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A phenomenological approach is developed that allows one to completely describe the effects of unwanted
noise, such as the noise associated with absorption and scattering, in high-Q cavities. This noise is modeled by
a block of beam splitters and an additional input-output port. The replacement schemes enable us to formulate
appropriate quantum Langevin equations and input-output relations. It is demonstrated that unwanted noise
renders it possible to combine a cavity input mode and the intracavity mode in a nonmonochromatic output
mode. Possible applications to unbalanced and cascaded homodyning of the intracavity mode are discussed and
the advantages of the latter method are shown.
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I. INTRODUCTION

Cavity quantum electrodynamics �cavity QED� has been a
powerful tool in a lot of investigations dealing with funda-
mentals of quantum physics and applications such as quan-
tum information processing, for a review see, e.g., Refs.
�1,2�. It has offered a number of proposals for quantum-state
generation, manipulation, and transfer between remote nodes
in quantum networks. A cavity is a resonatorlike device with
one or more fractionally transparent mirrors characterized by
small transmission coefficients such that large quality values
Q can be realized. Hence one may regard the mode spectrum
of the intracavity field as consisting of narrow lines. As a
rule, excited atoms inside the cavity serve as source of radia-
tion, and the fractionally transparent mirrors are used to re-
lease radiation for further applications and to feed radiation
in the cavity in order to modify the intracavity field and
thereby the outgoing field either.

Manipulations with atoms in cavities and cavity fields
give a number of possibilities of quantum-state engineering,
see, e.g., Refs. �3,4�. For example, schemes for the genera-
tion of arbitrary field states have been proposed �5�. Further,
proposals for the generation of entangled-states of light have
been made �see, e.g., Ref. �6��. It is worth noting that, using
the technique of adiabatic atom transitions coherent superpo-
sition states of the radiation field inside the cavity can be
prepared �7�.

The field escaping from an excited cavity has been pro-
posed to be used for homodyne detection of the intracavity
mode and reconstruction of its quantum state �8�. Since the
output mode is a nonmonochromatic one, this proposal is
based on an operational definition of the Wigner function.
The employment of cavities as remote nodes in quantum
networks has been proposed �9�. Laser driving of atoms al-
lows one to create such a specific pulse of the output mode
which is completely coupled into another cavity. This can be
used for transferring quantum states between spatially sepa-
rated atoms trapped inside cavities. Cavities are also impor-

tant in optical parametric amplification frequently used for
the generation of squeezed states �10�.

One of the most crucial points in implementing the pro-
posed schemes such as the ones mentioned above is the de-
coherence. It appears due to the uncontrolled interaction of
the radiation with some external degrees of freedom giving
rise to absorption and scattering of the radiation one is inter-
ested in. In this context, a serious drawback is the fact that
for high-Q optical cavities, at least with the presently avail-
able technology, such unwanted losses can be of the same
order of magnitude as the wanted losses associated with the
transmittance of the coupling mirrors �11–13�. Thus, non-
classical features of the outgoing field can be substantially
reduced compared with the corresponding properties of the
intracavity field �14�.

There exist several approaches to the theoretical descrip-
tion of leaky cavities for the idealized case that unwanted
losses can be ignored. Within the framework of quantum
noise theory �QNT�, in Ref. �15� each intracavity mode is
linearly coupled, through one or more fractionally transpar-
ent mirrors, with a continuum of external modes forming
dissipative systems for the intracavity modes. Based on Mar-
kovian approximation, it can be concluded that the intracav-
ity modes obey quantum Langevin equations. The external
field is composed of two kinds of fields: input and output
ones, where the input field gives rise to the Langevin noise
forces. Moreover, the input and output fields are related to
each other by means of the input-output relation.

The quantum field theoretical �QFT� approaches to the
problem are based on �macroscopic� QED. So Refs. �16–18�
start directly from an ordinary continuous-mode expansion
of the electromagnetic field in the presence of passive, non-
absorbing media �19,20�. Under certain conditions, this ap-
proach also leads to a description of the cavity in terms of
quantum Langevin equations and input-output relation. In
another version of the QFT approach �21�, solutions of Max-
well’s equations are constructed by using Feshbach’s projec-
tion formalism �22�. Separating from the beginning all de-
grees of freedom into two parts—internal and external
ones—one can also obtain, in some approximation, the
Hamiltonian used in QNT.*E-mail address: sem@iop.kiev.ua
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As already mentioned, the standard versions of both the
QNT approach and the QFT approach do not take into ac-
count the presence of unwanted losses and hence, the addi-
tional, unwanted noise unavoidably associated with them.
Thus, these theories cannot be applied to realistic situations,
in general. Within an extended version of the QNT approach,
the unwanted losses the intracavity field suffers from can be
modeled by introduction into the Langevin equations addi-
tional damping and noise terms, which corresponds to the
introduction into the system of additional input-output ports
�14,21�. The applicability of this model is restricted, in gen-
eral, to the case of all the input ports being unused.

More recently a QFT approach to the description of a
leaky cavity with unwanted noise has been presented
�23,24�. Applying quantization of the electromagnetic field in
dispersing and absorbing media �20,25�, a generalized
Langevin equation and input-output relation have been de-
rived. An extended version of the QNT approach can be
obtained by applying the model of imperfect coupling be-
tween two systems, see, e. g., Ref. �26�. In this scheme, a
unidirectional coupling of the considered systems is studied,
the unwanted noise being modeled by beam splitters inserted
in the input and output channels. For transferring such a
method to the description of a cavity with unwanted noise,
one must carefully check the completeness of the parametri-
zation of the considered replacement schemes.

