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Entanglement and decoherence of N atoms and a mesoscopic field in a cavity
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We investigate the behavior of N atoms resonantly coupled to a single electromagnetic field mode sustained
by a high quality cavity, containing a mesoscopic coherent field. We show with a simple effective Hamiltonian
model that the strong coupling between the cavity and the atoms produces an atom-field entangled state,
involving N+1 nearly coherent components slowly rotating at different paces in the phase plane. The periodic

overlap of these components results in a complex collapse and revival pattern for the Rabi oscillation. We study
the influence of decoherence due to the finite cavity quality factor. We propose a simple analytical model,
based on the Monte Carlo approach to relaxation. We compare its predictions with exact calculations and show
that these interesting effects could realistically be observed on a two or three atoms sample in a 15 photon field
with circular Rydberg atoms and superconducting cavities.
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I. INTRODUCTION

Cavity quantum electrodynamics experiments with circu-
lar Rydberg atoms and superconducting cavities are well
suited for the realization of tests of fundamental quantum
processes and of simple quantum information processing
functions [1]. They make it possible, in particular, to prepare
mesoscopic quantum superpositions, made of coherent field
components with different classical attributes (phase and am-
plitude). They have opened the way to studies of the deco-
herence dynamics on these states, at the quantum/classical
boundary [2]. These early experiments, involving fields con-
taining a few photons only, were based on the dispersive
atom-field interaction. The atom, off resonance with the cav-
ity mode, behaved as a state dependent transparent dielec-
trics modifying transiently the cavity frequency and, hence,
the field phase. An atom in a superposition of levels produces
then a quantum superposition of phase shifts, a situation
reminiscent of the famous Schrodinger cat situation.

Much faster phase shifts can be realized through the reso-
nant atom-cavity interaction. The complex Rabi oscillation
phenomenon in a mesoscopic field results in an atom-field
entanglement induced by photon graininess. The initially co-
herent cavity field is rapidly cast in a superposition of two
components with different phases. This phase splitting is a
mesoscopic effect that disappears in the classical limit of a
very large field, which is then left unaffected by the atoms.
This resonant phase splitting effect has been evidenced for
fields containing up to a few tens of photons [3]. Its coher-
ence has been checked using an echo technique borrowed
from NMR [4], following a proposal by Morigi et al. [5].
The resonant atom-field interaction thus opens the way to
decoherence studies with large photon numbers. These ex-
periments focused on a simple situation with a single atom
coupled to the cavity mode. Recent experimental advances
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[6] allow us to envision experiments with samples containing
a well known number N> 1 of atoms. They would merge the
concepts of cavity QED with the atomic ensemble manipu-
lations recently put forth for quantum information process-
ing. In this context, it is particularly interesting to study the
resonant interaction of such a multiatom sample with a me-
soscopic field.

In this paper, we study the resonant interaction of an
atomic ensemble of N atoms with a cavity initially prepared
in a mesoscopic coherent state. Using an appropriate meso-
scopic approximation, we show that the strong atom/field
interaction leads to an entangled atom-field state involving
N+1 nearly coherent field components with different classi-
cal phases, generalizing the results obtained for one atom [7].
These coherent components are correlated with dipole
atomic states, superpositions of the upper and lower states
with equal weights. Thus, in the mesoscopic limit, the cavity
field acts as a which-path detector for the atomic states in-
terference. The periodic partial disentanglement of the atom-
field system due to the transient overlap of field components
is then closely linked to the complex pattern of quantum
Rabi oscillation collapses and revivals observed in this re-
gime. As in the single atom case, early quantum revivals can
be induced by an echo sequence, realizing a time reversal of
the atom-field evolution [5]. The experimental observation of
these effects would shed light on the deep links between
entanglement and complementarity.

This complex phase splitting was already predicted by
Knight and Shore [8]. In the present paper, the introduction
of an effective Hamiltonian valid in the mesoscopic domain
enables us to capture the main results within a simple ana-
Iytical model. This approach, originally pioneered by Klimov
and Chumakov [9], is also instrumental in the discussion of
dissipation in the system.
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Dissipation in the cavity turns the entangled atoms-field
state into a statistical mixture, destroying Rabi oscillation
revivals. In order to assess the experimental accessibility of
these mesoscopic quantum effects, we have analyzed quan-
titatively the influence of cavity dissipation on the evolution
of the atom-cavity entangled state. Using the physical insight
provided by the stochastic wave function approach [10] to
the dissipative dynamics of the atoms =+ cavity system, an
analytic formula for the decoherence of the mesoscopic at-
oms + cavity state is derived. It generalizes to the case of
N>1 atoms the results previously obtained by Gea-
Banacloche [11] in the N=1 case. We provide a functional
expression for the decoherence coefficients of the entangled
atoms + cavity state which is valid even in the presence of
an echo sequence used to induce an early revival of the quan-
tum Rabi oscillation. The functional form of these decoher-
ence coefficients reflects the cumulative construction of the
imprint left by the strongly coupled atoms + cavity system
in the cavity environment. These physically illuminating ex-
pressions can be straightforwardly generalized to compute
decoherence properties during a more complex protocol,
such as the injection of another atomic ensemble in the cav-
ity shortly after the first one in order to probe the cavity field.

The organization of this paper is as follows. In Sec. II, the
model for the resonantly coupled atoms + cavity system is
presented and its dynamics is studied in the absence of dis-
sipation using a mesoscopic approximation in the spirit of
Gea-Banacloche [7]. In Sec. III, dissipation of the cavity is
introduced and studied analytically using the stochastic wave
function approach. Section IV presents numerical results ob-
tained from quantum Monte Carlo simulations. These results
are used to discuss experimentally accessible windows for
the observation of a mesoscopic entanglement between two
or three atoms in a microwave high quality cavity in the near
future. We also comment on the possibility of observing such
mesoscopic effects within the context of circuit-QED experi-
ments performed with nanofabricated superconducting cir-
cuits [12]. The next generation of these experiments will
involve several qubits coupled to a cavity. Therefore, it is
very natural to address the question of entanglement between
several qubits and the resonator for circuit-QED devices.

II. HAMILTONIAN EFFECTIVE DYNAMICS IN THE
MESOSCOPIC REGIME

A. The Tavis-Cummings model

In this paper, the resonant interaction between N two-level
atoms and an electromagnetic mode in a cavity is considered.
The cavity mode is modeled by a quantum harmonic oscil-
lator which, in Sec. III, will be weakly coupled to an har-
monic bath representing its environment.

Assuming that all atoms are symmetrically coupled to the
mode, the atom-field system is conveniently described by the
Tavis-Cummings model [13], a spin J=N/2 generalization of
the Jaynes-Cummings model [14]. The interaction between
the atoms and the electromagnetic mode is given by

ﬁ N
=7gz (Sta+S7ah), (1)
i=1

where ST denote the raising and lowering operators for the
ith atom. The energy scale associated with the interaction of
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one atom with the mode is #g. Because of the symmetric
coupling, the evolution is restricted to the symmetric sub-
space, invariant under atomic permutations, provided the ini-
tial state is also symmetric, a condition that we assume ful-
filled from now on. The atomic degree of freedom is the spin
J=N/2 representation for the collective su(2) generators

N N
F=> 8, J=2 85t (2)
i=1 i=1

The interaction Hamiltonian can then be rewritten in terms of
these operators leading to the Tavis-Cummings (TC) model

i .
Hyc= ?g(J+a+J_a‘). (3)

Within this framework, the atomic ensemble behaves as a
collective quantum object, a spin J=N/2 interacting with a
quantum harmonic oscillator. A convenient basis in the atom
+ cavity Hilbert space is made up of tensor products of the
atomic Dicke states |J ,m), common eigenstates of J? and J5,
and the Fock states |n) for the harmonic oscillator. Note that
the Hilbert space for this coupled system contains stable sub-
spaces under time evolution which organize as follows: first,
an infinity of (2J+ 1)-dimensional subspaces H,, (n=0) gen-
erated by the states |J,J—[) ® |n+1), where [ ranges from 0 to
2J. Then, a finite number of lower dimension subspaces in-
dexed by —J=m<J-1 generated by |J,m—1)®|l), where
o=i=J-m.

