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We consider the coherent population trapping effect with a train of ultrashort pulses in a �-type system with
two bound states and a continuum replacing the upper state. Population transfer to the continuum can be totally
suppressed provided that the splitting between the bound states is a multiple of the pulse repetition rate.
Compared to the traditional case with only two laser fields coupling the bound states to the continuum, CPT
with a pulse train allows one to avoid incoherent population losses due to interaction of the fields with “wrong”
transitions, which results in only partial suppression of ionization. A method of suppression of excited-state
absorption of pumping radiation in laser crystals, with pumping in the form of the pulse train, is proposed. As
a particular example pumping dynamics of a Ti3+ :YAlO3 crystal using this technique is numerically analyzed.
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I. INTRODUCTION

Interaction of radiation with a quantum system containing
a continuum, coupled by an optical field to some bound
state�s�, typically leads to unrecoverable loss of bound-state
population. However, using coherent radiation the bound
state-continuum interaction can be effectively controlled. A
strong coherent laser field can admix the bound state to the
continuum, forming a laser-induced continuum structure
�LICS� �1�, which can be probed by a second �weak� laser
field, coupling the same continuum to another bound state.
Tuning the probe field frequency an asymmetric ionization
profile �first derived by Fano �2� for a continuum with an
autoionizing state�, can be detected, having regions of en-
hanced and suppressed ionization. Ionization suppression of
as much as 70–80 % due to formation of the LICS and co-
herent population trapping �CPT� in bound states was re-
ported in helium �3� and xenon �4�. Control over branching
into different dissociative continua based on LICS was dem-
onstrated in molecules �5�, giving rise to coherent control of
chemical reactions. Recently efficient coherent population
transfer of about 6% of initial bound state population to a
target bound state mediated by the continuum was demon-
strated in the same helium system �6�. These results prove
that the interference and coherence phenomena such as elec-
tromagnetically induced transparency �EIT� �7�, CPT �8�,
slow light �9�, coherent population transfer �10�, typically
considered in a system with three bound states forming a �
configuration can be as well realized with some modifica-
tions in continuum-containing systems. In the present work
we consider a special case of coherent population trapping
with a train of ultrashort pulses in a �-type energy system
with two bound states and the continuum replacing the upper
state. We demonstrate that if the bound states splitting is
multiple of the pulse repetion rate, a medium becomes com-
pletely transparent for the optical field. Complete transpar-
ency can be realized because in this scheme incoherent ion-
ization losses, always present in the configuration when only
two fields are applied, are cancelled naturally without, for

example, a special choice of a polarization of the field. We
also discuss its possible application to the problem of sup-
pression of excited-state absorption �ESA� in laser crystals.
Irreversible population loss to the continuum due to ESA of
either emitted or/and pumping radiation from populated
metastable levels is a severe problem preventing many opti-
cal crystals from lasing �11�, especially in the ultraviolet and
vacuum ultraviolet regions. Recently we proposed a method
of ESA suppression at a lasing wavelength using the LICS
phenomenon �12�. The idea was to apply a strong coherent
laser field between the terminal state of the ESA transition
for the generated radiation and some auxiliary bound state,
which would result in ESA suppression leaving stimulated
emission unaffected. In the present work we discuss the pos-
sibility of applying CPT with a train of pulses via the con-
tinuum to systems where only pumping radiation is absorbed
from the metastable laser level, and consider a particular
material, Ti3+ :YAlO3 crystal, where this technique can sig-
nificantly increase the pumping efficiency.

Coherent population trapping in a system with three
bound levels in the � configuration coupled to a laser field in
the form of a pulse train was first considered by Ko-
charovskaya and Khanin �13� in 1986. They showed that if
the lower levels splitting � satisfies the condition �
=2�n /T, where T is the period of the train, n is an integer,
the medium becomes transparent for the incident radiation.
Recently this idea has been verified experimentally, first in
85Rb vapor �14�, and later in a room temperature ruby �15�.
The latter experiment is especially noteworthy, being an ob-
servation of CPT in a room temperature solid and a step
toward realization of the ESA suppression technique pro-
posed in this work. Earlier, CPT was proposed as a means for
stabilization of a repetition rate in a mode-locked laser by
locking it to the hyperfine splitting of 87Rb �16�.

The paper is organized in the following way. In Sec. II we
theoretically consider CPT via the continuum with a train of
ultrashort pulses and derive the conditions under which it
takes place. In our analysis we take into account the coher-
ence decay between the bound states since it is almost inevi-
table in a real experiment and therefore defines the best pos-
sible trapping case. In Sec. III we discuss a possible
application of the technique to ESA suppression of pumping*Electronic address: lena@jewel.tamu.edu
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radiation in laser crystals, and present results of numerical
modeling of pumping with a train of pulses for the
Ti3+ :YAlO3 crystal. We finally conclude in Sec. IV.

