0�

������0�

+ �Gi�j�
�q

+

�����Xj�
��0�

� Dq
�−�0�

�����Xi
��0�

�����0�

= Gi�j�
� ����Gij

�����Fj�
� ����Fj

������g�

+ Gij
�q

+

����Xj
��0�

��Xi�
��0�

����Dq
�−�0�

�����0�

+ Gi�j�
�q

+

�����Xj�
��0�

��Dq
�−�0�

����Xi
��0�

�����0�, �35�

where we have used the fact that terms such as �X��0�
X��0�

��0�

�i.e., zeroth order� actually factorize into �X���X�� since their
fluctuating parts necessarily give rise to higher orders in g
and ḡ, see Eq. �33�. The underlined terms correspond to the
nonvanishing correlations of the quantum vacuum fluctua-
tions evaluated at the two atom positions.

Finally, separating elastic and inelastic part, one gets

�Xi�
� ����Xi

������g�

= �2
�2����������Gij
�q

+

�0��Xj
��0�

��Xi�
��0�

��Dq
�−�0�

�

+ Gi�j�
�q

+

�0��Xj�
��0�

��Dq
�−�0�

��Xi
��0�

��

+ 2
���� + ���−
1

2
Gi�j�

� ����Gij
����Dj�j

���0�

+ Gij
�q

+

���Gi�j�
� ����GDq

−k�
� ���Dj�k�

���0�
�Xj

��0�
�

�Gi�j�
�q

+

����GDq
−k

� ����Gij
����Dkj

���0�
�Xj�

��0�
�
 . �36�

The corresponding stationary solution then reads

�Xi�
�Xi

���g� = Gij
�q

+

�0��Xj
��0�

��Xi�
��0�

��Dq
�−�0�

�

+ Gi�j�
�q

+

�0��Xj�
��0�

��Dq
�−�0�

��Xi
��0�

�

+
1

2

� d��−

1

2
Gi�j�

� �− ��Gij
����Dj�j

���0�

+ Gij
�q

+

���Gi�j�
� �− ��GDq

−k�
� ���Dj�k�

���0�
�Xj

��0�
�

�Gi�j�
�q

+

�− ��GDq
−k

� �− ��Gij
����Dkj

���0�
�Xj�

��0�
�
 .

�37�

All quantities above only depend on the stationary values
without coupling between the atoms and thus can be calcu-
lated from the single atom solutions. Furthermore, the inte-
gration over � can be performed either numerically or ana-
lytically by the theorem of residues once the poles of G �i.e.,
the complex eigenvalues of M� are known. Because of cau-
sality, they all lie in the lower-half of the complex plane. In
practice, we have checked that we effectively recover, from

the preceding expressions, the results obtained from the full
OB equations. In particular, the contribution of the correla-
tions of the quantum vacuum fluctuations evaluated at the
two atom positions �the underlined term� is essential to get
the correct results.

The same kind of expressions can be derived for gḡ terms,
but they are slightly more complicated, since they explicitly
involve three-body correlation functions, more precisely
terms like

Gij
�q

+

����Xi�
��0�

�����Xj
��0�

� Dq
�−�0�

������ḡ�,

Gij
�q

+

����Xi�
� �����Gjj�

�p
−

�Dp
�+�0�

� Xj�
��0�

� � Dq
�−�0�

������0�

�38�

which require the calculation of three-points Langevin force
correlation functions like

Gij
�q

+

���Gi�j�
� ����

1

2

� � d�1d�2���1 + �2 − ��

�Gjk
� ��1�GDq

−k�
� ��2��Fj�

� ����Fk
���1�Fk�

� ��2���ḡ�,

Gij
�q

+

���Gi�k�
� ����

1

2

� � d�1d�2���1 + �2 − ��

�Gjj�
�p

−

��1�GDp
+k

� ��1�GDp
+k�

� ��2��Fk�
� ����Fk

���1�Fk�
� ��2���0�.

�39�

These correlation functions are nonzero even if they in-
volve an odd number of Langevin forces, emphasizing that
the statistical properties of the vacuum field fluctuations are
far from Gaussian. Nevertheless, the explicit expressions of
the above quantities can be derived �see Appendix B�. They
lead to rather complicated and tedious formulas for the
atomic correlation functions at order gḡ. From that, we get
the corresponding stationary expectations values. Again, we
have checked that we indeed recover the OB results.

D. Incorporation of an effective medium

Finally, and in sharp contrast to optical Bloch equations, it
is very easy to adapt all the preceding results to the case of
propagation in a medium with a frequency-dependent com-
plex susceptibility. Indeed, the quantization of the electro-
magnetic field in dielectrics involves the tensor-valued
Green’s function of the classical problem �42,43�, from
which all possible commutation relations of the field opera-
tors can be derived. In particular, for a homogeneous me-
dium, this Green’s function involves the complex-valued per-
mittivity ���L+��=1+���L+��. Its real part is responsible
for dispersion and its imaginary part for absorption. In the
dilute regime, this allows us to write the field radiated by an
atom at a distance R and at frequency � as follows:
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�− 1�q	−q
+ ��� = igPqq�

R Dq�
− ���exp�−

1

2

R

l+���

 , �40�

where l+��� is the �complex� scattering mean-free path, de-
fined by 1/kl+���= i���L+�� with the dilute regime condi-
tion k � l+��� � �1.