In this paper, we focus on the mesoscopic regime in
which the exchange of quanta between the collective state of
the N atoms and the cavity mode does not significantly alter
the latter. Since the collective atomic spin can transfer at
most N photons to the electromagnetic mode, this implies
n>>N, where 7 is the mean photon number in the cavity.

B. Mesoscopic entanglement involving one atom in a
cavity

1. Mesoscopic approximation for the atom + cavity evolution

The quantum dynamics of a single atom interacting with a
coherent state in a cavity has been investigated by Gea-
Banacloche [7] and independently by Buzek and Knight
[15]. The analysis by Gea-Banacloche is based on the exact
diagonalization of the Jaynes-Cummings Hamiltonian. It
provides an approximate solution for the Schrodinger equa-
tion with the initial condition |,) ® |a) where |, denotes
the initial state of the two-level atom and |a) is a coherent
state of the cavity field containing a mesoscopic number 7z
=|a® of photons (a=17).

The atom + field interaction is expected to create an en-
tangled state. As noticed by Knight and Shore, using an ar-
gument based on the Schmidt theorem [8], a two-level atom
cannot get entangled with more than two orthonormal states
of the field. The Gea-Banacloche approximate solution pre-
cisely expresses the atom + field state |W(¢)) at time ¢ as a
two-component entangled state. As discussed by Gea-
Banacloche [7], this approximation is accurate for r<<n/g
which, for 7>>1, is large compared to the vacuum Rabi pe-
riod 27/ g. It leads to
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[W(0) =4 2D (1) ® |.(1) + B 7D_(1)
® [y (1), )

where A and B characterize the initial atomic state (Je) in
recent experiments [4]). The atomic dipole states |D. (1)) are
given by

1 -
ID.(1)) = = (xe 78"V ) + |- )) (5)
V2

and the field states |¢.,(z)) are

0

k
L= — a .
|wi(t)>:eizgtyn/26—n/2§ ’ e+lg”k/2|k>. (6)
k=0 Vk!

In the following, we will use the short hand denomination
“Gea-Banacloche states” for these cavity states and their
generalization to N> 1.

2. Discussion

Gea-Banacloche has also shown that, for times short com-
pared to g~'\7, the state |,(r)) can be approximated by a
coherent state of parameter a.(f)=e™¢"""q. This result is
obtained by expanding Vk at first order in k—7 around it
leading to

|l//i(l‘)> . e:igt\%/4|aeiigt/4\%> (7)

in the limit 1< \7i/ g. Thus, the states |¢,(¢)) mainly evolve
at slow frequencies +g/ 41, We refer to Eq. (7) as the “co-
herent state approximation” for Gea-Banacloche states and,
if inserted in Eq. (4), as the coherent state approximation for
the atom + cavity system. As discussed in details in Ref. [7],
this approximation breaks down for = \e’;—/ g because the
states |t (¢)) undergo a slow phase spreading due to higher
order terms in their expansion. They can no longer be con-
sidered as coherent. However, even if it breaks down before
the mesoscopic approximation, the coherent state approxima-
tion provides a nice intuitive and pictorial support for visu-
alizing the system’s evolution.

With this image in mind, it is useful to draw on the same
diagram the motion of the average atomic polarization
d.(t)=(D.(¢)| 7| D.(1)) in the equatorial plane of the Bloch
sphere and the motion of a,(r) in the Fresnel plane. The
result is depicted on Fig. 1 for ¢=0: the corresponding vec-
tors rotate at angular velocitx +g/4\i1, small compared to the
classical Rabi frequency gVr.

In the limit 7— % and gt < 1, both states |, (1)) are close
to |a) for t< g~!, meaning that the cavity mode is barely
affected by the atoms. In this regime, the cavity state factors
out and the atomic polarizations |D,(f)) coincide with the
atomic spin-1/2 eigenstates along the x direction. These
atomic states interfere resulting in the classical Rabi oscilla-
tion phenomenon. Remember that the period of classical
Rabi oscillations is of the order g‘llw’ﬁ. Therefore, in the
classical limit 7 — +90, more and more oscillations take place
before the motion of Gea-Banacloche states in the phase
plane has any measurable consequence.
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FIG. 1. Schematic evolution of the entangled state for one atom
and a mesoscopic coherent state in a cavity for real positive a. The
atomic dipole states are represented as arrows. The field coherent
states are represented as an uncertainty disk at the tip of the classi-
cal amplitude. Each component |D,(1))® |i.(t)) of the superposi-
tion involves an atomic polarization and a field state slowly rotating
in the phase plane at velocities £g/4 .

In the mesoscopic regime (fixed 7>> 1), the state of the
cavity is altered by the atom. Interferences between atomic
polarizations |D.(#)) can only be observed when |, (¢)) and
|p_(¢)) overlap. As explained above, at very short times,
these states are still close to the initial coherent state |a).
When the phase separation between |i4,(¢)) and |¢_(¢)) due to
their slow rotation in phase space is larger than the quantum
phase fluctuations in these coherent components (gr/2\n
~1/+7), the cavity field behaves as a bona fide “path detec-
tor” for the atomic polarizations and Rabi oscillations disap-
pear. The Rabi oscillation collapses after a time of the order
of the vacuum Rabi oscillation, after Vi classical oscilla-
tions.

The Rabi oscillation signal reappears when |4, (¢)) and
|¢_(1)) overlap again. This happens for gt/2vi=21r. During
this overlap, the disentanglement of the atom + cavity state
erases the information stored in the cavity about the path
followed by the atomic degrees of freedom. This “quantum
eraser situation” leads to a revival of Rabi oscillations. Rabi
oscillation revivals in the mesoscopic regime are thus a di-
rect application of the complementarity concept [16]. Figure
2 shows, as a function of the dimensionless time ¢
=gt/ 2\/%, the first spontaneous revival of the Rabi oscillation
signal obtained by numerical integration of the Schrédinger
equation for one atom initially in the excited state and coher-
ent states of 14 and 40 photons in average.

3. The echo protocol

The echo protocol proposed by Morigi [5] aims at testing
the coherence of the atom + cavity state by a time reversal
operation. A percussional echo pulse is applied to the atom at
time ¢,. It corresponds to the unitary operator U, =ic*. The
evolution for the atom + cavity system up to time =1, is
then given by
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FIG. 2. Spontaneous revivals of the Rabi oscillation signal for
one atom with initial condition (le)=|m=1/2)) ® |@) and a coherent
state with mean photon number (a) 7=15 and (b) 7=40. The solid
line shows the probability P(¢) for finding the atom in |e), as a
function of the dimensionless time ¢=gt/ 2\, computed using nu-
merical integration. The dashed curves show the upper and lower
envelopes predicted by our mesoscopic approximation.

U(r) = e—i(t—tﬁ)H/h Uﬂ_e—itﬁH/h’ (8)

where H is the Jaynes-Cummings Hamiltonian. Using Ufr
=1 and U,HU _,=-H, we get

U(t) — Uﬂe_i(tﬂ_t)mhe_”ﬁmh. (9)

Therefore, right after the echo pulse, the Gea-Banacloche
states reverse their evolution and recombine at 27, leading to
an induced Rabi oscillation revival. This induced revival
may occur at much shorter time than the “spontaneous” re-
vival, making its experimental observation much easier, as
shown recently [4]. Moreover, in the absence of decoher-
ence, the induced revival should occur with unit contrast.
The influence of decoherence could thus be, in principle,
directly assessed from the measurement of the induced re-
vival contrast.