II. THEORY

The system we consider has two bound states �1� and �2�
coupled to the structureless continuum �c� by a train of ul-
trashort pulses as shown in Fig. 1. Neglecting all losses not
related to ionization by the laser field allows one to describe
the system by the wave function

��� = a1e−iE1t/��1� + a2e−iE2t/��2� +� ce−iEct/��c�dEc,

where a1,2 and c are the probability amplitudes of states �1�,
�2�, and �c� in the interaction representation, E1,2 and Ec are
their energies.

The semiclassical Hamiltonian of the system can be writ-
ten as H=H0+V, where the atomic and interaction parts are
given by the expressions

H0 = E1�1��1� + E2�2��2� +� Ec�c��c�dEc,

V = −� �1cE�1��c�dEc −� �2cE�2��c�dEc + H . c.

with �1c,2c being the dipole moment matrix element of the
corresponding bound state-continuum transition. The electric
field component of the laser radiation is described as

E =
1

2	
n

En�t − nT�e−i�t+i�n + c . c.

We assume that En are real and the pulses are identical. The
duration of a single pulse 	 is much smaller than the period
of the pulse train T, such that the pulses do not overlap.

Dynamic equations for the probability amplitudes in the
rotating wave approximation �RWA� have the form

i �
�a1

�t
= −

1

2	
n

En�t − nT�e−i�n� �1cce−i��Ec−E1�/�−��tdEc,

�1�

i �
�a2

�t
= −

1

2	
n

En�t − nT�e−i�n� �2cce−i��Ec−E2�/�−��tdEc,

�2�

i �
�c

�t
= −

�c1

2 	
n

En�t − nT�ei�nei��Ec−E1�/�−��t

−
�c2

2 	
n

En�t − nT�ei�nei��Ec−E2�/�−��t. �3�

The assumption of the structureless continuum allows one to
adiabatically eliminate the continuum amplitude following
the procedure outlined in Ref. �1�, and reduce the system
�1�–�3� to two equations for the amplitudes of the bound
states

�a1

�t
=

i

4�2a1	
n,m

EnEme−i��n−�m��P1 + i
1/2�

+
i

4�2a2	
n,m

EnEme−i��n−�m�−i��E2−E1�/��t��12 + iG12/2� ,

�4�

�a2

�t
=

i

4�2a1	
n,m

EnEmei��n−�m�+i��E2−E1�/��t��21 + iG21/2�

+
i

4�2a2	
n,m

EnEmei��n−�m��P2 + i
2/2� . �5�

Here we introduce the following notations:

Pl + i
l/2 = lim
�→+0

� ��lc�2dEc

Ec − El

�
− � − i�

= P� ��lc�2dEc

Ec − El

�
− �

+ i� � ��cl�2�Ec=El+��, �6�

which are the laser-induced Stark shifts and ionization rates
of the bound states and

�lm + iGlm/2 = lim
�→+0

� �lc�cmdEc

Ec − Em

�
− � − i�

= P� �lc�cmdEc

Ec − Em

�
− �

+ i� � �lc�cm�Ec=Em+��

�7�

describe the magnitude and the phase of a two-photon coher-
ence between bound states, giving rise to CPT, induced by
Raman processes via the continuum.

Taking into account that the pulses in the train do not
overlap, the system �4�, �5� can be modified in the following
way

FIG. 1. Three-level � energy system with the upper level re-
placed by a continuum of states interacting with a train of ultrashort
pulses.
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�a1

�t
=

i

4�2a1	
n

En
2�P1 + i
1/2�

+
i

4�2a2	
n

En
2e−i��E2−E1�/��t��12 + iG12/2� , �8�

�a2

�t
=

i

4�2a1	
n

En
2ei��E2−E1�/��t��21 + iG21/2�

+
i

4�2a2	
n

En
2�P2 + i
2/2� . �9�

It is convenient to expand the intensity of the train 	nEn
2 in

a Fourier series

	
n

En
2�t − nT� = 	

m

Ime−im
t, �10�

where the mth Fourier component amplitude is given by the
expression Im=T−1
0

TE0
2�t�ei
mtdt and I−m= Im

* . There is a rela-
tionship between the Fourier components of the intensity and
the amplitude of the field Im=	k�k�k−m

* , where 	nEn
=	k�ke

ik
t. It shows that the mth intensity component de-
scribes a beat at the frequency m
 produced by all frequency
sidebands present in the pulse.