In the present paper we generalize, by means of replace-
ment schemes, the QNT approach with the aim to complete
both the quantum Langevin equations and the input-output
relation in a consistent way, such that unwanted noise is fully
included in the theory—in full agreement with the QFT ap-
proach in Ref. �23�. The analysis will show that there exist
different formulations of the theory. Favoring one over the
other may depend on the physical conditions and on the
available information on the cavity. Moreover, we will dem-
onstrate that an incomplete description of the unwanted noise
may ignore important physical effects. As an example it is
shown that the unwanted noise may lead to the combination
of a cavity input mode with the intracavity mode in a non-
monochromatic output mode. Such mode matching does not
occur in an ideal leaky cavity or in some incomplete models
of unwanted noise effects.

The paper is organized as follows. In Sec. II a beam-
splitter-based replacement scheme is introduced which is
suitable for modeling the unwanted noise of a one-sided cav-
ity. Both the quantum Langevin equation and the input-
output relation associated with the replacement scheme are
presented. The relations between the c-number coefficients
in these equations are derived. Section III is devoted to the
problem of consistency and completeness of a given quan-
tum Langevin equation together with the corresponding
input-output relations. It is shown that the requirement of
preserving commutation rules necessarily leads to constraints
on the c-number coefficients in the theory. The effect of
noise-induced mode coupling between intracavity and input
modes is considered in Sec. IV. Section V is devoted to the
application of this effect to the problem of unbalanced and
cascaded homodyning of the intracavity mode. Finally, a
summary and some concluding remarks are given in Sec. VI.

II. UNWANTED NOISE

As mentioned in the Introduction, the unwanted loss of
cavity photons due to scattering and absorption can be mod-
eled by appropriately chosen input and output ports. This is
sketched in Fig. 1 in the simplest case for a one-sided cavity,

where the operators d̂in�t� and d̂out�t�, respectively, corre-
spond to the wanted radiative input and output, whereas the
operators ĉin�t� and ĉout�t�, respectively, correspond to input
and output channels associated with unwanted noise.

The scheme is formally equivalent to a four-port cavity
having two fractionally transparent mirrors as considered in
Ref. �15�. Hence any �single-mode� cavity operator âcav can
be assumed to obey a quantum Langevin equation of the type

ȧ̂cav�t� = − �i�0 +
1

2
�� + �A�2��âcav�t� + ��d̂in�t� + Aĉin�t� ,

�1�

and the corresponding input-output relation reads as

d̂out�t� = ��âcav�t� − d̂in�t� . �2�

Here, �0 is the resonance frequency of the cavity, � is the
decay rate caused by the wanted output channel, and �A�2 is
the part of the decay rate due to unwanted internal noise,
where, for some reason which will be clarified later, A is
assumed to be a complex number. Note that such an ap-
proach has effectively been used in Ref. �14� for analyzing
the quantum-state extraction from a cavity in the presence of
unwanted losses. It is useful when the input field is in the
vacuum state. In this case the possibility of absorption or
scattering of input photons plays no role.

A. Noisy coupling mirror

In the most general case one may use the input port of a
cavity for different purposes, e.g., for combining the intrac-
avity and input modes in an output mode. This possibility
can be useful for the quantum-state reconstruction as consid-

FIG. 1. One-sided cavity with unwanted internal losses.
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ered in Sec. V. For a correct description of such a process
one should take into account that input photons can be ab-
sorbed or scattered by the coupling mirror before entering
into the cavity.

The corresponding type of unwanted noise can be in-
cluded in the theory in a systematic way by applying the
concept of replacement schemes as follows. Instead of con-
sidering the actual coupling mirror, we consider an ideal
semitransparent mirror that does not give rise to unwanted
noise and we model the unwanted noise by inserting appro-
priately chosen beam splitters in the input and output chan-
nels of the cavity, as sketched in Fig. 2. Clearly, the symmet-
ric beam splitters BS1 and BS2, respectively, are closely
related to the unwanted losses that the input and output fields
suffer when passing through the coupling mirror. Moreover it
will turn out that a third beam splitter BS3 is required, which
simulates some feedback. This �asymmetric� beam splitter is
allowed to realize an U�2�-group transformation, thereby in-
troducing an additional phase shift �see Appendix A and
Refs. �20,27��. Including such a feedback into the theory
ensures one to describe all kinds of unwanted noise in high-
Q cavities. The corresponding proof is given in Sec. III.

Using Eqs. �1� and �2� and the input-output relations for
each beam-splitter �Appendix A�, we obtain the extended
quantum Langevin equation

ȧ̂cav�t� = − �i�cav +
1

2
��âcav�t� + T �c�b̂in�t� + A�1�

�c�ĉin
�1��t�

+ A�2�
�c�ĉin

�2��t� + Aĉin�t� �3�

and the extended input-output relation

b̂out�t� = T �o�âcav�t� + R�o�b̂in�t� + A�1�
�o�ĉin

�1��t� + A�2�
�o�ĉin

�2��t�

�4�

for a cavity in the presence of unwanted noise �Appendix B�.
Here,

� = �
1 − �R�3��2�T �1��2�T �2��2

�1 − R�3�*T �1�T �2��2
+ �A�2 �5�

is the cavity decay rate and

�cav = �0 − i
�

2

R�3�*T �1�T �2� − R�3�T �1�*T �2�*

�1 − R�3�*T �1�T �2��2
�6�

is the shifted frequency of the cavity mode. The other
c-number coefficients are defined as follows:

T �c� = ��
T �1�T �3�*

1 − R�3�*T �1�T �2� , �7�

A�1�
�c� = ��

R�1�

1 − R�3�*T �1�T �2� , �8�

A�2�
�c� = − ��

T �1�R�2�R�3�*

1 − R�3�*T �1�T �2� , �9�

T �o� = ��ei��3� T �2�T �3�

1 − R�3�*T �1�T �2� , �10�

R�o� = ei��3� R�3� − T �1�T �2�

1 − R�3�*T �1�T �2� , �11�

A�1�
�o� = − ei��3� T �2�R�1�T �3�

1 − R�3�*T �1�T �2� , �12�

A�2�
�o� = ei��3� R�2�T �3�

1 − R�3�*T �1�T �2� , �13�

where T �k� and R�k�, respectively, are the transmission and
reflection coefficients of the kth beam splitter, and ��3� is a
phase factor attributed to the third beam splitter.