4. Towards atomic ensembles

In this paper, we are interested in studying the resonant
interaction of an atomic ensemble containing N>1 atoms
with a mesoscopic field in a cavity. Invoking again Schmidt
theorem [8], we expect this resonant interaction to create an
entangled state with 2J/+1=N+1 orthonormal components.
As in the one-atom case, partial disentanglement of this state
will lead to spontaneous revivals of Rabi oscillations.

An analytic diagonalization of the Tavis-Cummings
Hamiltonian can be obtained for N=1,2,3 but not for greater
values of N. Moreover, as will be clear from forthcoming
sections, the analytical diagonalization for these values of N
does not enlighten the dynamics of the system. In particular,
for N> 1, the explicit expressions of exact eigenstates in the
resonant Tavis-Cummings Hamiltonian depend on N. This
direct approach thus cannot be used as a convenient starting
point for an approximate solution of the Schrodinger equa-
tion for N> 1.
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FIG. 3. Schematic view of the Hilbert space for N=3 atoms. The
oblique gray lines represent the stable subspaces. The action of 7,
on Hj is depicted.

Our approach, developed in the next section, relies on an
effective Hamiltonian which, in the mesoscopic domain, pro-
vides an excellent approximation to the Tavis-Cummings
Hamiltonian. It provides a unified vision of the dynamics for
all values of N and as such, it is a good starting point for
analyzing the dynamics in the mesoscopic domain. As we
shall see, in this framework, the dynamics of the resonant
Tavis-Cummings model can then be described in the spirit of
the Gea-Banacloche approach.

C. Effective dynamics in the mesoscopic domain

1. Effective Hamiltonian

First of all, let us remark that any initial state of the form
|/,my) ®|a) in the mesoscopic domain mainly spreads over
(2J+1)-dimensional stable subspaces H,, for values of n
around 7. The core of our approach is to replace the Tavis-
Cummings Hamiltonian (3) acting on subspaces 7, by an
effective Hamiltonian in which the n dependence factors out.
It appears that the main n dependence of Eq. (3) scales as \n
for large values of n. As in the N=1 case, this nonlinearity
leads to the collapse of the Rabi oscillations and the discrete
character of the spectrum leads to spontaneous revivals.

In order to describe our ansatz for the effective Hamil-
tonian, it is convenient to remark that each subspace H,, can
be turned into a spin-J representation of su(2). Let us intro-

duce new operators J* and J°. With the notation |Z(")>

m
J,m)® |n+J—m), these new operators simply act on these

states in the same way as standard su(2) generators act on the
J,m) states ._71|Z,(Z)>=VJ(J+1)—m(mil) |Z(”)]> (see Fig. 3).

m=x
The operators aJ* and a'J~ then act on the states |Z£:)> as

al*|ZW)y = \n+J - mT*ZV), (10)
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d" T2 =N+ T = m+ 17 |Z™). (11)

We then note that computing the evolution of a state |J,m)
® |a) in the mesoscopic regime requires considering values
of n close to 7>>N. The variation of in+k for 0=k=N+1
is small for n>> N (of the order of N/vi). We thus drop the m
dependence of vn+J—m and \n+J—m+1 by replacing them
by Vn+c, where 0=c=N+1 is a constant to be discussed in
the next paragraph. This leads to an effective Hamiltonian of
the form

h I
Hfff)=?g\*’n+0(.7*+f)= hgin+cT.

(12)
This Hamiltonian, already derived by Klimov and Chuma-
kov [9] and used to study the squeezing of light by an atomic
ensemble [17], shares some features with the expected clas-
sical dynamics, driven by an effective field along x. Here,
however, photon emission and absorption are taken into ac-
count through the fact that 7* changes the photon number
(see Fig. 3). At fixed n, the eigenvalues of this effective
Hamiltonian are equally spaced, as predicted by [13] for the
Tavis-Cummings Hamiltonian in the large n limit. All the n
dependence of this effective Hamiltonian is contained in the
\e"n+c factor.

Of course, there is an ambiguity in the choice of 0=c¢
=N+1 but we shall see that (i) for N=1 choosing c=1 re-
produces the results of Sec. IT B and (ii) for N> 1, changing
c only affects the rapidly oscillating part of the Rabi oscilla-
tion signal. It does not change its envelope which is precisely
the information we hope to extract from the effective Hamil-
tonian.

2. The mesoscopic approximation

Using this effective Hamiltonian, it is possible to study
the evolution of a state |WX)=|J,m),®|a), where J*|J,m),
=m|J,m),. An approximate solution for the Schrddinger
equation shows that this state remains factorized (see Appen-
dix A for details):

(WA (1)) =™ D, (1)) ® |,(1)), (13)

where the state of the electromagnetic mode is of the form

* ok
o
,k_e—tmgt\k|k> ,

|l/lm(t)> — eimgz\f%e—ﬁlzz ’

k=0 Vk!

(14)

which we call, as above, a Gea-Banacloche state [7]. The
atomic polarizations generalize the ones found by Gea-
Banacloche in the spin 1/2 case

J
|Dm(t)>= E e—igmt(c—]+m’)/z\fﬁ(R—l)m’m,J’mr>’ (15)
m'=—J
where R  denotes the rotation matrix R

m,m'
=(J,m'| el 2|J,m). Note the presence of the classical Rabi
frequencies mg|a| corresponding to the quantum beat be-
tween spin eigenstates along the x direction of the effective
classical field. The average angular momentum d,,(¢)

=<Dm(t)|j |D,, (1)) slowly rotates in the equatorial plane of
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the Bloch sphere at angular velocity gm/ 2\i1. The parameter
¢ appears in these atomic polarizations only and, for N=1,
the Gea-Banacloche results are exactly recovered for c=1.

Starting from state |W(0))=|J,m) ® |a), an entangled state
with N+1 components is obtained:

J
(W)= 2 Ry e ™™ND,(0) @ [1,()). (16)
m==J
As in the one-atom case, the entangled state (16) can be
viewed as the result of the ideal measurement of the spin by
the mesoscopic field in the cavity.

3. The coherent state approximation

As in the single-atom case, the state |¢,,(¢)) can be ap-
proximated by a coherent state of complex amplitude a,,(7)
=e¢"™Ms"\g, This approximation holds_in the limit
t< (g|m|)~!\i. At longer times, typically \ii/g|m|, the field
state gets deformed as the |¢,) states in the N=1 case.

With this image in mind, it is useful to draw on the same

diagram the motion of the average atomic polarization J,:(t)
in the equatorial plane of the Bloch sphere and the motion of
a,,(t) in the Fresnel plane, generalizing the phase space rep-
resentation used above. The main difference with the N=1
case is the appearance of N+1 frequencies and field states
instead of two. Here also, the phase of the coherent state
plays the role of a pointer measuring the angular momentum
of the collective spin along the x direction in the 77> 1 limit.
Larger angular momenta lead to larger angular velocities. As
we shall see now, this complex atoms + cavity entangled
state leads to a rich pattern of spontaneous revivals of Rabi
oscillations.

D. Partial revivals of Rabi oscillations
1. General picture

Rabi oscillations of the atomic populations provide a nice
way to probe the degree of entanglement of the atom +
cavity state. In the classical limit (7— o), the electromag-
netic field state factors out and quantum interferences be-
tween the various atomic polarizations |D,,(t)) can be ob-
served. They are the Rabi oscillations for the quantum spin J
in a transverse classical field.