Turning to new variables

a1 = 	
l

a1,le
−il
t, �11�

a2 = 	
l

a2,le
i��E2−E1�/�−l
�t, �12�

we obtain the following equations:

�a1,l

�t
= il
a1,l +

i

4�2	
k

a1,kIl−k�P1 + i
1/2�

+
i

4�2	
k

a2,kIl−k��12 + iG12/2� , �13�

�a2,l

�t
= − i�E2 − E1

�
− l
�a2,l +

i

4�2	
k

a1,kIl−k��21 + iG21/2�

+
i

4�2	
k

a2,kIl−k�P2 + i
2/2� . �14�

To simplify further analysis we assume that 
� �I0�P1

+ i
1 /2� � /4�2, 
� �I0�P2+ i
2 /2� � /4�2 �where l0 is the Fou-
rier component resonant to the two-photon Raman transition
�1�↔ �2�, so that the condition ��E2−E1� / �−l0
 � �
 is sat-
isfied�. It is clear from Eqs. �13�, �14� that in this case only
a1,0 and a2,l0

are non-negligible. Other terms will be corre-
spondingly, smaller by the factors �I0�P1+ i
1 /2� � /4�2
 and
�I0�P2+ i
2 /2� � /4�2
. This assumption allows one to take
into account only one beat note with the frequency l0
, reso-
nant with the Raman transition, all other beat notes will be
far from the resonance, since 
 is much larger than the Ra-
man transition width.

With only a1,0 and a2,l0
left, the system �13�, �14� is re-

duced to the set

�a1,0

�t
=

i

4�2 I0�P1 + i
1/2�a1,0 +
i

4�2 I−l0
a2,l0

��12 + iG12/2� ,

�15�

�a2,l0

�t
=

i

4�2 Il0
��21 + iG21/2�a1,0 + 
− i�E2 − E1

�
− l0
�

+
i

4�2 I0�P2 + i
2/2��a2,l0
. �16�

To simplify the equations we denote

I0
1,2/8�2 = G1,2,

I0P1,2/4�2 = 
E1,2,

G21Il0
/8�2 = G ,

�l0
=

E2 − E1

�
− l0
 ,

and introduce the Fano asymmetry parameter q �assumed
real� as

q = 2�12/G12 = 2�21/G21.

Finally let us make a substitution following Ref. �18�:

a1,0,a2,l0
= �1,2exp�i�

0

t

�
E1 − qG1�dt�
to obtain the following set of equations for the new vari-
ables:

��1

�t
= iG1�q + i��1 + iG*�q + i��2, �17�

��2

�t
= iG�q + i��1 + �i�
E2 − 
E1� − i�l0

+ iG2�q + i�

+ iq�G1 − G2���2. �18�

It is customary to denote the term in figure brackets in Eq.
�18� as i�+ iG2�q+ i�, where �=
E2−
E1−�l0

+q�G1−G2�.
The system �17�, �18� can then be written in the following
matrix form:

�

�t
��1

�2
� = i�G1�q + i� G*�q + i�

G�q + i� � + G2�q + i�
���1

�2
� . �19�

The eigenvalues of the Hamiltonian in Eq. �19� define the
evolution of system, the corresponding characteristic equa-
tion

�2 − ��i� + i�G1 + G2��q + i�� − �G1�q + i�

− �G1G2 − �G�2��q + i�2 = 0 �20�

has the eigenvalues
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�1,2 =
i� + i�G1 + G2��q + i�

2
±�� i� + i�G1 + G2��q + i�

2
�2

+ �G1�q + i� + �G1G2 − �G�2��q + i�2. �21�

Assuming that the single pulse in the train is sufficiently
short such that its spectral width significantly exceeds the
splitting �E2−E1� /� between the bound states, we would
have �I0 � ��Il0

�. The latter condition means that the Fourier
components of the amplitude of the pulse satisfy the condi-
tion ��m � ���m+l0

�. It results in G1G2− �G�2�0. Then at two-
photon resonance �=0 the eigenvalues are

�1 = i�G1 + G2��q + i� , �22�

�2 = 0. �23�

The zero eigenvalue is a signature of coherent population
trapping. It means that if the system is initially in the
“dark” superposition of bound states ���d= ��G2 �1�
−�G1 �2�� /�G1+G2, it will not interact with the train. In a
general case, when initially some fraction of the population
is in the “dark” and the rest is in the orthogonal “bright” state
���b= ��G1 �1�+�G2 �2�� /�G1+G2, the train will transfer the
“bright” state population to the continuum with the rate
−Re �1=G1+G2 leaving the “dark” state unaffected. It is
worth noting that close to the two-photon resonance the CPT
eigenvalue is

�2 �
i�G1

G1 + G2
−

�2�1 + iq��G�2

�G1 + G2�3�q2 + 1�
,

resulting in the width of the CPT resonance in absorption

�CPT =��G1 + G2�3�q2 + 1�
�G�2t

, �24�

which is proportional to the square root of the ratio of the
ionization rate to time. This is a general rule for the CPT
resonance in an open system, where population irreversibly
decays out of the system �17�. Another important remark is
that in the case considered here compared to the typically
considered one with only two fields �18�, pump and probe, it
is possible to have complete CPT at �=0, while in the latter
one complete transparency is not possible. The reason is two-
fold. First, in our case it is easy to satisfy the condition �
=0, since � is a real function, while in the case with two
fields the two-photon resonance detuning is a complex func-
tion