We see that the replacement scheme in Fig. 2 leads to a
description of the cavity in terms of the quantum Langevin
equation �3� and input-output relation �4� which are suited to
include unwanted noise in the theory. The corresponding co-
efficients are expressed via the parameters of the component
parts of the replacement scheme—the cavity �with a cou-
pling mirror that is free of unwanted losses� and three beam
splitters. It is worth noting that the results obtained are in
agreement with those derived on the basis of the QFT ap-
proach in Ref. �23�.

B. Commutation relations

Clearly, the c-number coefficients in Eqs. �3� and �4� are
not independent of each other, since they ensure, by con-
struction, the validity of the commutation relations

�âcav�t�, âcav
† �t�� = 1, �14�

�b̂out�t1�, b̂out
† �t2�� = ��t1 − t2� . �15�

Vice versa, if the commutation relations �14� and �15� are
assumed to be valid, then from the quantum Langevin equa-

FIG. 2. Replacement scheme for modeling the unwanted noise
in a one-sided cavity. The symmetrical SU�2�-type beam splitters
BS1 and BS2 model the unwanted noise in the coupling mirror, and
the asymmetrical U�2�-type beam-splitter BS3 simulates some
feedback.

LEAKY CAVITIES WITH UNWANTED NOISE PHYSICAL REVIEW A 74, 033803 �2006�

033803-3



tion �3� together with the input-output relation �4� and the
commutation relations

�b̂in�t1�, b̂in
† �t2�� = ��t1 − t2� , �16�

�ĉin�t1�, ĉin
† �t2�� = ��t1 − t2� , �17�

�ĉin
�1��t1�, ĉin

�1�†�t2�� = ��t1 − t2� , �18�

�ĉin
�2��t1�, ĉin

�2�†�t2�� = ��t1 − t2� �19�

it necessarily follows that relations between the mentioned
coefficients must exist. Note that mixed commutators vanish
as a natural consequence of the assumption that the cavity
mode, the external modes, and the dissipative systems re-
sponsible for the unwanted noise are assumed to refer to
different degrees of freedom.

Inserting the solution of the quantum Langevin equation
�3�

âcav�t� = âcav�0�e−�i�cav+�/2�t + 	
0

t

dt�e−�i�cav+�/2��t−t��

��T �c�b̂in�t�� + A�1�
�c�ĉin

�1��t�� + A�2�
�c�ĉin

�2��t�� + Aĉin�t���

�20�

in the left-hand side of Eq. �14�, assuming that

�âcav�0�, âcav
† �0�� = 1, �21�

and taking into account Eqs. �16�–�19�, we find that Eq. �14�
holds true only if the condition

� = �A�2 + �A�1�
�c��2 + �A�2�

�c��2 + �T �c��2 �22�

is satisfied. Similarly, inserting Eq. �4�, together with âcav�t�
from Eq. �20�, in the left-hand side of Eq. �15�, we can easily
see that Eq. �15� holds true if the conditions

�R�o��2 + �A�1�
�o��2 + �A�2�

�o��2 = 1 �23�

and

T �o� + T �c�*R�o� + A�1�
�c�*A�1�

�o� + A�2�
�c�*A�2�

�o� = 0 �24�

are satisfied. Needless to say that substituting Eqs. �5� and
�7�–�13� into Eqs. �22�–�24� and utilizing Eq. �A5� yields
identities.

III. CONSISTENCY AND COMPLETENESS

There exist some other approaches to the problem of un-
wanted noise in cavities, which may lead to quantum Lange-
vin equations and input-output relations different from Eqs.
�3� and �4�; see, e.g., Ref. �21�. Hence the question of
equivalence and completeness of different types of quantum
Langevin equations and the input-output relations associated
with them arises. Answering the question is no trivial task,
and, in fact, some approaches describe cavities which do not
describe all the typical situations.

Quite general, the quantum Langevin equation and the
input-output relation can be written in the form

ȧ̂cav = − �i�cav +
1

2
��âcav + T �c�b̂in�t� + Ĉ�c��t� , �25�

b̂out�t� = T �o�âcav�t� + R�o�b̂in�t� + Ĉ�o��t� , �26�

where the operators Ĉ�c��t� and Ĉ�o��t� should obey the com-
mutation relations

�Ĉ�c��t1�,Ĉ�c�†�t2�� = �A�c��2��t1 − t2� , �27�

�Ĉ�o��t1�,Ĉ�o�†�t2�� = �A�o��2��t1 − t2� , �28�

�Ĉ�c��t1�,Ĉ�o�†�t2�� = �A�c���A�o��ei�cos���t1 − t2� . �29�

Here �A�c�� , �A�o�� and ei�cos� are coefficients that along with
T �c�, T �o�, R�o�, and � satisfy the constraints

� = �A�c��2 + �T �c��2, �30�

�R�o��2 + �A�o��2 = 1, �31�

T �o� + T �c�*R�o� + �A�c���A�o��ei�cos� = 0, �32�

which follow, in a similar way as outlined for the scheme in
Sec. II B, from the requirement of preserving the commuta-
tion rules.

The constraints �30�–�32� �or �22�–�24� in the case of the
scheme in Fig. 2� mean that the c-number coefficients in Eqs.
�25�–�29� cannot be chosen freely, but can take values only
on a certain manifold. In this context, Eqs. �5�–�13� can be
considered as an example of a parametrization of this mani-
fold, where the number of parameters describing the compo-
nent part of the replacement scheme in Fig. 2 exactly coin-
cides with the dimensionality of the manifold.