The real part of 1 / l+��� describes thus the exponential
attenuation of the field during its propagation in the medium
while the imaginary part describes the additional dephasing
induced by the medium. More complicated formulas, ac-
counting for possible variations of l with position, birefrin-
gence effects, or even nonlinearities in propagation, can be
derived in the same spirit. In all preceding equations, leading
to the calculation of the correlation functions, any occurrence
of the dipole operators must then simply be replaced by

D� → D�exp�−
R

2l±���
 �41�

while keeping the same “medium-free” coupling constant g.
In this way, the present approach can be easily extended to
the situation where the two atoms are embedded in a me-
dium. In the case of a nonlinear medium, this could lead to a
self-consistent set of nonlinear equations.

It is important to stress that accounting for the effective
medium is rather straightforward in this frequency-domain
approach but is a much more difficult task in the temporal-
domain approach. Indeed, one basic hypothesis for deducing
OB equations from the Langevin approach—see Sec.
III A—is that the light propagation time between the two
atoms is much shorter than any typical atomic time scale.
When this condition is fulfilled, it is possible to evaluate
expectation values at equal times for both atoms, producing
the set of closed OB equations. In the presence of a sur-
rounding medium, propagation between the two atoms is af-
fected and this basic assumption may fail. If the refraction
index of the dilute medium is smoothly varying with fre-
quency, then the corresponding propagation term is also
smoothly varying with frequency and can be factored out.
Thus, except for the exponential attenuation, one may re-
cover the OB equations where equal times must be used for
atoms 1 and 2. On the contrary, if the propagation term has a
complicated frequency dependence, the problem cannot be
simply reduced to OB equations. It will rather involve opera-
tors evaluated at the other atom, but at different times, thus
leading to a much more complicated structure. This difficulty
may even take place in a dilute medium with refraction index
close to unity. Indeed, the important parameter is the time
delay induced by the medium, itself related to the derivative
of the index of refraction with respect to frequency. If the
medium is composed of atoms having sharp resonances, the
effective group velocity can be reduced by several orders of
magnitude, consequently increasing by the same amount the
propagation time between the two atoms. Around the atomic
resonance line, the typical propagation time delay induced by
the medium over one mean-free path depends on the laser
detuning but is of the order of the atomic timescale for the
internal dynamics, namely, �−1 �47�. In this case, only the
full Langevin treatment developed in this paper can properly

account for the effect of the average atomic medium. Its
practical implementation calls for an investigation on its own
and is thus postponed to a future paper. We must also note
that, if the surrounding medium is composed of the same
atoms than the scatterers, it is not completely clear that
propagation in the medium can be described “classically,”
i.e., that the correlation between the Langevin forces acting
on the scatterers and the Langevin forces acting on the me-
dium can be safely neglected. For the rest of this paper, we
will consider two isolated atoms in vacuum.

IV. MAIN RESULTS

A. Scattered field correlation functions in the CBS
configuration

In the case of a large number of atoms and for a given
configuration, the interference between all possible multiple
scattering paths gives rise to a speckle pattern. When aver-
aging the intensity scattered off the sample over all possible
positions of the atoms, one recovers the CBS phenomenon:
the intensity radiated in the direction opposite to the incident
beam is up to twice larger than the background intensity and
gradually decreases to the background value over an angular
range �� scaling essentially as �kl�−1, with l the scattering
mean-free path. In the present case, the averaging procedure
is performed numerically by integrating over the relative po-
sitions of the two atoms. As will be seen below, the far-field
condition kR�1 allows for an a priori selection of the
dominant terms contributing to the CBS signal.

The field radiated by the two atoms in the direction n at a
distance r�R��, in the polarization channel �out orthogo-
nal to n ��out ·n=0�, is given by

	out
+ �n,�� = −

3

2
��q

out�Dq
1−���e−ikn·R1 + Dq

2−���e−ikn·R2�
eikr

kr
,

�42�

so that the field correlation function in this channel reads

�	out
− �n,���	out

+ �n,���

= � 3�

2kr

2

�q
out�p

out��Dp
1+����Dq

1−���� + �Dp
2+����Dq

2−����

+ eikn·R�Dp
2+����Dq

1−���� + e−ikn·R�Dp
1+����Dq

2−����� .

�43�

The CBS effect occurs when the total phase in the inter-
ference terms in the preceding expression becomes indepen-
dent of the positions of the atom. This phase accumulates
during the propagation of the incident laser beam to the at-
oms and during the propagation of the radiated field between
the two atoms. The phase factor due to the incoming laser
beam �a plane wave with wave number kL=knL� can be ex-
plicitly factorized out of the atomic operators as follows
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D̃q
�± = Dq

�±e±ikL·R�. �44�

The other components of X̃, see Eq. �10�, are populations and
are not affected by this phase factor. In the single atom case,

the expectation values of the hereby defined operators D̃q
�±

are independent of the positions of the atoms. Defining �
=kL ·R and

g1 = gei�, g2 = ge−i�, �45�

the Langevin equations �29� then become

X̃���� = X̃��0�
��� + g�G̃�q

+
����X̃�

� D̃q
�−����

+ ḡ�G̃�q
−
����D̃q

�+
� X̃����� . �46�

In the preceding equation, the Green’s functions G̃ are now
independent of the position of the atoms, so that the phase
information due to the incident laser beam is entirely con-
tained in the coefficients g�.