� = 
E2 − 
E1 − Dab + q�G1
a − G2

b� + i�G2
a − G1

b� ,

where Dab=
E2−E1

� − ��a−�b�, G1,2
a = �Ea�2
1,2

a /8�2, G1,2
b

= �Eb�2
1,2
b /8�2 for the two fields with frequencies �a,b and

amplitudes Ea,b. It is clear that � can be set exactly to zero
only if G2

a=G1
b. Even if this requirement is met, CPT is not

complete because each field interacts with both bound states,
which results in incoherent ionization losses. In the case with
the train of pulses each frequency component of the field is

matched by another component detuned by the two-photon
resonance frequency. All components thus form a series of
two-photon resonant � systems, preventing any incoherent
losses.

It is worthwhile, based on the previous discussion, to
make a remark about techniques utilized for population
transfer and coherence creation in molecules, for example
superposition states via stimulated Raman adiabatic passage,
which use ultrashort �fs duration� pulses. Using such broad-
band pulses with pulse bandwidths approaching frequencies
of vibrational transitions can degrade the efficiency of the
process. In that case both the pump and the Stokes fields
interact with both optical transitions in the � system. It
means that neither the initial nor the final state is a “dark”
state and as a result only partial population transfer is pos-
sible. The configuration considered in the present work is
different. Pumping with a train of laser pulses allows one to
consider the interaction of pulses with the � energy-level
system as a steady-state process. Namely, the laser radiation
can be considered as a multifrequency electromagnetic field
with the separation between frequency components deter-
mined by the pulse repetition rate. When the separation is
much larger than the width of the transition between lower
levels in the � system, and the pulses bandwidth signifi-
cantly exceeds the frequency of the transition, the “dark”
state is the same for all pairs of frequency components which
are close to a two-photon resonance with the lower levels.
The coupling of the “dark” state to the “bright” one origi-
nates from a finite bandwidth of the pulses resulting in dif-
ferent amplitudes of the frequency components. In turn, for
the frequency components with different amplitudes the cor-
responding “dark” state is slightly different. So the “dark”
state starts interacting with these frequency components,
which is equivalent to the coupling between the “dark” and
“bright” states. If the pulses bandwidth significantly exceeds
the lower level separation, this coupling is weak.

Let us now consider a more realistic case when coherence
relaxation between bound states �1� and �2� is present and
find how the dynamics of the system is modified. To do this
we will turn to the density matrix description and include the
relaxation phenomenologically. Namely, we introduce diag-
onal �11=�1�1

*, �22=�2�2
* and off-diagonal �21=�2�1

* den-
sity matrix elements, describing populations and bound-state
coherence, respectively. From Eq. �19� the time evolution of
the density matrix elements is given by

d�11

dt
= − 2G1�11 + iG*�q + i��21 − iG�q − i��21

* , �25�

d�22

dt
= − 2G2�22 − iG*�q − i��21 + iG�q + i��21

* , �26�
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d�21

dt
= − �i�� + G2�q + i� − G1�q − i�� + �21��21

+ iG�q + i��11 − iG�q − i��22, �27�

where the coherence decay term �21 describing pure dephas-
ing processes is included.

It is more convenient to turn to the real and imaginary
parts of the coherence

S+ =
�21 + �21

*

2
, S− =

�21 − �21
*

2i
. �28�

The system �25�–�27� now is written in the form �assuming
G real�

d�11

dt
= − 2G1�11 − 2GqS− − 2GS+, �29�

d�22

dt
= − 2G2�22 + 2GqS− − 2GS+, �30�

dS+

dt
= − �G1 + G2 + �21�S+ − �� + q�G2 − G1��S−

− G��11 + �22� , �31�

dS−

dt
= − �G1 + G2 + �21�S− + �� + q�G2 − G1��S+

+ Gq��11 − �22� . �32�

The eigenvalues of this system can be found from the char-
acteristic equation

��2 + 2��G1 + G2 + �21����2 + 2��G1 + G2��

+ 4�G�2��2 + 2��G1 + G2 + �21��

+ ��2 + 2��G1 + G2���G1 + G2 + �21�2

+ ��2 + ��2G1 + 2G2 + �21��4G2�q2 − 1�

+ ��2 + 2��G1 + G2���� + q�G2 − G1��2

+ 4G2�21�2G1 + 2G2 + �21� + 4G2�2 = 0, �33�

where we used G1G2=G2.
To find the eigenvalue corresponding to CPT we assume

that the dephasing is weak: �21�G1 ,G2. This assumption is
well justified since if �21�G1 ,G2 there is no CPT and no
ionization suppression is possible. We also assume that this
eigenvalue is ��21, i.e., small. Equation �33� then simplifies
as