In the mesoscopic limit, the electromagnetic mode is al-
tered by the atom. Interferences between atomic polariza-
tions |D,,(¢)) can only be observed when the corresponding
field states |i,,(f)) overlap. At very short times, the various
components |i,,(¢)) are still close to the initial coherent state
|a) and Rabi oscillations show up. When the various Gea-
Banacloche states split apart, the electromagnetic field be-
comes a good “path detector” for the atomic polarizations
and the Rabi oscillations collapse. This is again a comple-
mentarity effect, the field storing which-path information
about the interfering atomic states. Rabi oscillations reappear
when this which-path information is, at least partially,
erased, i.e., when some of the Gea-Banacloche states overlap
again. In the N>1 case, the atoms + cavity state is a super-
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FIG. 4. Position of the Gea-Banacloche states at the times of
first occurrence of spontaneous Rabi oscillation revivals for N=3
(J=3/2). (a) Collapse of the Rabi oscillations when the various
components split apart. (b) First spontaneous revival for ¢p=27/3.
(c) Second spontaneous revival for ¢=1r. (d) Complete spontaneous
revival involving all atomic polarizations for ¢=21r.

position of N+1 factorized components rotating at different
velocities and a rich spontaneous revival pattern is expected.

The angular velocity of the Gea-_Banacloche states |i,,())
in the Fresnel plane is here —gm/2\/i1, suggesting to associate
with each Rabi oscillation revival a nonempty subset £ of
{1,...,2J} which is the list of absolute values of differences
of the indices m of those Gea-Banacloche states that overlap
during the revival under consideration. Given such a subset
&, the revival is built from contributions of pairs of states
|¢m+(t)) and |4, (1)) such that |m,—m_| e €. Note that, when
a pair |, (1)) and |4, (1)) overlaps, all pairs that have a
positive or negative integer multiple value of m_—m, also
overlap. Therefore if g belongs to such a subset, its multiples
also do. This is the only constraint on the subsets £. The Rabi
oscillation revivals are therefore classified by the greatest
common divisor gcd(€) of the elements of £. The first time
of occurrence of the spontaneous revival associated with £ is
t such that gt/ 2Wi=2m/ gcd(€). Replicas of this revival will
occur at integer multiples of this fundamental time. Note that
there are N+1-gcd(E) pairs of Gea-Banacloche states that
verify |m,—m_|=q. Remember that ¢=g/2\7 is the dimen-
sionless time which characterizes the slow motion of Gea-
Banacloche states. In general, the contrast of replicas will be
reduced because of the spreading of the Gea-Banacloche
state (especially if they occur after gz/2\in=2). For all
values of N, the set {1,...,N} corresponds to a complete
revival involving the recombination of all Gea-Banacloche
states at ¢p=2r.

As an example, let us consider the case of three atoms.
The corresponding Rabi revival patterns are depicted on Fig.
4. The first revival is obtained when m=+3/2 states overlap
for ¢p=27/3 (associated subset £={3}). It is partial (contrast
is lower than one) since only two atomic polarizations take

PHYSICAL REVIEW A 74, 033802 (2006)

part in it. The next revival appears for ¢=m when m=3/2
and —1/2 and m=-3/2 and 1/2 overlap separately (£={2}).
At ¢p=4m/3, m=3/2 and m=-3/2 recombine again leading
to a partial revival which is a replica of the first one (€
={3}). Finally the complete revival involving quantum inter-
ferences between all four atomic polarizations takes place at
¢=2m (£={1,2,3}). Note that the first example of a non-
trivial revival involving several slow frequencies before the
complete revival occurs for N=4 at ¢p=m (£={2,4}).

2. Rabi oscillation envelopes

Preparing J+m, atoms in the excited state, the probability
of detecting J+m ones in the excited state and J—m in the
ground state is given by (g=m,—m_):

P,()= > e—igqt\55/2735,’1’1(3;;”_)(t)Rum_(t), (17)

my,m_

where m, runs from —J to J and

P 6) = R Ropg 5|y (XD, (1)

mym_

J,m) (18)

contains the matrix elements of atomic polarizations. The
scalar products (J ,m|Dm+(t)> can also be expressed in terms
of the rotation matrices (see Appendix B for explicit expres-
sions):

(J,m|Dm+(t)> — (R—l)m+’me—ig(c—J+m)mit/2\%' (19)

Within our effective Hamiltonian approximation, the time
dependence of the atomic polarization factor Pg";:’) is a
— My

phase. Modulation factors for the revivals come from the
overlaps of cavity mode states

Ron (1) = Wi 0]t (). (20)

This expression only depends on g=m,—m_. Finally, the
Rabi oscillation signal is

2J
Pm(l) - E Rq(t)A(qmo,m)e—i(ngc/ZV“‘ﬁ)e—igqt\517’ (21 )
q=-2J

where

AU = D Ry R Ryl (R

mo,m = meg,m " mm N m,m_
m_-m,=q

This expression separates the rapid frequencies gg\n from
the mesoscopic slow frequencies gg/2vVi. The Rabi signal
then consists into a rapidly oscillating signal slowly modu-
lated in amplitude and phase. Expression (21) can be used to
find an approximate analytic expression for the upper and
lower envelopes of the signal. Let us illustrate this point on
the signal obtained for my=m=J (denoting A;J’J)=.Aq) which
is plotted in the forthcoming figures.

Outside the spontaneous revivals, the contribution of the
q #0 terms in Eq. (21) vanishes. The base line of the Rabi
oscillation signal is thus .4,. Obtaining the envelopes is
trivial for N=1 since there is exactly one value of g in-
volved: ¢,=1. The slowly varying phase e 7> simply
shifts the rapid oscillation without changing its envelope.
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This analysis is also correct for N> 1 in the case of a revival
involving exactly one frequency corresponding to g,
e{l,....N} (g,=1 for N=1). For these revivals only, the
upper and lower envelopes P, and P_ take the form

P.(1)=Ay£|R, (A, ]. (22)

Thus, simple revivals are symmetric with respect to t_he flat
signal A, and involve only one rapid frequency gq,\7.

The analysis turns out to be more involved when several
frequencies are involved. A first example of this situation is
the initial collapse of Rabi oscillation (1<2/g) for N> 1.
Nevertheless, the envelopes can be obtained using the exact
expression for classical Rabi oscillation in a field of ampli-
tude \7z: in this limit, the probability for detecting all atoms
in the excited state is given by P.(1)= cos?M(gr\it/2). Tts
maxima occur at times 27k/g\7 for integer values of k and
its minima occur for half integer values of k. Substituting
these values in Eq. (21) for large values of 7 provides the
values of the rapidly oscillating term to be used to fit the
maxima (upper envelope) and the minima (lower envelope).
This leads to

P(1)=Ag+ 2 |R, (DA (23)
q#0
P()=Ag+ 2 (= DR (DA, (24)
g#0

Note that for N> 1, the envelope is not symmetric with re-
spect to the flat signal A,.

Let us now turn to the complete revival which takes
places around fz= 4l g. Near this revival, the Rabi oscil-
lation signal takes the form (t=tx+ 7):

q(tR + T)e—i(qu/ZVﬁ)e—igq[rvﬁ+27r(c+2ﬁ])'

P(t)=Ag+ X AR

q#0
(25)

We first note that the rapidly oscillating phases are shifted in
time by 27T(c+2n)/\n This time shift does not affect the
low frequency modulating terms AR ,(¢). Within the coher-
ent state approximation, the overlap factors R ,(¢g+7) can be
approximated by 1 for |7| <2/g. This means that, in the
classical limit and within the coherent state approximation,
close to the complete revival, the Rabi oscillation signal has
the same fast oscillations than near #=0. This suggests to use
Egs. (23) and (24) as upper and lower envelopes. Because
the Gea-Banacloche states are getting deformed over a time
scale 5, these expressions only provide an approximation to
the real envelopes of the theoretical signal (25). This ap-
proximation assumes that the overlap factors R,(tg) do not
depend on g. Because |R,(1g)—1| goes to zero as 1/ in the
large 7 limit, the accuracy of Egs. (23) and (24) as approxi-
mate upper and lower envelopes for the main spontaneous
resurgence increases with increasing 7.