Frequency correlation functions of the Langevin forces
�33� must also be modified accordingly:

�F̃i�
� ����F̃i

����� = −
1

2
�g� + ḡ��2
���� + ��D̃i�i

��. �47�

Dropping for simplicity the tilde notation, the field correla-
tion function �43�, in the backward direction n=−nL, be-
comes

�	out
− �− nL,���	out

+ �− nL,���

= � �

kr

2

�q
out�p

out��Dp
1+����Dq

1−���� + �Dp
2+����Dq

2−����

+ e−2i��Dp
2+����Dq

1−���� + e2i��Dp
1+����Dq

2−����� .

�48�

The configuration average is then performed in two steps.
Since we are working in the limit kR�1, the first one is to
keep only terms with a total phase independent of kR. In the
power expansion with respect to the four parameters g1, g2,
ḡ1, and ḡ2, this simply amounts to keep terms with even
powers of g�ḡ��. This obviously cancels any � dependence.
More precisely, the field correlation function in the backward
direction, beside the trivial zeroth order �in g� term, is given
by

�	out
− �− nL,���	out

+ �− nL,����2�

= � �

kr

2

�q
out�p

out��Dp
1+����Dq

1−�����g1ḡ1�

+ �Dp
2+����Dq

2−�����g2ḡ2� + �Dp
2+����Dq

1−�����g1ḡ2�

+ �Dp
1+����Dq

2−�����g2ḡ1��

= � �

kr

2

�L���,�� + C���,��� . �49�

The preceding field correlation function still depends on
the relative orientation of the atoms through the projector
PR, so that, in a second step, an additional average over R
must be performed. In the preceding equation, the first two

terms correspond to the usual “ladder” terms L��� ,�� �they
are actually independent of the direction of observation�,
whereas the two other terms correspond to the usual “maxi-
mally crossed” terms C��� ,��:

L���,�� =
9

4
�q

out�p
out��Dp

1+����Dq
1−�����g1ḡ1�

+ �Dp
2+����Dq

2−�����g2ḡ2�� ,

C���,�� =
9

4
�q

out�p
out��Dp

2+����Dq
1−�����g1ḡ2�

+ �Dp
1+����Dq

2−�����g2ḡ1�� . �50�

B. CBS enhancement factor

In the case of linear scatterers, the CBS enhancement fac-
tor achieves its maximal value 2 �recall that the CBS phe-
nomenon is an incoherent sum of two-wave interference pat-
terns all starting with a bright fringe at exact backscattering�
if the single scattering contribution can be removed from the
total signal and provided reciprocity holds. This is the case
for scatterers with spherical symmetry in the so-called polar-
ization preserving channel h �h �44�.

In this polarization channel, we have calculated the rel-
evant quantities for an evaluation of the CBS enhancement
factor when no frequency filtering of the outgoing signal is
made. We have thus derived the elastic and inelastic ladder
terms and the elastic and inelastic crossed terms, together
with their corresponding frequency spectra, for different val-
ues of the on-resonance saturation parameter s0=2 �	L�2 /�2.
This parameter measures the intensity strength of the inci-
dent laser beam in units of the natural atomic transition line
width �, i.e., it compares the on-resonance transition rate
induced by the laser to the atomic spontaneous emission rate.
For a detuned laser beam, the saturation parameter is s��L�
and is defined as

s��L� =
s0

1 + �2�L/��2 . �51�

In the following, different values of the laser detuning have
also been considered:

�a� �L = 0, s = s0 = 0.02, �b� �L = 0, s = s0 = 2.00,

�c� �L = 5�, s0 = 2.00, s = 0.02, �d� �L = 0, s = s0 = 50.0.

The ladder and crossed terms �49� are separated into their
elastic and inelastic parts according to

L���,�� = 2
��� + ����2
����Lel + Linel���� ,

C���,�� = 2
��� + ����2
����Cel + Cinel���� . �52�

The corresponding inelastic spectra Linel��� and Cinel���
are displayed in Fig. 2. For a sufficiently low saturation pa-
rameter s0, the inelastic contribution to the total intensity is
small and the crossed intensity is almost equal to the ladder
one �see graph 2�a��. For larger saturation parameters �see
graphs 2�b� and 2�d��, there are two effects: first, the inelastic
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contribution becomes comparable to the elastic one and sec-
ond, the crossed term is smaller than the ladder one. For a
nonzero detuning �see graph 2�c��, one clearly observes an
asymmetry in the inelastic spectrum, which reflects that the
scattering cross section of the atomic transition is maximal
for resonant light �indicated by the vertical dashed line�: the
symmetric inelastic spectrum emitted by a single atom is
filtered out when scattered by the other one. We also observe
that the crossed spectrum is much more reduced than the
ladder term, highlighting the nonlinear effects in the quan-
tum correlations between the two atoms. Finally, for much
larger saturation parameters �see graph 2�d��, the scattered
light almost entirely originates from the inelastic spectrum,
as for a single atom. However, contrary to the single atom
case �for which the scattered intensity reaches a constant
value�, the total intensity scattered by the two atoms de-
creases when increasing the incoming intensity. Indeed, since
the atomic transitions become fully saturated, the nonlinear

scattering cross section of each atom is decreasing, resulting
in a smaller total intensity scattered by the two atoms com-
pared to the one scattered by a single atom.