�2 +
1

2
���q2 + 1��G1 + G2� +

�2 + 2�q�G2 − G1�
G1 + G2

�
+

2G2�32

G1 + G2
+

G2�2

�G1 + G2�2 = 0. �34�

For small detunings ��G1, G2 the CPT eigenvalue is given
by

�CPT = −
q2 + 1

4
�G1 + G2�

+��q2 + 1

4
�G1 + G2��2

−
2G2�21

G1 + G2
−

G2�2

�G1 + G2�2

�35�

or

�CPT = −
4G2�21

�q2 + 1��G1 + G2�2 −
2G2�2

�q2 + 1��G1 + G2�3 . �36�

At the exact two-photon resonance the rate of population
decay to the continuum is thus

�CPT = −
4G2�21

�q2 + 1��G1 + G2�2 � − �21, �37�

if the ionization rates are of the same magnitude. This decay
rate has to be compared with the one when there is no co-
herence �for example, in the limit of very fast decoherence
�21�G1 ,G2�. The slowest decay process is described in this
case by the roots �1,2�−2G1,2, so the ionization is reduced
by the factor G1�2� /�21 if CPT is induced. As follows from
Eq. �36� the CPT resonance width at the moment t is the
same as in the �21=0 limit �see Eq. �24��

�CPT =��G1 + G2�3�q2 + 1�
2G2t

. �38�

III. APPLICATION OF CPT WITH A TRAIN OF PULSES
TO SUPPRESSION OF EXCITED-STATE ABSORPTION

OF PUMPING RADIATION IN OPTICAL
CRYSTALS

In this section we apply the results obtained in the previ-
ous section to a particular problem of suppression of excited-
state absorption in optical crystals. As an example we con-
sider a Ti3+ :YAlO3 material. This crystal, very close in its
characteristics to the famous Ti3+ :Al2O3 laser crystal, has its
fluorescence band shifted to shorter wavelengths, lying in the
range 550–750 nm. Its short wavelength part covers the im-
portant yellow-orange spectral region, which is of increasing
interest for a number of applications in laser medical re-
search due to high absorption of hemoglobin in this range,
navigation and astrophysics in, for example, Laser Guide
Star Adaptive Optics. Nowadays, this region is mostly cov-
ered by dye lasers and OPO’s, there are few fixed-
wavelength solid-state lasers operating in this range:
frequency-doubled Cr:forsterite and Nd:Sr5�PO4�3F
�Nd:SFAP� lasers, Nd:YVO4 laser having its 1.3 and
1.06 �m outputs summed, and Raman-shifted Nd:YAG sec-
ond harmonic lasers �19�. The only tunable crystalline laser
operating in the range 540–620 nm is a Al2O3 color center
laser �20�, but color center lasers are known to be photoun-
stable and thermounstable. It would therefore be of signifi-
cant technological importance to have a compact tunable la-
ser based on transition metal or rare earth ion doped crystals
covering this part of the spectrum.
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Having such promising characteristics, Ti3+ :YAlO3 has
not turned into a laser material because of very inefficient
pumping �0.044%, as was reported in Ref. �21��. The main
reason is excited-state absorption of pumping radiation from
a metastable laser transition level that sets at wavelengths
shorter than 550 nm. It means that, luckily, emission is not
affected by ESA, only pumping radiation is absorbed. The
absorption goes into a charge-transfer band, related to bound
exciton Ti4++e formation, overlapping the conduction band
of the crystal. The energy level scheme of the Ti3+ ion in the
YAlO3 host is shown in Fig. 2 �22–27�. In an octahedral
crystalline field produced by six surrounding oxygen ions a
degenerate 3d1 state of a free ion splits into 2Eg and 2T2g
states, which are further split by tetragonal crystal field dis-
tortions, spin-orbit and Jahn-Teller interactions. Final states
are degenerate Kramers doublets, which is a general rule for
ions with odd number of electrons in an unfilled shell. The
excited state Kramers doublets, having an effective spin 1/2,
can be further Zeeman split in an external magnetic field.
When pumped with a train of pulses, excited-state absorption
of population stored in the Zeeman sublevels of the meta-
stable laser level will be suppressed if the Zeeman splitting is
a multiple of the repetition rate. The same reasoning applies
also to V4+ �isoelectronic with Ti3+� doped YAlO3 crystal,
having similar to Ti3+ :YAlO3 characteristics �28,29�.