To summarize, Eq. (23) describes the upper envelope of
all revivals. The lower envelope is described by P_(z) in Eq.
(22) for revivals mvolvn;g only one frequency such as the
ones occurring at gt/2\n=2m/q where [N/2]<g=N and
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Mesoscopic approximation q
— Exact solution

0.8 -
(d ]

FIG. 5. (Color online) Spontaneous revivals of the Rabi oscilla-
tion signal P=P,,_; for N=3 atoms (/=3/2), as a function of the
dimensionless time ¢»=g#/2\i1. The initial state |m=3/2) ® |a) with
an average photon number 7=|a|?=15. The signal is computed us-
ing the mesoscopic approximation (gray line), its upper and lower
envelopes (plain lines), and the exact solution (plain line with rapid
oscillations) in the dissipationless case. Letters (a), (b), (c), and (d)
refer to the overlaps of cavity field states for each revival depicted
in Fig. 4. As expected, spontaneous revivals (b) and (c) are sym-
metric with respect to the flat signaLand involve only one rapid
frequency, respectively, given by 3g\i and 2gVn.

the lower envelope of the main revival which occurs at
gt/2\ii=21 is described by Eq. (24). In practice, only the
lowest values of N (N=3) may be easily reachable in the
Rydberg atoms experiments and therefore, the only revival
involving more than one value of |m,—m_| is the complete
one.

3. Numerical results

All numerical results in this paper are presented in terms
of the dimensionless time ¢=gt/2\n associated with the
slow evolution induced by the atom + field interaction. Let
us start by considering the case of the N=1 atom. Figure 2
shows the comparison between the analytic envelopes (22)
and an exact numerical solution of the Schrodinger equation
for different values of 7. As expected, the mesoscopic ap-
proximation becomes better and better as 7 increases. In this
case, the upper and lower envelopes of the mesoscopic ap-
proximation signal are obtained by setting ¢,=1 in Eq. (22).

Let us now consider the case of three atoms. Figure 5
presents a comparison between the results of an analytic ex-
act diagonalization of the Tavis-Cummings Hamiltonian and
the mesoscopic approximation. Correspondence with the re-
vivals described in Fig. 4 is indicated. The upper and lower
envelopes Egs. (23) and (24) are depicted. Figure 5 shows
that although the effective Hamiltonian does not fully repro-
duce the exact signal, it does reproduce the amplitude and
the positions of the revivals in a satisfactory way.

As expected, Eqs. (23) and (24) effectively describe the
upper and lower envelopes of the signal during the early
collapse of Rabi oscillations. They fit also rather well with
the first complete revival (¢~ 2). But they fail for the re-
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(b 1

FIG. 6. Spontaneous revivals of the Rabi oscillation signal for
n=15, without dissipation, computed from a numerical integration
of the Schrédinger equation for (a) N=1 atom, (b) N=2 atoms, (c)
N=3 atoms as a function of the dimensionless time ¢=g¢/2\i1. The
initial condition is m=N/2 (all atoms excited).

vival at ¢~ m: Eq. (23) corresponds to the upper envelope
but Eq. (24) does not. This is not surprising since this revival
is due to g=2. In this case, formulas (23) and (24) weigh the
¢=2 contribution with the same sign. Equation (22) with
q,=2 would be more appropriate to describe the envelopes
near this revival.

Finally, the value .4 of the probability between revivals
obtained from the effective Hamiltonian differs from the one
obtained from the numerical solution of the Schrodinger
equation in the case N=3. This is a finite n effect arising
from the choice of the effective Hamiltonian (12). It can be
checked that this difference vanishes as i~/ in the classical
limit 77— +00,

Comparing Rabi oscillation revival patterns at fixed 7 for
various N shows that using two or three atoms instead of one
induces an earlier spontaneous revival because the extreme
Gea-Banacloche states (m==+J) move faster than the ones
associated with m==+1/2. But the weight of Rabi oscillations
generated by high |m| polarizations quickly decreases with N.
Figure 6 suggests that the first spontaneous Rabi revival for
N=2 and the second one for N=3 could be good candidates
for the observation of spontaneous Rabi revivals. Of course,
dissipation in the cavity leads to smaller Rabi oscillations as
we shall see in the next section.

1I1. DISSIPATIVE DYNAMICS
A. Stochastic wave function approach to quantum dynamics
1. General principle

Within the context of cQED experiments performed with
Rydberg atoms in microwave cavities, dissipation almost ex-
clusively originates in cavity losses. They are extremely low
since the quality factor Q of the cavity is of the order or
higher than 10%. Dissipation can be modeled through the cou-
pling of the cavity mode to an harmonic bath with very short
memory. Within this framework, the dynamics of the coupled
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atom + cavity system can be described by a master equation
for its reduced density matrix. The master equation is valid
over time scales much larger than the memory time 7. of the
bath. In the weak dissipation limit, which is realized here, it
is still valid down to T=0 K and, in the present case, takes
the form

d ] . . N
== [Hpl+ yapa' = (a'ap+ pa'a).  (26)

where H denotes the Tavis-Cummings Hamiltonian (3). Note
that switching to an interaction representation for the atoms
and the cavity mode does not modify the form of the dissi-
pative terms and simplifies the Hamiltonian part. In prin-
ciple, Eq. (26) can be solved numerically in order to obtain
the quantum dynamics. However, an analytical ansatz for the
reduced density matrix can be found within the mesoscopic
approximation. As we shall see in the next section, this an-
satz is conveniently derived using an alternative but equiva-
lent approach to the dissipative dynamics of the atoms +
cavity system: the quantum jump approach [10].

The basic idea underlying this approach is to consider that
the environment of the system is continuously monitored so
that any emission or absorption of quanta by the system can
be assigned a precise date. Each time such an event occurs,
the system undergoes a quantum jump. Between these jumps,
its evolution is described by an effective Hamiltonian that
describes both its intrinsic dynamics and the acquisition of
information arising from the fact that no quanta has been
detected. The probability rates for the various quantum
jumps are directly obtained as averages of LjL,- in the state
under consideration where the L; denote the quantum jump
operator (here, only L=1ya is present at zero temperature).
The reduced density matrix is then recovered by averaging
over the set of stochastic trajectories associated with a large
set of quantum jumps sequences. The weight of a given tra-
jectory can be directly related to the dates and types of the
various quantum jumps.

This method proves to be very convenient numerically
since the number of variables involved is of the order of the
dimension d of the system’s Hilbert space whereas it scales
as d” in the master equation approach. Note that the quantum
jump approach is the only adequate formalism for studying
the behavior of a single realization of the quantum system.

2. Decoherence of coherent state Schriodinger cats

Before applying this method to our problem, it is instruc-
tive to recall how the dissipative dynamics of an harmonic
oscillator can be described in this way. In particular, we shall
review how the decoherence scenario for a superposition of
two coherent states can be recovered within this framework
since it will prove to be useful in our cQED problem. At T
=0 K, the system can only emit quanta. The stochastic dy-
namics of the quantum state is then described as follows.

During a small time interval 7>> 7, the probability for a
quantum jump is p,=ymy(t)|a’a|y(t)) and the state after
such a jump is |(t")y=y7a| 1)}/ \p,. Between jumps, the
effective non-Hermitian Hamiltonian is given by
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"

A H = woa'a - i%/aTa (27)

and between ¢ and #+dt the state evolves according to

(1 — ih™" Hogedr) [92))
VIIo(t.dr)

|t + dt)) = , (28)

where the probability I1j(,dr) that no quantum jump occurs
between ¢ and r+dr is given, in the present situation, by
Ho(t,d)=1=py;.