The CBS enhancement factor � is defined as the peak to
background ratio. It thus reads

� = 1 +
Ctot

Ltot �53�

with

Ltot = Lel + Linel
tot = Lel +� d�

2

Linel��� ,

Ctot = Cel + Cinel
tot = Cel +� d�

2

Cinel��� . �54�

If the CBS phenomenon is reducible to a two-wave inter-
ference, as it is the case here, then the enhancement factor �
is simply related to the degree of coherence � of the scattered
light �45�. If the single scattering contribution can be re-
moved from the detected signal, and this is the case in the
h �h channel, one has simply �=1+� and consequently �
=Ctot /Ltot. The maximal value for � is 2, meaning that full
coherence �=1 is maintained for the scattered field since
then Ctot=Ltot. If all interference effects disappear, meaning
Ctot=0, � reaches its minimal value 1 and correspondingly
coherence is fully lost �=0. Furthermore, one can show that
in the h �h polarization channel Lel=Cel �37�. Consequently,
as soon as Cinel

tot �Linel
tot in this channel, the coherence of the

scattered light field is partially destroyed, since then ��2
and ��1.

Our results are summarized in Table I. At low saturation
parameter s0, � reaches its maximal value 2 and �=1. This is
so because the ladder and crossed inelastic components are
almost equal as evidenced in Fig. 2�a�. Increasing s0 reduces
further Cinel

tot with respect to Linel
tot , thus decreasing � and �. In

the strongly saturated regime, one thus expects � to decrease.
However, there is no reason for the ratio Cinel

tot /Linel
tot to tend to

zero as s0→ � . It rather tends to a finite value, which de-
pends on the detuning, in agreement with the results pub-
lished in Ref. �37�. Furthermore, keeping s0 fixed and de-
creasing the saturation parameter s, situation �c�, � increases,
as expected, but to a value which strongly depends on s0. In
other words, contrary to the single atom case, the properties
of the scattered light are not only determined by the satura-
tion parameter s �20�, highlighting the crucial role of the
inelastic processes. Indeed, in both situations �a� and �c�, s
has the same �small� value, but the enhancement factor
strongly differs, mainly because the relative contribution of
the inelastic ladder term has increased. A qualitative under-
standing of this behavior can be obtained from the diagram-
matic approach: Fig. 3 displays the basic processes contrib-
uting to the ladder and crossed terms. In the small s regime,
only one nonlinear event is necessary to calculate the first
correction to the linear regime �20�, so that we can assume
that inelastic processes occur only at atom 1, whereas atom 2
behaves similar to a linear scatterer. In the case of the ladder
term �Fig. 3�a��, the inelastic light is thus emitted by atom 1
and then �elastically� scattered by atom 2. The crucial point

FIG. 2. �Color online� Backscattered light spectrum in the
helicity-preserving polarization channel h �h. The solid lines repre-
sent the ladder term �average background intensity value� and the
long-dashed lines represent the crossed �interference� term. For
both terms, the plotted values correspond to �Iinel��� / �Ctot+Ltot�,
see Eq. �52�, where Ctot+Ltot is the total �elastic plus inelastic�
intensity scattered in the backward direction. The vertical dashed
lines indicate the atomic transition frequency. � corresponds to the
scattered light angular frequency change with respect to the initial
laser angular frequency ��=0 means thus that light is radiated at
�L�. Graph �a� corresponds to an on-resonance saturation parameter
s0=0.02 and a laser detuning �L=0, graph �b� to �s0=2,�L=0�,
graph �c� to �s0=2,�L=5��, and graph �d� to �s0=50,�L=0�. At low
s0, the inelastic contribution to the total intensity is small and the
ladder intensity is almost equal to the crossed one. For a larger
saturation parameter, first the inelastic contribution becomes com-
parable to the elastic one and second, the crossed term becomes
smaller than the ladder one. For a nonzero detuning, see graph �c�,
one clearly observes an asymmetry in the inelastic spectrum, which
reflects the fact that the scattering cross section of the atomic tran-
sition is maximal for resonant light: the symmetric inelastic spec-
trum emitted by a single atom is filtered out when scattered by the
other one. At very large saturation �d�, the structure of the radiated
spectrum becomes rather complicated.
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is that one peak of the inelastic light spectrum is exactly at
the atomic frequency �0 �i.e., corresponding to �=−�L� for
which the scattering cross section of atom 2 is maximum.
More precisely, the inelastic spectrum scattered I��� by atom
1 is multiplied by the factor

�2

�2 + 4�� + �L�2 �55�

which is maximum for �=−�L. This results in the ladder
spectrum depicted by Fig. 2�c�. In the case of the crossed
term �Fig. 2�b��, the main difference is that atom 2 scatters
fields at different frequencies: one still corresponds to the
inelastic light emitted by atom 1 �frequency �L+�� whereas
the other corresponds to the incident light �frequency �L�.
This leads to a new factor �20�

Re� �2

�i� + 2�� + �L���i� + 2��L��
 , �56�

where Re�z� is the real part of z. For large detuning �L, this
factor is then much smaller than the factor for the ladder
case; furthermore, this also explains the dispersive behavior
around �=−�L depicted by Fig. 2�c�.