However, one may also think of parametrizations that do
not cover the whole manifold. In this case the corresponding
replacement scheme—referred to as a degenerate scheme—
does not describe all possible cavities. In order to test as to
whether a given parametrization is associated with a degen-
erate scheme, one can apply an appropriate theorem of dif-
ferential geometry �28�. For this purpose one should first
present Eqs. �5�–�13� in the form of real functions of real
arguments. Next, one should find the rank of the matrix con-
structed from the first derivatives of these functions and
compare it with the dimensionality of the manifold. For the
replacement scheme in Fig. 2 this has been checked using
MATHEMATICA. As expected, it has turned out that the
scheme is nondegenerate. Hence the scheme leads to a com-
plete and consistent description of a �one-sided� cavity with
unwanted noise.

Another possibility to express the c-number coefficients
in terms of independent parameters follows from Eqs.
�30�–�32�. One can simply consider the coefficients T �c�,
T �o�, R�o�, �, and �cav as independent parameters. The coef-
ficients �A�c��, �A�o��, and ei�cos�, describing the unwanted
noise, can be expressed in terms of them. The values of such
independent parameters have to belong to the manifold de-
fined by Eqs. �30�–�32�.
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It is worth noting that the operators Ĉ�c��t� and Ĉ�o��t� in
Eqs. �25� and �26� can be expanded as

Ĉ�c��t� = 

k

A�k�
�c�ĉin

�k��t� , �33�

Ĉ�o��t� = 

k

A�k�
�o�ĉin

�k��t� . �34�

This implies that different representations �and correspond-
ing replacement schemes� of the operators of the unwanted
noise can be obtained. The quantum Langevin equation and
the input-output relation in the form of Eqs. �3� and �4� are
an example of such a representation, where the operators of
the unwanted noise are expanded in a three-dimensional

space. However, it is clear that two operators Ĉ�c��t� and

Ĉ�o��t� can be expanded in two-dimensional basis. Hence, for
the complete characterization of a cavity, one can use only
two independent sources of unwanted noise.

As already mentioned, there exist schemes which do not
describe all the physically possible lossy cavities and, in fact,
describe special cases of lossy cavities. In other words, the
corresponding parameters do not cover the whole manifold
of the values of the coefficients in Eqs. �25� and �26� which
are, in principle, possible and hence, the schemes can be
considered as being degenerate. An example of such scheme
is the replacement scheme in Fig. 3. The corresponding
quantum Langevin equation and the input-output relation,
which are special cases of Eqs. �25� and �26�, read

ȧ̂cav = − �i�cav +
1

2
��âcav + T �c�b̂in�t� + A�1�

�c�ĉin
�1��t� ,

�35�

b̂out�t� = T �o�âcav�t� + R�o�b̂in�t� + A�1�
�o�ĉin

�1��t� + A�2�
�o�ĉin

�2��t� .

�36�

The parametrization can easily be obtained from the param-
etrization �5�–�13� by setting therein T �3�=1, R�3�=0, and
A=0.

It is not difficult to prove that for this scheme, along with
Eqs. �30�–�32�, the additional constraint

T �o�T �c�

�
+ R�o� = 0 �37�

is satisfied. This relation does not follow from the require-
ment of preserving the commutation rules �14� and �15�.
Clearly, the rank of the matrix constructed from the first
derivatives of the real functions corresponding to the param-
etrization is not equal to the number of the independent co-
efficients in Eqs. �35� and �36�—a sign that the scheme is
indeed degenerate.

It is worth noting that the physics behind this degenerate
scheme is closely related to that of a cavity without un-
wanted noise. This becomes clear from the following argu-
ment. The loss channels modeled by the two beam splitters
may equivalently be interpreted as the losses that the input
�output� field suffers from before entering �after leaving� the
cavity. A consequence of this fact is that the losses modeled
in this way cannot affect the decay rate of the intracavity
mode. Thus the unwanted losses do not affect the dynamics
of the intracavity mode.

IV. NOISE-INDUCED MODE COUPLING

In the generation and processing of nonclassical radiation
one is commonly interested in a reduction of unwanted
noise, because it gives rise to quantum decoherence, in gen-
eral. However, if the input port of a cavity is used, the pres-
ence of unwanted losses does not only change the properties
of the intracavity mode and the outgoing field. In this case, a
new possibility for combining the intracavity mode and an
input mode in a nonmonochromatic output mode appears—a
surprising property, which does not exist for cavities without
unwanted noise channels. Moreover, such an effect cannot be
properly described by a degenerate cavity model such as the
given in Fig. 3.

After sufficiently long time, t	1/�, the internal field of
an ideal cavity �i.e., a cavity without unwanted noise� is
completely transferred into the nonmonochromatic cavity-
associated output mode �CAOM�. Since the efficiency of this
process is equal to one, an input signal cannot be reflected
into this mode. Therefore, in order to combine the intracavity
mode and an input mode in an output mode, one must de-
crease this efficiency. Realistic cavities are always character-
ized by some unwanted losses, such as absorption and scat-
tering. Hence, the efficiency of intracavity mode escaping
from such a cavity is less than unity �14� and an input mode
can be reflected, in principle, into the CAOM. Therefore,
combining the intracavity mode with an input mode in the
output mode becomes possible.

Assuming that the quantum state of intracavity mode is
generated at the zero point of time, the solution of the quan-
tum Langevin equation �25� can be written as

âcav�t1� = âcav�0�T �o�−1F*�t1�

+ T �c�T �o�−1	
0

t1

dt2
*�t1,t2�b̂in�t2� + C̃
ˆ �t1� ,

�38�

where

FIG. 3. An example of a degenerate replacement scheme.

LEAKY CAVITIES WITH UNWANTED NOISE PHYSICAL REVIEW A 74, 033803 �2006�

033803-5



F*�t1� = T �o�e−�i�cav+�/2�t1��t1� , �39�


*�t1,t2� = T �o�e−�i�cav+�/2��t1−t2���t1���t1 − t2� , �40�

��t1� is a unit step function and C̃
ˆ �t1� is a linear integral

expression containing the operators of unwanted noise. Since
we assume that the unwanted-noise systems are in the

vacuum state, the explicit form of C̃
ˆ �t1� plays no role for our

further consideration. Substituting Eq. �38� into the input-
output relation �26�, one obtains the relation

b̂out�t1� = âcav�0�F*�t1� + 	
−�

+�

dt2G*�t1,t2�b̂in�t2� + Ĉ�t1� .