The evolution of a single coherent state |a) is well known:
apart from a well defined global phase factor, a quantum
jump does not affect it. A coherent state remains coherent
during the evolution between quantum jumps but its ampli-
tude decreases exponentially due to the acquisition of infor-
mation by negative measurements (no photon escapes) be-
tween the jumps a(t)= e/,

Let us now consider a superposition of two distinct coher-
ent states with the same average number of quanta 77 but with
a relative phase € in phase space

KO =) + e 29)
The jumps probability during time 7 is then given by p.
=ityr 1+2 Re({a| ae'?e'?)] which simplifies to 7y7 as soon
as |@) and |ae'’) are well separated so that their overlap can
be safely neglected. Under this assumption, the state after a
jump is given by

1 . ) )
| p(0%)) = ,—E(e’ Are(a)| gy 4 AT @+ g0y (30)
\

In the present unfolding of the master equation, each quan-
tum jump introduces a phase factor '’ in the quantum super-
position whereas each component remains a coherent state
with the same parameter. Decoherence occurs because the
number of jumps in a given time interval varies from one
stochastic trajectory to the other. This has already been no-
ticed in Ref. [18] using an unfolding of the master equation
based on a continuous time measurement through a homo-
dyne detection of the field leaving the cavity. The present
scheme leads to the same final results but is more suited for
our study of dissipation on the atoms + cavity dynamics.

Denoting by {¢;,...,,} the successive dates of quantum
jumps (0=t <---<t,=<t1), the final state associated with
this sequence of jumps is given by

1 . .
|¢{zl,...,tp}(l‘)> = _E(|6Y€_W2> +ePlae™e%).  (31)
\J

Thus, the decoherence coefficient is the characteristic func-
tion for the probability distribution of the number of quan-
tum jumps N[0,7] between O and 7. The oscillator reduced
density matrix at time ¢ is given by

p(0) = |a(t)Xa(n)] + |a(r)e K a(D)e’’] + D(1)| alr)e' ") ()|
+D(0)"|al0) )], (32)

where D(r) denotes the average of ¢™M%1? over all stochastic
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trajectories. When yr=1, the reduction of the components
amplitude has to be taken into account in order to get the
probability distribution for a sequence of quantum jumps
dates 0=r;=---1,=t. This step is necessary to recover the
full solution of the master equation (26). These computations
are recalled in Appendix C. But for < y~!, relaxation of
energy has almost not occurred and we can assume that the
average number of quanta in the two coherent components of
the superposition is still equal to 7. Therefore, emission of
quanta is a renewal process with a distribution of waiting
times given by y/(7)=i1ye™™?". Decoherence by a sequence of
quantum jumps obeying a renewal process has been recently
studied in full generality [19]. In the present case, since
N[0,1] is distributed according to Poisson law with mean
value 71yt, the result is given by

D(1) = (™M) = explyi(e’” - 1)]

and leads to the same predictions as the direct solution of the
master equation.

(33)

B. Decoherence in the mesoscopic approximation

Let us now turn to the dissipative dynamics in the atoms
+ cavity problem. Because Rydberg atom experiments are
performed over time scales rather short compared to the dis-
sipation time (yr=<0.1), we shall look at the dissipative dy-
namics at short times when energy dissipation can be ne-
glected (yr<<1). In order to make an explicit connection
with the work of Gea-Banacloche who has studied the effect
of dissipation for one atom at arbitrary times [ 11], the case of
longer times (yf=1) is discussed in Appendix D. Let us
finally mention that the case of an atomic ensemble has also
been considered within the framework of master equation
[20] which, in our opinion, does not clarify the dissipative
quantum dynamics of the cavity + atoms system as much as
the quantum stochastic trajectories method discussed below.

1. Evolution along a single stochastic trajectory

Inspired by the dissipationless case, we will focus on the
evolution of factorized states of the form

J

|\P§1>= 2 Rr_n{’,m

m'=—J

Jm")y ® |ay, (34)

which, within the mesoscopic approximation, remain factor-
ized in the absence of dissipation. Strictly speaking, as no-
ticed by Gea-Banacloche for N=1 and as proved in Appen-
dix D, this is not true in the presence of dissipation.
However, in the limit y#< 1, the dissipative dynamics can
still be formulated in terms of factorized states. Let us sketch
the argument that justifies this assertion. We refer the reader
to Appendix D for details.

Between quantum jumps, the state of the atoms + cavity
system evolves according to Eq. (28) using the non-
Hermitian Hamiltonian (27) which takes into account the
information gained by observing that no quanta is emitted
between two jumps. Because the atoms and the cavity mode
are coupled, the whole atoms + cavity state should be af-
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fected by this information gain. But, in the present strong
coupling situation (g>> y), we expect the atoms to be mainly
driven by the cavity and not by this indirect information
gain. Next, dissipation induces an exponential decay of the
average photon number 72(¢) =77e~”" while keeping the photon
number distribution Poissonian. We shall thus neglect the
decay of 7n(r) for yt< 1. The resulting evolution for the at-
oms + cavity case is the same as in the dissipationless case

(WX (1) = 7D, (1) @ |, (1)) (35)

Let us now discuss the effect of a quantum jump on this
state. Contrarily to coherent states, each Gea-Banacloche
state |¢,,(¢)) does not remain invariant under the action of a
quantum jump operator since

a| lpm(t» = e—n/ZE a—e_lgml‘v‘ck-i—_]|k>
k=0

o

k
_;1/22 aezmgt(\k \k+l)ze—zgmz\k|k> (36)
k=0

The phase factor exp[zmgt(\ k+1 1 K] a priori depends
upon k. But expanding Vk+ 1=k in n powers of (k— n)/v

shows that, at first order, exp[imgt( Vk+1- \k)] is indeed in-
dependent of k. Using this approximation, the action of the
annihilation operator reduces to the multiplication by a phase

al (1) = ae ™2y (1)), (37)

It can be shown that an expansion to the next order differs
from this expression by O[(mgt/i)*]. Thus, Eq. (37) can be
considered as a valid approximation in the domain < Vi/g
which is in the domain of validity of the mesoscopic ap-
proximation (< 1/g).

Let us now consider the evolution of state (34) along a
single stochastic trajectory. Just before its first quantum
jump, provided it happens at time ¢, such that 72(¢,) >N, we
still have a factorized state of the form (35). The effect of a
quantum jump occurring at time #; is to extract a phase
/o) where 6,,(r,) is the argument of the amplitude of the
quasicoherent state |i,,(t,)). Iterating this argument shows
that, in a stochastic trajectory with quantum jumps occurring
at times 0=1, < factorized but gets
an extra phase 6,(t,...,t,) associated with the quantum
jumps

|\Pz{tl’ R 4 },t) = giem(ll

)T D (1)) @ |4h (1)
(38)

and 6,(t,...,1,)=2,6,(t;). Exactly as for the case of a su-
perposition of coherent states of an harmonic oscillator ana-
lyzed above, the accumulation of random relative phases in
front of the Gea-Banacloche states leads to the decoherence
of the Schrodinger cat state created by the strong atoms +
cavity coupling and to the disappearance of Rabi oscillations.

Before discussing the average over all stochastic trajecto-
ries, it is worth mentioning that the present discussion re-
mains valid even in the presence of the echo pulses intro-
duced in Sec. I B. A 7 pulse instantaneously reverses the
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dynamics of the atoms + cavity system. After a single
pulse at time 7, the Gea-Banacloche states invert their mo-
tion and start refocusing. The deterministic evolution of the
atoms + cavity system is then described by a time-reversed
evolution of the dissipationless motion. Therefore, the effect
of any subsequent quantum jump is still to extract a phase
corresponding to the position of the quasicoherent Gea-
Banacloche state in the Fresnel plane at the jump time.