Finally, depending on the values of the s and �L param-
eters, a rich variety of situations can be observed, with vari-
ous physical interpretations. These are beyond the scope of
this paper, which instead concentrate on the basic ingredients
of the quantum Langevin approach and will be published
elsewhere.

C. Linear response model

Some insight on the relative behavior of Cinel��� and
Linel��� can be found by comparing the respective formulas
from which these quantities are extracted:

TABLE I. Ladder �average background� and crossed �interference� terms, see Eq. �52�, contributing to the
light scattered in the backward direction in the helicity-preserving polarization channel h �h. The given values
are relative to the incoming saturation parameter s. At low s0, the inelastic contributions are small and almost
equal. Thus Ctot�Ltot and the maximum enhancement factor 2 of the linear case is thus recovered, meaning
that full coherence �=1 is maintained. At larger s0, elastic and inelastic terms become comparable. For very
large s0, the contributions from the elastic terms vanish, as in the single atom case. The inelastic contributions
are also decreasing, reflecting the fact that the probability for the light to be scattered by a saturated atom
becomes smaller with increasing saturation. Furthermore, the inelastic crossed term is always smaller than the
inelastic ladder one. This is a signature of a coherence loss ��1 induced by the quantum vacuum fluctua-
tions. However, the ratio Cinel

tot /Linel
tot does not go to zero as s0→� but reaches the limit value 0.096 �for �L

=0�. Also, contrary to the single atom case, the properties of the scattered light are not solely determined by
the saturation parameter s, but additionally depend on the detuning �L, as exemplified by cases �a� and �c�,
highlighting the role of the inelastic processes.

�a� s=s0=0.02,�L=0 �b� s=s0=2.00,�L=0 �c� s=0.02,s0=2.00,�L=5� �d� s=s0=50.0,�L=0

Lel 0.624 0.833�10−2 0.618�10−2 0.998�10−7

Linel
tot 0.220�10−1 0.573�10−1 0.328�10−2 0.487�10−3

Ltot 0.646 0.656�10−1 0.946�10−2 0.487�10−3

Cel 0.624 0.833�10−2 0.618�10−2 0.998�10−7

Cinel
tot 0.188�10−1 0.295�10−1 0.157�10−3 0.466�10−4

Ctot 0.642 0.378�10−1 0.634�10−2 0.467�10−4

�=1+� 1.994 1.576 1.670 1.096

FIG. 3. A schematic approach of the basic processes contribut-
ing to the inelastic ladder and crossed spectrum, in the small satu-
ration regime �20�. Nonlinear behavior only occurs at the atom 1,
whereas only elastic scattering events take place at the atom 2. In
the case of the ladder term �a�, the inelastic light is thus emitted by
atom 1 and then scattered by the atom 2. For nonzero detuning �L of
the incident light, one peak of the inelastic light spectrum is exactly
at the atomic frequency �0 �i.e., corresponding to �=−�L� for
which the scattering cross section of atom 2 is maximum. This
results in the ladder spectrum depicted by Fig. 2�c�. In the case of
the crossed term �b�, the main difference is that the atom 2 scatters
fields at different frequencies: one still corresponds to the inelastic
light emitted by atom 1 �frequency �L+�� whereas the other cor-
responds to the incident light �frequency �L�, which for large de-
tuning �L results in a smaller crossed inelastic spectrum; further-
more, this also explains the dispersive behavior around �=−�L

depicted by Fig. 2�c�.
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�Xi�
� ����Xi

������ḡ�g�� = g��Xi�
��0�

����Gij
�q

+

����Xj
��0�

� Dq
�−�0�

������ḡ�� − ḡ��Gi�j�
�q

−

�����Dq
�+�0�

� Xj�
��0�

�����Xi
��0�

�����g��

− g�ḡ���Xi�
� ����Gij

�q
+

����Xj
��0�

� GDq
−j�

�p
−

�Dp
�+�0�

� Xj�
��0�

�������0�

+ �Gi�j�
�q

−

�����GDq
−j

�p
+

�Xj
��0�

� Dp
�−�0�

� � Xj�
��0�

�����Xi
��0�

�����0�

+ ��Gi�j�
�p

−

�����Dp
�+�0�

� Xj�
��0�

�������Gij
�q

+

����Xj
��0�

� Dq
�−�0�

�������0�� �57�

and

�Xi�
� ����Xi

������ḡ�g��

= �Xi�
��0�

����Xi
��0�

�����ḡ�g�� + g���Xi�
��0�

����Gij
�q

+

����Xj
��0�

� Dq
�−�0�

������ḡ��

+ �Gi�j�
�q

+

�����Xj�
��0�

� Dq
�−�0�

�����Xi
��0�

�����ḡ��� − ḡ���Xi�
��0�

����Gij
�q

−

����Dq
�+�0�
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��0�

������g��

+ �Gi�j�
�q

−

�����Dq
�+�0�

� Xj�
��0�

�����Xi
��0�

�����g��� − ḡ�g���Xi�
� ����Gij
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����Gjj�
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�+�0�
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��0�
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� ����Gij
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��0�
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�−�0�
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�����Gj�j
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−
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�����Xi
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�����0�
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�����Dq
�+�0�
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�Xj
��0�
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�−�0�

������Xi
��0�

�����0�

+ ��Gi�j�
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�����Xj�
��0�
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�−�0�

�������Gij
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−

����Dq
�+�0�

� Xj
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� Xj�
��0�

�������Gij
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����Xj
��0�

� Dq
�−�0�

�������0�� . �58�

There are twice as many terms contributing to the ladder
terms as to the crossed terms. A rather simple explanation of
this fact is borrowed from the usual linear response theory.
Indeed, each atom is exposed to two fields: the incoming
monochromatic field �angular frequency �L, wave vector kL�
and the field scattered by the other atom �angular frequency
�L+�, wave vector kp�. In the far-field regime R��, the
incoming field is more intense than the scattered field. It thus
plays the role of a pump beam with angular Rabi frequency
	L, while the second weaker field plays the role of a probe
beam with angular Rabi frequency 	p. In this case, the re-
sponse of each atom is simply described by its nonlinear
susceptibility �16,23�. More precisely, forgetting about polar-
ization effects, we have

�D+��� = e−i�2kL−kp�·R��++���	p
+ + e−ikp·R��+−���	p

−,

�D−��� = eikp·R��−+���	p
+ + ei�2kL−kp�·R��−−���	p

−,

�59�

where the phases due to the light fields have been explicitly
factorized.

As obviously seen, the two terms �+− and �−+ generate the
forward propagation of the probe whereas the two other
terms �++ and �−− can generate an additional field in the
direction 2kL−kp provided phase-matching conditions are
fulfilled. This corresponds to the usual forward four-wave
mixing mechanism �FFWM� �16,23�. In the low saturation

regime, this corresponds to the following multiphotonic pro-
cess: the atom first absorbs a photon from the pump; then the
probe induces a stimulated emission; finally, another photon
from the pump is absorbed, followed by a final spontaneous
emission at frequency 2�L−�p=�L−�. If we now replace
the probe field by the field radiated by the other atom �, we
get

�D�→�
+ ��� =

1

kR
�e−i�kR+2kL·R�−kL·R���++���D�

−

+ ei�kR−kL·R���+−���D�
+� ,

�D�→�
− ��� =

1

kR
�e−i�kR−kL·R���−+���D�

−

+ ei�2kL·R�+kR−kL·R���−−���D�
+� . �60�

Hence the ladder and crossed contributions are given by
�dropping for sake of clarity any frequency dependence�

C�2� � �D�→�
+ �D�→�

− ei�−kL·R�+kL·R��

� ei�2kL·�R�−R��−2kR��++�−+D�
−D�

−

+ e4ikL·�R�−R���++�−−D�
−D�

+ + �+−�−+D�
+D�

−

+ ei�2kL·�R�−R��+2kR��+−�−−D�
+D�

+ ,
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L�2� � �D�→�
+ �D�→�

−

� ei�2kL·�R�−R��−2kR��++�−+D�
−D�

− + �++�−−D�
−D�

+

+ �+−�−+D�
+D�

− + ei�2kL·�R�−R��+2kR��+−�−−D�
+D�

+ .

�61�

Averaging these expressions over the positions R� and R� of
the atoms while keeping R�� fixed, only terms with
position-independent phases survive, giving rise to

C�2� � �+−�−+D�
+D�

− ,

L�2� � �++�−−D�
−D�

+ + �+−�−+D�
+D�

− . �62�

This simple model allows one to understand clearly why
there are twice more terms in the ladder expression than in
the crossed one. Fields generated in the FFWM process al-
ways interfere constructively in the case of the ladder, since
they originate from the same atom. Of course, in the preced-
ing explanation, we have discarded polarization effects and
inelastic processes in the nonlinear susceptibilities. Never-
theless, even if in that case the situation becomes more in-
volved, the differences between the ladder and crossed ex-
pressions still arise from this local four-wave mixing
process. For example, in the last line of Eqs. �57� and �58�,
we see that the operator �Gij

�q
+

���Xj
��0�

� � plays the role of a
generalized nonlinear susceptibility �actually, the standard

ones are recovered from the elastic part of Xj
��0�

�. Thus we
recover the same structure as previously depicted, which
leads to similar conclusions.