�41�

Hence, the output-mode operator is expressed by the input-
mode operator, the intracavity mode operator at the initial
time and the operators of unwanted noise. Here

G*�t1,t2� = T �c�
*�t1,t2� + R�o���t1 − t2� , �42�

and the operator Ĉ�t1� is again a linear integral expression
containing the operators of unwanted noise, whose explicit
form is not needed for the further considerations. The first
term in Eq. �41� describes the extraction of the intracavity
mode into the CAOM. The second term describes the reflec-
tion of the input field, where G*�t1 , t2� is the integral kernel
of the corresponding mode transformation. It is worth noting
that non-Hermitian properties of this integral transformation
lead to changing �decreasing� the norm of the reflected pulse
compared with the input one. This corresponds to the partial
absorption/scattering during reflection at the cavity.

For our purposes it is convenient to use another �equiva-
lent� representation of Eq. �41�. Let �Un

in�t1� ,n=0, . . . , +��
and �Un

out�t1� ,n=0, . . . , +�� be two different complete sets of
orthogonal functions associated with the input and output
modes respectively, i.e.,

b̂in�out��t1� = 

n=0

+�

Un
in�out��t1�b̂in�out�;n, �43�

b̂in�out�;n = 	
−�

+�

dt1Un
in�out�*�t1�b̂in�out��t1� . �44�

Here b̂in�out�;n is the annihilation operator of an input �output�
photon in the nonmonochromatic mode corresponding to the
function Un

in�out��t1�. We choose the function U0
out�t1� in the

form of the CAOM,

U0
out�t1� =

F*�t1�
�ext

, �45�

where

ext = 	
−�

+�

dt1�F�t1��2 =
�T �o��2

�
�46�

can be interpreted as the efficiency of the intracavity-field
extraction into the CAOM �14�. The function U0

in�t1�, defined
by using the integral kernel G�t2 , t1� as

U0
in�t1� =

1
�� ref

	
−�

+�

dt2G�t2,t1�U0
out�t2� = U0

out�t1�e−i�,

�47�

corresponds to the nonmonochromatic matched input mode
�MIM�, which only makes a contribution, among the other
orthogonal input modes of this set, into the CAOM under
reflection at the cavity. Here

� ref = T �o�T �c�

�
+ R�o�2

�48�

is the efficiency of the MIM reflection into the CAOM,
which can be found through the condition of normalization
for the function U0

in�t1�, Eq. �47�. The phase � is defined as

� = arg�T �o�T �c�

�
+ R�o�� . �49�

Along with the CAOM, the MIM is reflected into another
nonmonochromatic output mode as well, see Fig. 4. This
additional output mode �AOM� results in noise effects when
one measures some properties of the quantum state of the
CAOM. To analyze it, we need the total response of the
cavity on the MIM, that can be obtained by using the integral
kernel G*�t1 , t2� as

Uout�t1� = 	
−�

+�

dt2G*�t1,t2�U0
in�t2� = ���T �c�T �o�t1 + R�o��

� e−�i�cav+�/2�t1+i�arg T �o�−����t1� . �50�

Since the total reflected pulse Uout�t1� is a superposition of
the CAOM with the AOM, i.e.,

FIG. 4. The mode structure of the external field: cavity-
associated output mode �CAOM�, additional output mode �AOM�,
and matched input mode �MIM�.

SEMENOV et al. PHYSICAL REVIEW A 74, 033803 �2006�

033803-6



Uout�t1� = �� refU0
out�t1� + �̄refU1

out�t1� , �51�

the form of the AOM, denoted as U1
out�t1�, can be found as

U1
out�t1� =

1
�̄ref

�Uout�t1� − �� refU0
out�t1��

= ��ei���t1 − 1�e−�i�cav+�/2�t1��t1� . �52�

Here

� = arg
T �o�T �c�

�
+ arg T �o� − � �53�

and

̄ref =
�T �o��2�T �c��2

�2 �54�

is the efficiency of the reflection of the MIM into the AOM,
which is found via the normalization of the function U0

out�t1�.
One can check by direct calculations that in the new rep-

resentation Eq. �41� reads

b̂out;0 = �extâcav�0� + �� refb̂in;0 + Ĉ0, �55�

b̂out;1 = �̄refb̂in;0 + 

m=1

+�

Gm,1
* b̂in;m + Ĉ1, �56�

b̂out;n = 

m=1

+�

Gm,n
* b̂in;m + Ĉn for n = 2,3, . . . , �57�

where

Gm,n
* = 	

−�

+�

dt1dt2Un
out*�t1�G*�t1,t2�Um

in�t2� , �58�

Ĉn = 	
−�

+�

dt1Un
out*�t1�Ĉ�t1� . �59�

The first term of Eq. �55� describes the intracavity-field ex-
traction into the CAOM with the efficiency ext �14�. This
mode corresponds to the function U0

out�t1�. The second term
of Eq. �55� demonstrates the possibility to combine the MIM
and the intracavity mode in the CAOM with the efficiency
� ref given by Eq. �48�. As it follows from Eqs. �56� and �57�,
the field extracted from the cavity does not give a contribu-
tion to other nonmonochromatic output modes. Moreover,
according to Eq. �55�, only the MIM described by the func-
tion U0

in�t1� contributes into the CAOM via reflection at the
cavity. It is worth noting that the MIM can be easily prepared
in an experiment since it has the form of a pulse extracted
from another cavity of the same type.