2. Average over stochastic trajectories

To deal with all these situations at once, let us denote by
6,,(t) the time-dependent phase of |,,(f)), not assuming any
particular form. The decoherence coefficient for the two
states |\If t)) considered here is thus given by the average

over sequences of quantum jumps
FLOp,, 0 1= (e>E010), (39)

where (A 0)=(t9m+— 6,, )(1) and the 7, are the dates of the suc-
cessive quantum jumps occurring between 0 and 7. This co-
efficient now depends in a functional way on the two trajec-
tories t—>6,, (1) and should be called a decoherence
functional in reference to the work of Feynman and Vernon
[21]. Tts definition (39) generalizes Eq. (33) to the case of a
time dependent A#. Since we assumed that yr< 1, the sta-
tistics of waiting times between quantum jumps is indepen-
dent of the positions of the Gea-Banacloche states. Exactly
as in Sec. IIl A 2, it is given by ¢A(7)=i1ye™"?". Within this
approximation, Eq. (39) can be computed explicitly even for
a time dependent Af. An elegant way to get the result con-
sists into rewriting the sum over the number of quantum
jumps in a completely different way which does not singu-
larize any specific time

L6y ]=< I 1+ (e - 1)]>, (40)
T 0=t'=t

where n(t')=0 if no event occurs at time ¢’ and n(¢')=1
when a quantum jump occurs at time ¢’ and (A6)=6,,
— 6, . Note that in the above expression, t' is not the time of
a quantum jump. The formal infinite product in the r.h.s of
(40) can then be expanded leading to an expansion involving
multitime correlators (n(¢])---n(z)), where 0=/ =--- <t/
=t (here, r is not the number of quantum jumps). Because
n(7)=0 or 1:

r—1

(n(e)) -+ n(1)))y = nNT L P17, 1), (41)
=1

where P(1],,|t])=Prob[n(z],;)=1|n(t;)=1]. At short times,
quantum jumps provide a renewal process and therefore the
conditional probabilities P(7],,|#]) are directly related to the
average density of jumps S(z): P(z,,,|#/)=S(t],,—1]). More-
over, (n(7]))=S(z]). Here the density of events is a constant:
S(r)=yn. The final result for the decoherence functional is
thus
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t
FL O, 0 1= exp( V.t f (e300 1)dT) SR
0

Finally, expression (42) can be interpreted as resulting from
the accumulation of decoherence coefficients over infinitesi-
mal periods of time. In the mesoscopic regime, because of
the strong coupling regime, the evolution of the atoms +
cavity system is a forced evolution of the cavity state driven
by the atomic polarizations |D,,(1)), leading to the motion of
the Gea-Banacloche states |i,,(¢)). For each Gea-Banacloche
state, this forced motion between 7 and 7+d7 leaves an im-
print in the environment of the cavity. The overlap between
imprints left by two distinct Gea-Banacloche states is pre-
cisely the decoherence coefficient. During infinitesimal time
dr, the imprint left in the environment by each Gea-
Banacloche state under consideration is the same as the one
left by coherent states with the same average number of
quanta but a time-dependent phase separation (A6)(7).
Therefore, the corresponding decoherence coefficient is
given by

i(AO)(7) _

D(7,7+d7) = exp[ yi(e' 1)dr]. (43)

Since the environment is Markovian, the infinitesimal deco-
herence coefficients (43) associated with different time win-
dows [t,1+7] (7> 7,) accumulate through time evolution,
leading to Eq. (42).

C. Rabi oscillations in the presence of dissipation
1. Spontaneous revivals

It is now straightforward to compute the Rabi oscillation
signals by introducing the decoherence coefficients for all
pairs of Gea-Banacloche states that can appear in the reduced
atomic density operator. Because we are dealing with experi-
mental situations such that the duration of experiment is
small compared to the cavity dissipation time, we shall as-
sume that the average number of quanta remains equal to 7
in this paragraph and the following ones.

The result for the Rabi oscillation signal is (g=m,—m_)

S D, (OR (D F (1),

my,m_

Pm(t) =

(44)

where P, , (1) and R, , (), are respectively, given by
Eqgs. (18) ‘and (20). Decoherence is contained in Fonpm._ (1)

=~ %W+ which can be evaluated using Eq. (42) thus
leading to (¢p=gt/2+ n)

—3/2 :
d,(1) = 2y"g ¢(1 - Sln(](f)), (45)
—3/2
0,01 = 4;”—q sin2(q7¢). (46)

Note that in these results, 7>?y/g is the dimensionless pa-

rameter that characterizes the strength of decoherence. An
ansatz for the upper and lower envelopes of the Rabi oscil-
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lation signal in the presence of dissipation can then be ob-
tained along the lines of Sec. II D 2

P.(0)=Ag+ 2[R (1A, |, (47)
q#0
P(1)=Ag+ 2 (= DR (1) A]e . (48)
q#0

2. Induced revivals

Rabi oscillation signals in an echo experiment can also be
computed within the mesoscopic approximation. The percus-
sional echo pulse is applied to the atoms at time ¢, It corre-
sponds to the operator U,=®" = la'“ Using this operator, Eq.
(9) can be derived for the case of N atoms with Hyc in place
of the Jaynes-Cummings Hamiltonian. Thus, exactly as for
N=1, the evolution of the atoms + cavity system is reversed
after time 7,. Within the mesoscopic approximation, this
means that atomic polarization as well as Gea-Banacloche
states move backward towards their initial positions. The
time dependence of the associated phases 6,,(7) associated
with Gea-Banacloche states is given by

O,(7) = mgr/2\f’;' for0=r=1,,

(49)
m( ) mg(2lw— 7')/2\"/1;1 for tﬂ. =T

Equation (42) leads to the following decoherence coefficient

(t=t,) which we write as ]—'(’;Chmo)(tmt)=e‘dq(’v”>+i®l1(’ﬂ”)

where (g=m,—m_):

2yﬁ3’2< g 25in(aby) —sin(g2¢, -
q

d(tmi) = "”)),

(50)
=
where ¢_=gt./2\n and

—3/2

0,(t,1)=

{2 sin*(q/2) = sin’[q(2 b, — $)/2]}.
(51)

Because of the perfect time reversal for the atoms + cavity
system, the overlap factor mem_ in the echo experiment can

be expressed in terms of the overlap factor under free evo-
lution for r=1,: Rt 1)=R(2t,~1).

3. Extension to finite temperature

It is known that increasing the temperature lowers the
decoherence time. For the harmonic oscillator, initially in a
coherent state, the exact solution to the quantum master
equation (26) is well known [22]. At time ¢, the state is no
longer pure but appears to be a thermal state with average
number of quanta 72(z)=7n,(1—e""") translated in phase space
by ae " (i denoting the average number of quanta at
equilibrium at temperature T). Nevertheless for times much
shorter than dissipation, thermalization can be neglected: the
state of the oscillator can still be considered as coherent. The
analysis of the solution of the master equation at finite tem-
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peratures shows that decoherence at short times is still expo-
nential. The effect of temperature is to enhance the damping
rate by a factor 2ng+ 1 =coth(B% wy/2). This suggests that
the imprint of the superposition of two coherent states in the
environment during an infinitesimal time interval d7 at finite
temperature is obtained by substituting 0%
— ycoth(Bh wy/2) in Eq. (43). Following the previous line
of reasoning (end of Sec. III B 2), the decoherence coeffi-
cient at time ¢ for a superposition of two coherent states is
again obtained by summing the decoherence coefficients as-
sociated with infinitesimal time intervals between 7=0 and
T=1.