In order to make more clear how the technique discussed
in the theoretical part can be applied to suppression of ESA
of pumping radiation in Ti3+ :YAlO3 we use a simplified
energy level structure of the latter shown in Fig. 3. In this
figure �1� denotes the ground state 2E1/2 of the ion; �2� and
�3� are the Zeeman sublevels of the metastable excited state,
�32 is the corresponding Zeeman splitting; �4� is some inter-
mediate state in the excited state phonon sideband used for
pumping population to the metastable state; �5� is some state

in the phonon sideband of the ground state, the terminal state
of the emission transition; �c� is the continuum used to model
the charge transfer �bound exciton Ti4++e� and the conduc-
tion bands of the crystal. Thus excited state absorption of
pumping radiation from the Zeeman sublevels �2� and �3� of
the metastable excited state to the continuum, shown in Fig.
3 by green arrows, is to be suppressed. A pumping pulse �in
the numerical model we assume pumping with a second har-
monic of a Nd:YAG laser, �=532 nm� excites the Ti3+ ion
from the ground state to some excited phonon state of the
metastable level, from which it rapidly �in picosecond time�
decays to the pure electronic state. Due to excited-state ab-
sorption the pumping radiation transfers population from the
metastable electronic state into the charge-transfer band. The
cross section of this transfer process is about 50 times higher
than the ground-state absorption one �30�, thus making
pumping very inefficient. To suppress excited-state absorp-
tion pumping with a train of ultrashort pulses can be applied,
making use of the coherent population trapping effect.

We used the density matrix approach to model the dynam-
ics of the pumping process. Taking into account fast nonra-
diative population decay from the intermediate phonon states
�4� and �5� to the pure electronic metastable states �2� and �3�
and the ground state �1�, respectively, allowing one to set all
coherences except �41 and �32 to zero, the system can be
described by the following set of equations:

�41 =

i	
n

�n
41��11 − �44�

�41 +

	
n

En
2�t − nT�

8�2 
4

, �39�

FIG. 2. �Color online� Energy-level diagram of Ti3+ :YAlO3 in-
cluding crystal field, spin-orbit interactions, Janh-Teller effect, and
the effect of an external magnetic field. Pumping with the second
harmonic of Nd:YAG laser �532 nm� and excited-state absorption
of the pump are schematically illustrated.

FIG. 3. �Color online� Five-level plus continuum energy system
used to model pumping of Ti3+ :YAlO3 with a train of ultrashort
pulses.
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��32

�t
= −�i�32 + �32 +

	
n

En
2�t − nT�

8�2 �
2 + 
3���32

+ i�22

	
n

En
2�t − nT�

8�2 G32�i + q32�

− i�33

	
n

En
2�t − nT�

8�2 G23�i + q23� , �40�

��11

�t
= i	

n

��n
41�*�41 − i	

n

�n
41�41

* + W21�22

+ W31�33 + W51�55, �41�

��22

�t
= −�	

n

En
2�t − nT�

4�2 
2 + W23 + W21 + W25
��22 + W42�44

+ W32�33 + i�32

	
n

En
2�t − nT�

8�2 G23�q23 + i�

− i�32
*

	
n

En
2�t − nT�

8�2 G22�q23 − i� , �42�

��33

�t
= −�	

n

En
2�t − nT�

4�2 
3 + W32 + W31 + W35
��33 + W43�44

+ W23�22 + i�32
*

	
n

En
2�t − nT�

8�2 G32�q32 + i�

− i�32

	
n

En
2�t − nT�

8�2 G32�q32 − i� , �43�

�44 =

i	
n

�n
41�41

* − i	
n

��n
41�*�41

	
n

En
2�t − nT�

4�2 
4 + W42 + W43

, �44�

�55 =
W35�33 + W25�22

W51
, �45�

�c = 1 − �11 − �22 − �33 − �44 − �55, �46�

where �32= �E3−E2� / � +	nEn
2�t−nT��P2− P3� /4�2 is the

dynamic-Stark modified Zeeman splitting of the upper state;

i, Pi, G32�23�, and q32�23� defined as in Eqs. �6�, �7�; �ij and
Wij are the corresponding coherence and population decay
rates and �n

41=�41En /2� is the pumping field Rabi fre-
quency.

The train was modeled as a sequence of Gaussian pulses
of the form En=Emaxexp�−�t−nT−	 /2�2 /2�	 /4�2�2�� �with
the FWHM of a pulse given by 	�ln 2 /2� for nT� t�nT
+	, and zero otherwise. The number of pulses in the train
was varied in order to verify the predictions of the previous
section and to find the optimal pumping conditions. The dy-
namics of the system critically depends on the Zeeman de-
coherence rate �32, since CPT is efficient only for t��32