Finally, as mentioned above, for large saturation param-
eters s0, even if in that case the total scattered intensities
�ladder and crossed� are dominated by the inelastic spectrum,
we numerically observe that the enhancement factor does not
vanish but rather goes to a finite limit 1.096 �for �L=0�. Field
coherence is thus not fully erased, which, at first glance,
could be surprising since the inelastic spectrum is a noise
spectrum at the heart of the temporal decoherence of the
radiated field. This only means that both crossed and ladder
become vanishingly small relative to the incident intensity.
Nevertheless, even if it would be hard to derive it analyti-
cally from Eqs. �57� and �58�, they actually decrease at the
same rate, resulting in a finite �but small� enhancement fac-
tor.

V. CONCLUSION

In the case of two atoms, even if the quantum Langevin
approach leads to calculations more tedious and involved
than the direct optical Bloch method, it nevertheless gives
rise to an understanding closer to the usual scattering ap-
proach developed in the linear regime. In this way, one also
gets direct information about the inelastic spectrum of the
radiated light. In particular, it clearly outlines the crucial
roles played by the inelastic nonlinear susceptibilities and by
the quantum correlations of the vacuum fluctuations. Further-
more, since the framework of the quantum Langevin ap-
proach is set in the frequency domain, frequency-dependent
propagation �i.e., frequency-dependent mean-free paths� be-
tween the atoms can be naturally included.

The next step would be to adapt the present approach to
“macroscopic” configurations �i.e., at least many atoms�, al-
lowing for a more direct comparison with existing experi-
ments �7,8�, for which the observed behavior of the enhance-
ment factor with the saturation parameter is not fully
understood. Especially, in the latter experiment �using atoms
with a degenerate ground level�, it strongly depends on the
laser polarization, which suggests that the optical pumping,
whose rate increases with the saturation parameter, plays an
important role. Finally, for given values of the incident laser
intensity and detuning, the nonlinear mean-free path be-
comes negative in well-defined frequency windows. This
means that light amplification can be achieved in these fre-
quency windows �41,46�. The atomic media would then con-
stitute a very simple realization of a coherent random laser.
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APPENDIX A

The gḡ terms in Eq. �31� read:

Xi�
� ����Xi
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� �����Gij
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APPENDIX B: THREE-BODY CORRELATION
FUNCTIONS

1. Single atom case

The three-body correlation function for the Langevin
force reads

Cabc���,�� =
1

2

� � d�1d�2���1 + �2 − ��f��1�g��2�

��Fa
�����Fb

���1�Fc
���2�� , �B1�

where f��� and g��� are regular functions such that the pre-
ceding integral is well defined. Going back to the time do-
main, Cabc��� ,�� reads as follows:

Cabc���,�� =
1

2

� � dtdt�ei�tei��t�� � � � dt1dt2dt3dt4

���t1 + t2 − t���t3 + t4 − t�f�t1�g�t3�

��Fa
��t��Fb

��t2�Fc
��t4�� . �B2�

Then, from the time correlation properties of the vacuum
field, one can show that

�Fa
��t��Fb

��t2�Fc
��t4��

= 4Taa�
q+ Tbb�

q− ��t� − t2��Xa�
� �t��Xb�

� �t��Fc
��t4��

+ 4Taa�
q+ Tcc�

q− ��t� − t4��Xa�
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� �t4��

+ 4Tbb�
q+ Tcc�

q− ��t2 − t4��Fa
��t��Xb�

� �t2�Xc�
� �t2�� , �B3�

where the Tq± are 15�15 matrices defined by �Xi ,Dq
±�

= ±2Tij
q±Xj.

When taken at the same time, the atomic operators �in-
cluding the identity 1� define a group entirely characterized
by the group structure constants �ij

k , i.e.,

Xi�t�Xj�t� = �
k

�ij
k Xk�t� , �B4�

so that the preceding equation becomes

�Fa
��t��Fb

��t2�Fc
��t4��

= 4Taa�
q+ Tbb�
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q+ Tcc�
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uFa

��t��Xu
��t2� . �B5�

Injecting the preceding relations in C�a ,b ,c� and going back
to the frequency domain, we get

Cabc���,�� = 4Taa�
q+ Tbb�

q− �a�b�
u 1

2

� � d�1d�2���1 + �2 − ��f��1�g��2��Xu

���� + �1�Fc
���2��

+ 4Taa�
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q− 1

2
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�����Xu
�����
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2
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+ 2
��� + ���4Tbb�
q+ Tcc�

q− �a�b�
uDav

��Guv
� ���

1

2

� � d�1d�2���1 + �2 − ��f��1�g��2� , �B6�

where we have introduced the matrix Dik
b,������ ,�� defined by

Dik
b,������,�� =

1

2

� � d�1d�2���1 + �2 − ����Xi

���1�Fb
����Xk

���2�� . �B7�

This matrix is calculated using the same strategy �i.e., going back and forth to the time domain� and one finally gets