The frequency representation of the CAOM and the AOM
have a very similar form. Their Fourier images, denoted as
U0

out��� and U1
out���, respectively, have equal absolute val-

ues, i.e.,

�U0
out����2 = �U1

out����2 =
�

2���� − �cav�2 +
�2

4
� . �60�

Hence, these two orthogonal modes are irradiated in the
same frequency domain. They differ only in the phases.

For the cavity associated with the degenerate replacement
scheme in Fig. 3, the efficiency of the reflection of the MIM
into the CAOM, see Eq. �48�, is zero due the constraint �37�.
Therefore, the incomplete model does not describe the pos-
sibility of the input and intracavity mode matching. Cavities
without channels of unwanted noise will not give rise to the
mode matching as well.

V. APPLICATION TO QUANTUM-STATE
RECONSTRUCTION

The considered mode-coupling effect can be used for un-
balanced �29� and cascaded �30� homodyning of the intrac-
avity mode. Presently known methods for the reconstruction
of the quantum state of the intracavity mode are based either
on an interaction between atoms and intracavity field �31� or
on the balanced homodyning of the extracted field �8�. In-
cluding in the model unwanted noise, which exists for all
realistic cavities, allows one to formulate another way for the
quantum-state reconstruction of the intracavity mode.

The proposed method has two major advantages. First,
unbalanced homodyning allows one to perform a local re-
construction of the quantum state of the intracavity mode.
That is, in contrast to balanced homodyning, in unbalanced
homodyning it is not required to perform complicated inte-
gral transformations of measured data. Second, one can di-
rectly use properties of the cavity to combine the signal field
with the local oscillator, which allows one to avoid losses
associated with the additional beam splitter. Both features are
important in the considered case, because the quantum-state
extraction is typically characterized by a small efficiency
�11� that gives additional difficulties in the numerical evalu-
ation of the measured data.

A. Unbalanced homodyning

Let us assume that a quantum state of radiation has been
generated inside the cavity. The local-oscillator field with the
coherent amplitude � is prepared in the form of the MIM,
e.g., it could be extracted from another cavity. The further
calculations are similar to those in Ref. �29�. The difference
is that the influence of the AOM must be taken into account.
The photodetector counts the photon number of the total out-
going field

n̂out = b̂out;0
† b̂out;0 + b̂out;1

† b̂out;1 + ¯ , �61�

The probability of recording n counts reads

pn = �:
�cn̂out�n

n!
exp�− cn̂out�:� , �62�

where � means normally ordering and c denotes the count-
ing efficiency. The s-parametrized phase space distribution
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Pcav�� ;s� of the intracavity mode is expressed in terms of the
Glauber-Sudarshan P distribution Pcav��� in the form �32�

Pcav��,s� =
2

��1 − s� 	 d2�� exp�−
2�� − ���2

1 − s
�Pcav���� ,

�63�

which can be rewritten as

Pcav��,s� =
2

��1 − s��:exp�−
2

1 − s
n̂cav����:� , �64�

where

n̂cav��� = �âcav
† �0� − �*��âcav�0� − �� �65�

is the displaced photon-number operator of the intracavity
mode. Utilizing the input-output relations �55� and �56� and
Eq. �61�, and assuming that the MIM is in a coherent state of
amplitude � and all other modes are in the vacuum state, the
operator n̂cav��� in Eq. �64� can be written in the form

n̂cav��� =
1

ext
n̂out− ����2, �66�

where

� = −�� ref

ext
� , �67�

and the factor �= ̄ref /� ref can be rewritten with the help of
Eqs. �48� and �54� as

� =
1

1 +
R�o��

T �o�T �c�2 . �68�

The second term in Eq. �66�, caused by nonzero �, describes
the influence of the AOM.

This gives a possibility to rewrite Eq. �64� in the form

Pcav��,s� =
2

��1 − s�
exp� 2

1 − s
����2�

��:exp�−
2

�1 − s�ext
n̂out�:� . �69�

Similar to Ref. �29�, one can decompose the normally or-
dered exponent into the factor exp�−cn̂out� contained in Eq.
�62� and a residual factor

Pcav��,s� =
2

��1 − s�
exp� 2

1 − s
����2�

��:exp�− 
cn̂out�exp�− cn̂out�:� , �70�

where


 =
2 − �1 − s�

�1 − s�
�71�

and  is the overall efficiency of detection

 = extc. �72�

Expanding the residual factor into a series, it is straightfor-
ward to find the s-parametrized phase-space distribution

Pcav��;s� =
2

��1 − s�
exp� 2

1 − s
����2�


n=0

+�

�− 
�npn��;,�� ,

�73�

where pn�� ; ,��� pn is the probability of recording n
counts given by Eq. �62�.

Thus, measuring the photocount statistics of the outgoing
field pn, one can reconstruct the s-parametrized phase-space
distribution of the intracavity mode. It is worth noting that
such a reconstruction is impossible for cavities without chan-
nels of unwanted noise and cavities whose channels of un-
wanted noise can be modeled, for example, by a degenerate
replacement scheme of the type shown in Fig. 3. From Eq.
�67� it follows that for such cavities � ref=0, hence the recon-
struction is only possible for �=0, i.e., for the origin of the
phase space. In contrast, if the unwanted noise sources are
described properly, the complete information about a quan-
tum state of the intracavity mode can be obtained.

Unlike the case considered in Ref. �29�, the reliability of
the method depends not only on the value of the parameter 
,
but also on the parameter �, cf. Eqs. �71� and �68�. For the
best convergence of the series in Eq. �73�, both these param-
eters should be less than unity. Nevertheless, it is impossible
to satisfy these two conditions simultaneously in realistic
situations.