−1.
For Ti3+ :YAlO3 this rate is not known, so we choose its
value based on the following grounds. At room temperature
spin transitions of transition metal ions in crystals are broad-
ened by spin-lattice relaxation due to interaction with
phonons. This broadening includes direct, Raman, and
Orbach phonon processes, the latter two mediated by higher
energy electronic states �24�. The temperature dependence of
the three processes is different, at room temperature the di-
rect process rate is proportional to T, the Raman one is pro-
portional to T2, for the Orbach relaxation the broadening is
goverened by a factor exp�−�E /kT�, where �E is the energy
separating the closest higher energy electronic state and the
state of interest. The Orbach process dominates at room tem-
perature if the closest excited electronic state can be reached
by phonons. Typical phonon energies in crystals are several
hundred cm−1. In Ti3+ :YAlO3 the Janh-Teller interaction
splits the excited electronic state for about 3000 cm−1, which
would result in small Orbach broadening, making the Raman
process the dominant one �direct phonon transitions between
levels of a Kramers doublet are forbidden, becoming weakly
allowed only if the doublet is split in a magnetic field �25��.
This situation closely resembles the case of ruby, analyzed in
Ref. �15�, where CPT with the train of ultrashort pulses was
observed in ground state Zeeman sublevels at room tempera-
ture and the width of the detected resonances was �50 MHz.
So while �32 for the Zeeman transitions in the excited state
has yet to be measured in Ti:YAlO3, comparison with ruby
suggests that �32 is expected to be of the order of tens MHz.
In our numerical model we take �32=50 MHz. In the calcu-
lations we used the parameters of Ti3+ :YAlO3, known from
literature: ESA cross section for 532 nm pumping �ESA
�10−18 cm2 �26�, where �ESA=��
ion / �cn��� gives the
ionization rates �we assumed for simplicity 
ion=
2=
3
=
4�, the ground-state absorption cross section �GSA�2
�10−20 cm2 �30�, where �GSA=2�� ��41�2 /�41c�n��� al-
lows one to calculate the pumping rate ��41

n �2 /�41, G23
=G32=�
2
3, q32=q23=q, W21

−1=W31
−1=W25

−1=W35
−1=11.4 �s

�30�, W42
−1=W43

−1=W51
−1�1 ps, and W32=W23=�32.

Population of the metastable Zeeman sublevel �22 and of
the continuum �c as a function of the splitting between the
sublevels at a fixed pulse repetion rate is shown in Fig. 4. As
can be seen, when the Zeeman splitting is multiple of the
repetition rate �32= l
, population transfer to the continuum
is slowed down and the population stored in the Zeeman
sublevels is increased. The increase is �10 times compared
to the nonresonant situation �for example, for �32=0.5
�. It
is worth noting that there is efficient CPT at zero Zeeman
splitting �ground-state Hanle effect�, similar to the one ob-
served in ruby at ground-state spin sublevels �15�, meaning
that it is possible to efficiently pump this system even in zero
magnetic field. An additional advantage of nonzero magnetic
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fields, though, is that the Zeeman decoherence rate can be
significantly reduced if a magnetic field is applied due to
suppression of dipole-dipole interaction between 27Al ions of
the host, inducing a fluctuating magnetic field at a Ti3+ site.
It would allow one to use longer and less energetic trains to
obtain threshold inversion.

The threshold inversion ��22+�33� /�11=�res abs /�em
=0.24, necessary to overcome residual absorption in the
emission range ��res abs�8.8�10−21 cm2, �em�3.7�10−20

cm2 at �em=600 nm�, is reached at peak pumping intensity
of Imax=7 GW/cm2, when pumped with a train consisting of
about 30 pulses of 30 ps duration, as shown in Fig. 5. Pump-
ing is most efficient for trains with duration not significantly
exceeding �32

−1, as was already discussed in the previous sec-
tion. For longer trains population of the metastable state still
grows but slower, and most of the population is transferred to
the continuum since CPT is less and less efficient. At times
less than �32

−1 CPT is close to the ideal one, and the dynamics
is close to the one expected in an open system. Namely, the
Zeeman sublevels population is distributed between the
“bright” and “dark” states, the “bright” state population is
completely transferred to the continuum after the action of
the pulse train. In our case the “bright” and “dark” states are
populated equally for q23=q32=0 and by the end of the train
the population in the continuum is almost equal to the popu-
lation in the metastable state, as is shown in Fig. 6. The
resonances become narrower with time, again in accord with
the previous section discussion.

In Fig. 7 the effect of q is analyzed. As was discussed in
Ref. �3� �q � �1 is detrimental for ionization suppression, since
only two laser fields were used in that work, and one of them

FIG. 4. �Color online� Population of the metastable Zeeman
sublevel �solid line� �22 and the continuum �c �dashed line� for
different number of pulses, corresponding to different total pumping
time. Repetion rate 
=500 MHz, pulse duration 	=30 ps, peak in-
tensity Imax=7 GW/cm2; q=0 meaning �22=�33, therefore only �22

is shown; number of pulses in the train: �a� N=11, �b� N=15, �c�
N=20, �d� N=30, �e� N=40.