Dik
b,������,�� = 2
��� + ����Gia

� �0�La
�Gkc

� ����D̃bc
�� + Gia

� ����Gkc
� �0�Lc

�D̃ab
��

+ 4Tbb�
q+ Tcc�

q− �b�c�
vD̃au

�� 1

2

� � d�1d�2���1 + �2 − ���Gia

� ��1�Gkc
� ��2�Gvu

� �− �1�

+ 4Taa�
+ Tbb�

− �a�b�
vD̃uc

�� 1

2

� � d�1d�2���1 + �2 − ���Gia

� ��1�Gkc
� ��2�Gvu

� �− �2��
+ 4Taa�

q+ Tcc�
q− � 1

2

� � d�3d�4���3 + �4 − ���Gia

� ��3�Gkc
� ��4�


�� 1

2

� � d�1d�2���1 + �2 − ����Xa�

� ��1�Fb
����Xc�

� ��2��
 . �B8�

It may seem that we have taken a loop path and that we are back to square one¼. However, in the last line of the preceding
formula, we immediately recognize the matrix Da�b�

b,������ ,��. Thus, the preceding equation is nothing else but a linear system
for this matrix. More precisely, Dik

b,������ ,�� is the solution of the following linear system:

Dik
b,������,�� − Iik,a�c�

�� ����Da�c�
b,������,�� = Jik

b,������,�� , �B9�

with

Iik,a�c�
�� ���� = 4Taa�

q+ Tcc�
q− 1

2

� � d�3d�4���3 + �4 − ���Gia

� ��3�Gkc
� ��4� ,

Jik
b,������,�� = 2
��� + ����Gia

� �0�La
�Gkc

� ����D̃bc
�� + Gia

� ����Gkc
� �0�Lc

�D̃ab
��

+ 4Tbb�
q+ Tcc�

q− �b�c�
vD̃au

�� 1

2

� � d�1d�2���1 + �2 − ���Gia

� ��1�Gkc
� ��2�Gvu

� �− �1�

+ 4Taa�
+ Tbb�

− �a�b�
vD̃uc

�� 1

2

� � d�1d�2���1 + �2 − ���Gia

� ��1�Gkc
� ��2�Gvu

� �− �2�� . �B10�

In the preceding equations, the Green’s function G��� and the diffusion matrix D�� only depend on the Rabi field 	L

evaluated at the position of atom �. Thus, for any value of �, numerical values of I and J can be computed, allowing for a
direct calculation of Dik

b,����−� ,��. Furthermore, it is not surprising that the matrix I shows up in the linear system. Indeed,
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the Green’s function G��� governs the time evolution of X through a Fourier transform. Thus the time evolution of products
of operators Xi�t�X j�t� will be simply governed by the Fourier transform of the product of two Green’s functions G�t�G�t�,
which is precisely the convolution product found in I. Finally, from the knowledge of the matrix D, we can calculate the value
of Cabc��� ,��:

Cabc���,�� = 2
��� + ����4Taa�
q+ Tbb�

q− �a�b�
uDvc

�� 1

2

� � d�1d�2���1 + �2 − ��f��1�g��2�Guv

� �− �2�

+ 4Taa�
q+ Tcc�

q− 1

2

� � d�1d�2���1 + �2 − ��f��1�g��2�Da�c�

b,����− �1,�1�

+ 4Tbb�
q+ Tcc�

q− �a�b�
uDav

��Guv
� ���

1

2

� � d�1d�2���1 + �2 − ��f��1�g��2�� . �B11�

Of course, we recover the global factor 2
���+���, showing that the time correlation function only depends on the time
difference t�− t �stationary condition�.

2. Two-atom case

The calculation of quantities such as

Cabc
�� ���,�� =

1

2

� � d�1d�2���1 + �2 − ��f��1�g��2��Fj�

� ����Fk
���1�Fk�

� ��2���ḡ� �B12�

follows, more or less, the way described in the preceding section. In particular, it also involves the calculation of a matrix

Dik
b,����ḡ�

��� ,�� defined as

Dik
b,����ḡ�

���,�� =
1

2

� � d�1d�2���1 + �2 − ����Xi

���1�Fb
����Xk

���2���ḡ�. �B13�

The latter is also found to be the solution of a linear system, resembling the preceding one �see Eq. �B9��:

Dik
b,����ḡ�

���,�� − Iik,a�c�
�� ����Da�c�

b,����ḡ�
���,�� = Jik

b,����ḡ�
���,�� , �B14�

with

Jik
b,����ḡ�

���,�� = − �1

2

2
��� + ����Gia

� �0�La
�Gkc

� ����D̃bc
���0�

+ Gia
� ����Gkc

� �0�Lc
�D̃ab

���0�

+ 4Tbb�
q+ �Xb�

��0�
�

1

2

� � d�1d�2���1 + �2 − ���Gia

� ��1�Gkc
�q

−

��2�Gcu
� �− �1�D̃au

���0�

+ 4Tbb�
q− �Xb�

��0�
�

1

2

� � d�1d�2���1 + �2 − ���Gia

�q
+

��1�Gkc
� ��2�Gau

� �− �2�D̃uc
���0�

− 2GDq
+u

� ����D̃ub
���0� 1

2

� � d�1d�2���1 + �2 − ���Gia

�q
−

��1��X̃a
��0�

�− �2�X̃k
��0�

��2���0�

− 2GDq
+u

� ����D̃bu
���0� 1

2

� � d�1d�2���1 + �2 − ���Gkc

�q
−

��2��X̃i
��0�

��1�X̃c
��0�

�− �1���0�� . �B15�
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