To illustrate the method, we consider a cavity with zero
absorption coefficient A�o� of the input field, i.e., with
�R�o��2=1. As it follows from the constraints �30�–�32� the
value of parameter � given by Eq. �68� can be written in the
form

� = � ext

1 − ext
�2

. �74�

This is a rising function of ext, in contrast to the dependence
on ext of 
, see Fig. 5. The intersection of these curves can
be considered as the optimum value of ext. Even for an ideal

FIG. 5. The dependences of � and 
 on ext for the reconstruc-
tion of the Husimi-Kano Q function, s=−1, where 
 is given for
three different efficiencies of photocounting c.
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detector with c=1, this value is ext=0.5 and corresponding
value of the parameters 
 and � is 
=�=1. Let us consider a
photodetector with c=0.95. In this case, the optimum value
of the efficiency of quantum-state extraction is ext=0.5085
which corresponds to the situation in Ref. �11�. The corre-
sponding values of the parameters 
 and � for this case are

=�=1.070. In Fig. 6 the result of a numerical simulation of
the reconstruction of the Husimi-Kano Q function for the
odd superposition of coherent states is presented. Each point
is evaluated with 1.7�105 sampling events. This is much
more than the number of 5�103 events needed for such an
experiment in the case of usual unbalanced homodyning with
the same overall efficiency. In particular, for the phase-space
distributions far from the origin of the phase space one needs
a large number of sampling events. The method works well
for small values of ���, for which �104 sampling events are
sufficient.

B. Cascaded homodyning

The efficiency of the scheme can be sufficiently improved
by using the related scheme of cascaded homodyning �30�.
In this scheme the balanced homodyne detection is used for
counting photons �33� in the scheme of unbalanced homo-
dyning, see Fig. 7. The local oscillator 1 �LO1� is prepared in
the form of the MIM similar to the case of unbalanced ho-
modyning. The phase randomized local oscillator 2 �LO2� is
prepared in the form of the CAOM and it can be derived
from the MIM, cf. Eq. �47�. In this case the influence of the
AOM disappears completely. Hence the results of the work
�30� with the overall efficiency given by Eq. �72� can be
directly applied to this case.

Let us consider this scheme in more details. The photode-
tectors D1 and D2 count the photon numbers in the output
ports of a 50:50 beam splitter,

n̂out
�k� = d̂out;0

†�k� d̂out;0
�k� + d̂out;1

†�k� d̂out;1
�k� + ¯ , �75�

where k=1,2 is the number of the detector. The operators

d̂out;n
�k� are connected with the mode operators b̂out;n of the

cavity output and the operators ĝn describing the LO2 via the
relations

d̂out;n
�1� =

1
�2

�b̂out;n + ĝn� , �76�

d̂out;n
�2� =

1
�2

�− b̂out;n + ĝn� . �77�

The LO2 corresponds to the MIM in a phase-randomized
coherent state, i.e.,

ĝ0 → rei�, �78�

where r is the amplitude and � is the random phase. Whereas
the AOM is superposed with the corresponding mode of LO2
being in the vacuum state

(a)

(b)

FIG. 6. Reconstruction of the Husimi-Kano Q function for the
odd superposition of the coherent states ��−�=N����− �−���, �=0.7,
by unbalanced homodyning: �a� numerical simulation with 1.7
�105 sampling events for each point; �b� exact function.

FIG. 7. Cascaded homodyne detection of the intracavity
mode.
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ĝ1 → 0. �79�

The difference of the photocounts n̂out
�1� and n̂out

�2� can be written
in the form

n̂out
�1� − n̂out

�2� = r�2x̂��� , �80�

where

x̂��� =
1
�2

�b̂out;0
† ei� + b̂out;0e−i�� �81�

is the quadrature operator of the CAOM. This means that the
AOM does not affect in cascaded homodyning.

Let p�x ;� ,� be the phase-averedged quadrature distribu-
tion measured with the shifted amplitude � and the efficiency
 given by Eqs. �67� and �72�, respectively. Utilizing the
results of Refs. �30,34�, one can write the s-parametrized
phase-spase distribution of the intracavity mode as

Pcav��;s� = 	
−�

+�

dxS�x;s,�p�x;�,� , �82�

where the sampling function S�x ;s ,� has the form

S�x;s,� =


���1 − s� − 1�
f00� x

��1 − s� − 1
� , �83�

with f00�x� being expressed in terms of the Dawson integral

F�x�=e−x2
�0

xdtet2 as

f00�x� = 2 − 4xF�x� . �84�

One can use Eq. �82� for the reconstruction of the phase-
space distribution of the intracavity mode. It is worth noting
that the reliability of this method is completely the same as
in the case of a free signal field considered in Ref. �30�, since
the influence of the AOM is eliminated by the technique
itself.

VI. SUMMARY AND CONCLUSIONS

For high-Q cavities, unwanted losses such as the losses
due to scattering and/or absorption may be of the same order
of magnitude as the wanted losses due to the fractional trans-
parency of the coupling mirrors. When such cavities are used
for the generation and transfer of nonclassical light, it is of
great importance to carefully consider the noise effects
caused by all the unwanted dissipative channels.

In the present paper we have derived a rather simple and
intuitive extension of the standard quantum noise theory in
order to include in the theory unwanted losses in a consistent
way. For this purpose, we have modeled the cavity losses by
additional beam splitters that are placed in the input and
output channels of the radiation. We have analyzed the re-
quirements and constraints for a complete description of the
unwanted losses. Most importantly, such a model must en-
sure that the fundamental commutation rules remain valid,
which allows one to study the possibilities of a complete
parametrization of a cavity with unwanted noise.

To illustrate the relevance of a correct and complete pa-
rameterization, we have also considered an example of a

degenerate model. It shows that, even though unwanted dis-
sipative channels are included in the model, the situation
may resemble that of a cavity without unwanted noise. For
such cavities information about the relative phase between
intracavity and input modes does not exist in the outgoing
field. In fact, combining the intracavity mode and the input
mode in the nonmonochromatic output mode becomes pos-
sible due to the presence of proper losses inside the cavity
and the coupling mirror.