FIG. 5. �Color online� Total population in the metastable Zee-
man sublevels �22+�33 �solid line�, ground state �dotted line�, and
in the continuum �dashed line� in the case of pumping with a train
of ultrashort pulses. Pulse train parameters are the same as in Fig. 4,
total number of pulses in the train N=40, q=0. Dashed vertical line
denotes the moment the threshold inversion ��22+�33� /�11=0.24 is
reached, the required number of pulses N�30.
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coupled both bound states to the continuum leading to inco-
herent ionization losses. For �q � �1 Raman transitions via the
continuum dominate over direct transitions and it opens the
way to multiphoton incoherent ionization. In our case there
are no incoherent ionization channels and the influence of q
is not dramatic, as can be seen from Fig. 7. It breaks the
symmetry between the states �2� and �3� and makes the popu-
lation profiles asymmetric, but the total metastable state
population is the same as in the case q=0 for the same
pumping intensity. As can be seen from Fig. 7, nonzero q
increases the width of the transparency window in �c, ac-
cording to Eq. �24�.

In the above theory we assumed transitions from the spin
Zeeman sublevels to the continuum to be of equal strength
for simplicity. In reality it would require sufficient spin-orbit
mixing in the continuum, allowing to couple the spin sublev-
els via the same continuum states. Spin-orbit interaction in
the continuum was found crucial in a similar configuration,
where two bound states having ±1/2 spin components were
coupled to the continuum, and utilized for production of
spin-polarized photoelectrons via LICS �32�. Theoretical cal-
culations for Rb and Cs performed in that study showed
strong spin-orbit coupling for both of these atoms, for Cs
being stronger than for Rb. Strong spin-orbit coupling in the
continuum was experimentally observed in xenon, where
LICS was used to control ionization products into two spin-
orbit 2P1/2 and 2P3/2 continua of Xe+ �4,31�. Significant con-
duction band spin-orbit splitting was also measured in semi-
conductors �in the range of 0.1−0.4 eV with several eV
bandgaps �33,34��. Based on these data, it is reasonable to
assume that for Ti3+ :YAlO3 the spin-orbit interaction in the
continuum is non-negligible either. Another issue not ad-

FIG. 7. �Color online� Populations of the metastable Zeeman
sublevels ��22 shown by the solid and �33 by the dotted line, respec-
tively� and in the continuum �dashed line� in the case of nonzero q.
Pulse train parameters are the same as in Fig. 4, number of pulses in
the train N=11; for different q: �a� q=0, �b� q=0.5, �c� q=1, �d�
q=1.5, �e� q=2, �f� q=2.5.

FIG. 6. �Color online� Total population in the metastable Zee-
man sublevels �solid line� and in the continuum �dashed line� for
pumping time ��32

−1 when CPT is most efficient. Population in the
continuum, pumped out from the “bright” state, is almost equal to
the population in Zeeman sublevels, the “dark” state. Pulse train
parameters are the same as in Fig. 4, number of pulses in the train
N=11.
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dressed in the present work is interaction with multiple spin-
orbit continua. The details of this interaction and the
strengths of the transitions to the continua will be the subject
of another paper.

IV. CONCLUSIONS

We have theoretically analyzed the coherent population
trapping effect with a train of ultrashort pulses coupling two
bound states to a continuum of states in a �-type configura-
tion. Complete ionization suppression can be realized in this
system if the splitting between bound states is a multiple of
the pulse repetion rate �=2�n /T. In a traditional case with
only two fields, pump and probe, complete ionization sup-
pression cannot take place due to incoherent losses, induced
by the two fields interacting with both bound states. Natural
cancellation of incoherent ionization losses in CPT with a
pulse train can be of great benefit for all LISC and coherent
control experiments, leading to less background and better
controllability. In fact, interaction of a train of pulses with a
diatomic molecule was predicted to lead to efficient coherent
control of quantum chaotic diffusion in this system �35�. A
possibility of using CPT with a train of pulses technique to
suppress ESA of pumping radiation into the conduction band
of laser crystals is discussed. A specific example of
Ti3+ :YAlO3 crystal, promising tunable yellow-orange laser,

is numerically studied. More than an order of magnitude en-
hancement of pumping efficiency is predicted in the two-
photon resonance situation �=2�n /T compared to the far-
from-resonance pumping ��2�n /T. This enhancement
takes place under pumping with ultrashort pulses with spec-
tral width exceeding the Zeeman splitting and it is most ef-
fective if the train duration is of the order of the Zeeman
coherence decay time. It also requires strong coupling of
both Zeeman sublevels to the same continuum, and thus
spin-orbit mixing of continuum states and, probably, some
specific polarization of the pumping light to control interac-
tion with multiple continua. If realized, the Ti3+ :YAlO3 laser
can find numerous applications as a substitute for dye lasers
in, for example, laser medical research, astronomy, naviga-
tion, and other areas. Due to the wide emission band
��3000 cm−1� ofTi3+ :YAlO3 it can be used for generation of
ultrashort pulses utilizing some kind of mode-locking tech-
nique in the same way as the Ti:sapphire laser is used.
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