This mode matching effect can be used, for example, for
homodyne measurements of the intracavity mode. Due to the
presence of the additional output mode satisfactory results
for large amplitudes can be obtained only with a large num-
ber of sample events. However, by using cascaded homodyn-
ing the influence of the additional output mode play no role
anymore. In this case the applicability of the method is much
better. The proposed scheme has two advantages compared
with standard homodyning of the extracted field. First, the
phase-space distribution is reconstructed in a point, which is
specified by the value of the local-oscillator amplitude. This
implies that one avoids a complicated numerical integration
of experimental data. Second, one may directly use the prop-
erties of the cavity for combining the signal field with the
local oscillator, avoiding additional mode matching by a
beam splitter and the related losses. Due to the small effi-
ciency of the quantum-state extraction from a high-Q cavity,
these properties can be useful for increasing the overall effi-
ciency of the scheme and, consequently, for obtaining more
detailed information about the quantum state of the intracav-
ity mode.
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APPENDIX A: SYMMETRICAL AND ASYMMETRICAL
BEAM SPLITTERS

Let us briefly explain some features of the input-output
relation for the two types of beam splitters which appear in
the replacement schemes: symmetrical and asymmetrical
beam splitters. A symmetrical beam splitter is a four-port
device that is described by the SU�2� group. The correspond-
ing input-output relations can be written as

âout
�k� = T �k�âin

�k� + R�k�b̂in
�k�, �A1�

b̂out
�k� = − R�k�*âin

�k� + T �k�*b̂in
�k�. �A2�

Inverting these equations, we arrive at

âin
�k� = T �k�*âout

�k� − R�k�b̂out
�k� , �A3�

b̂in
�k� = R�k�*âout

�k� + T �k�b̂out
�k� . �A4�

Here, the index k refers to the respective beam splitter. For
example, for the beam splitter BS1 in the replacement
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scheme in Fig. 2, we have âin
�1�= ĝin, b̂in

�1�= ĉin
�1�, âout

�1� = d̂in, and

b̂out
�1� = ĉout

�1�. The transmission and reflection coefficients T �k�

and R�k�, respectively, which satisfy the condition

�T �k��2 + �R�k��2 = 1 �A5�

can be parametrized by three real numbers ��k�, ��k�, and ��k�

in the form

T �k� = cos ��k�ei��k�
, �A6�

R�k� = sin ��k�ei��k�
. �A7�

It is clear that the determinant of the transform matrix is
equal to 1 in this case—the case of a symmetrical beam
splitter.

In the case of an asymmetrical beam splitter, the determi-
nant is an arbitrary phase multiplier. In fact, this means that
this multiplier should be included in the input-output rela-
tions, which then read

âout
�k� = ei��k�T �k�âin

�k� + ei��k�R�k�b̂in
�k�, �A8�

b̂out
�k� = − R�k�*âin

�k� + T �k�*b̂in
�k�. �A9�

This is also a unitary transformation, however a U�2�-group
transformation. Inverting Eqs. �A8� and �A9� yields

âin
�k� = e−i��k�T �k�*âout

�k� − R�k�b̂out
�k� , �A10�

b̂in
�k� = e−i��k�R�k�*âout

�k� + T �k�b̂out
�k� . �A11�

The quantities T �k� and R�k� again satisfy the condition �A5�
and can be parametrized according to Eqs. �A6� and �A7�.
Clearly the transformation matrix depends on the additional
parameter ��k� and hence, the resulting number of indepen-
dent parameters, describing an asymmetrical beam splitter is
equal to 4.

APPENDIX B: QUANTUM LANGEVIN EQUATION AND
INPUT-OUTPUT RELATION

Let us start with the derivation of the quantum Langevin
equation �3�. Utilizing the input-output relation �2� as well as
the input-output relations for each beam splitter in Fig. 2 �see

Appendix A�, we have to first express the operator d̂in�t� in

terms of the operators b̂in�t�, ĉin
�1��t�, ĉin

�2��t�, and âcav�t�. For

this purpose we apply the input-output relation for the first
beam splitter

d̂in�t� = T �1�ĝin�t� + R�1�ĉin
�1��t� , �B1�

and then we find an appropriate expression for the operator
ĝin�t�. Further, we apply the input-output relations for the
beam splitters in Fig. 2 starting from the third one and mov-
ing clockwise in the loop. The formal sequence of operations
looks as follows.

�1� Substitute ĝout�t� from the input-output relation

ĝout�t� = T �2�d̂out�t� + R�2�ĉin
�2��t� �B2�

for the second beam splitter into the input-output relation

ĝin�t� = − R�3�*ĝout�t� + T �3�*b̂in�t� �B3�

for the third beam splitter.
�2� Substitute in the resulting equation d̂out�t� from the

input-output relations for the cavity, Eq. �2�.
�3� Substitute in the resulting equation d̂in�t� from Eq.

�B1�. This leads to

ĝin�t� = − R�3�*T �2���âcav�t� + T �3�*b̂in�t�

+ T �2�R�1�R�3�*ĉin
�1��t� − R�2�R�3�*ĉin

�2��t�

+ R�3�*T �1�T �2�ĝin�t� , �B4�

which contains the operator ĝin�t� in both sides of the equa-
tion.

�4� Resolve Eq. �B4� to find ĝin�t�,

ĝin�t� = − ��
R�3�*T �2�

1 − R�3�*T �1�T �2� âcav�t�

+
T �3�*

1 − R�3�*T �1�T �2� b̂in�t� +
T �2�R�1�R�3�*

1 − R�3�*T �1�T �2� ĉin
�1��t�

−
R�2�R�3�*

1 − R�3�*T �1�T �2� ĉin
�2��t� . �B5�

Inserting Eq. �B5� into Eq. �B1� and then substituting the
result into Eq. �1�, we obtain the quantum Langevin equation
�3�. Next, combining Eq. �B5� with the �inverse� input-output
relation

b̂in�t� = e−i��3�R�3�*b̂out�t� + T �3�ĝin�t� �B6�

for the third �asymmetrical� beam splitter in Fig. 2, we arrive
at the sought input-output relation �4�.
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