This result can be used to derive the evolution of the
atoms + cavity density matrix at short times and moderate
finite temperature. As long as we can neglect the thermaliza-
tion, the only effect of dissipation is to damp the coherences
between states D, (1)) ® |4, (1)) for m, #m_. As in the zero
temperature case, each of the state |D,, (1) ® |, (1)) is ex-
pected to evolve according to the atoms + cavity interaction
and the echo pulse applied to the system (if any). As ex-
plained in the previous paragraph, the decoherence coeffi-
cient 7, ,, (1) to be used in Eq. (44) is obtained by replacing
v by 7y coth(Bh wy/2) in Egs. (45), (46) for the free evolution
and Eqgs. (50), (51) for the echo experiment. Note that this
ansatz is expected to be valid only for low temperatures and
at short times such that yr coth(Bh wy/2) < 1.

IV. DISCUSSION OF THE RESULTS
A. Method and parameters

We have considered the Rabi oscillation signal in the
presence of dissipation for N=1 to N=3 atoms, values that
can be realistically reached in state-of-the-art cavity QED
experiments. Photon numbers 7=10 and 15 have been con-
sidered. All our computations have been performed for val-
ues of g/ 7 corresponding to the present ENS experiment [4].
The best published cavity damping time is 1 ms (quality fac-
tor Q=3.2X 10%). Preliminary tests of an improved experi-
mental setup have shown damping rates of 14 ms (Q=4.5
X 10°) and even 115 ms (Q=3.7 X 10'%) and these results are
to be submitted in the near future. Thus, the values of 14 ms
(g/y=4310), 5 ms (g/ y=1540 and 0=1.6x10") and 1 ms
(g/y=308) for the damping rate of the cavity have been
considered in our simulations. We focus on the case of a
zero-temperature bath which can be realistically reached as
shown in [23]. The effect of finite temperature will be briefly
discussed in Sec. IV D.

Results of the analytical approach described in Sec. III C
have been compared to a quantum Monte Carlo simulation of
the atoms + cavity system evolution in the spirit of Ref.
[10]. For these simulations, the Adams-Bashford scheme of
order four has been used to compute the evolution of the
wave function between quantum jumps.

We first present our results relative to the free evolution of
the atoms + cavity (spontaneous Rabi oscillations revivals)
in Sec. IV B and for the echo experiments in Sec. IV C.
Consequences of these results for cQED and circuit-QED
experiments are then discussed in Sec. IV D 2.
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FIG. 7. Influence of dissipation on the spontaneous revivals of
the Rabi oscillation signal P=P,,_; (as a function of ¢=gt/2\i) for
one atom and m=1/2 (atom excited) with 7=15 photons initially.
The graph on the left depicts the analytical envelopes P,(z) for (a)
no dissipation, (b) y~'=14 ms, (c) y'=5 ms, and (d) y'=1 ms.
The right part of the figure presents the associated Rabi oscillation
signals obtained from quantum Monte Carlo simulations (plain
lines) as well as the associated analytical envelopes. The vertical
dashed line corresponds to the largest reachable ¢ (atoms at
100 ms™h).

B. Free evolution

It is interesting to assess the possibility of observing spon-
taneous Rabi oscillation revivals, since, for N> 1, such a
revival might be observable at shorter times than in the N
=1 case. Figure 7 presents a comparison between the Rabi
oscillation signals resulting from the interaction with a me-
soscopic coherent state containing 15 photons in average in
the dissipationless case and for dissipation times equal to 1,
5, and 14 ms (T=0 K). Figures 8 and 9 present the same
comparison for the cases of N=2 and N=3 atoms, respec-
tively. Note that our analytical model [Eqs. (47) and (48)]
predicts the upper and lower envelopes of the Rabi oscilla-
tion signal with a rather good precision in the presence of
dissipation. Note that in the N=1 case, this simulation shows
that it is not possible to observe spontaneous Rabi oscillation
revivals with the present cavity (y<1 ms). The same con-
clusion is valid for N=2 and N=3: even the partial revivals
that occur before the main one ¢~ 27 should not be observ-
able. For 'y‘1=1 ms, decoherence transforms the entangled
atom + cavity state into a statistical mixture before any pair
of Gea-Banacloche components of the field overlap. As Figs.
7-9 show, improving the quality factor of the cavity could
enable a direct observation of the spontaneous revivals in the
presence of 7=15 photons.

However, the experimental apparatus sets a tight limita-
tion on the interaction time of the atoms with the cavity field.
The number of atoms flying through the apparatus at veloci-
ties lower than 100 ms™! is too small in a thermal atomic
beam to be used in practice. Atomic spontaneous emission is
another limitation for very slow atoms. We stick here to the
available apparatus and set an upper limirt on ¢ which could
roughly be estimated as ¢,,=~2m(2.5/\n). This upper limit
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FIG. 8. Influence of dissipation on the spontaneous revivals of
the Rabi oscillation signal P=P,,_; (as a function of ¢=gt/27) for
N=2 atoms. The initial condition is m=1 (all atoms excited) with
n=15 photons. The graph on the left depicts the analytical enve-
lopes P.(t) for (a) no dissipation, (b) y'=14 ms, (c) ¥ '=5 ms,
and (d) ¥ !=1 ms. The right part of the figure presents the associ-
ated Rabi oscillation signals obtained from quantum Monte Carlo
simulations (plain lines) as well as the associated analytical
envelopes.

for ¢/27r ranges from 0.65 (7=15) to 0.76 (7=10) which
excludes the observation of the complete revival obtained
when all Gea-Banacloche states overlap again. Nevertheless,
as can be seen from graphs (b) and (c) in Figs. 8 and 9,
observing a spontaneous partial revival may be possible for
N=2,3. In the case of two atoms, the signal would corre-
spond to the overlap of states |¢;) and |¢_,). In the case of
three atoms, the signal would be dominated by two overlaps
corresponding to |¢,,) and |i3,,) on one side and i)
and |¢5,,) on the other side. Note that the partial revival
associated with the overlap between |, and |i_3,) is not
within reach. Observing a spontaneous revival requires ¢
== 17 to remain within reach for the slowest atoms. This puts
an upper limit on the average photon number close to 25
photons.

Finally, Fig. 10 shows the decay of the modulus of the
three decoherence coefficients fq(t) as a function of time for
n=10 and n=20 for dissipation times equal to 1, 5, and
14 ms. It clearly shows that, even if the time of flight prob-
lem could be circumvented, increasing the number of pho-
tons puts strong constraints on the dissipation time of the
cavity. This suggests that working with 10 to 15 photons in
average is a good compromise for observing spontaneous
partial revivals.

C. Echo experiment

In this paragraph, results for the simulation of an echo
experiment corresponding to an echo pulse at #,=30 us are
presented. Figure 11 shows the simulated echo signals for the
cQED experiment at LKB obtained with 15 photons initially
and an echo pulse at 30 us for N=1, 2 and 3 atoms and two
different values of dissipation: 14, 5, and 1 ms. Note that in
the case of three atoms, a revival occurs at 150 us. It corre-
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FIG. 9. Influence of dissipation on the spontaneous revivals of
the Rabi oscillation signal P=P,,_; (as a function of ¢=gr/ 2\i) for
N=3 atoms. The initial condition is m=3/2 (all atoms excited) with
=15 photons. The graph on the left depicts the analytical enve-
lopes P.(1) for (a) no dissipation, (b) ¥ !=14 ms, (c) ¥y !=5 ms,
and (d) y'=1 ms. The right part of the figure presents the associ-
ated Rabi oscillation signals obtained from quantum Monte Carlo
simulations (plain lines) as well as the associated analytical
envelopes.

sponds to a delayed revival of type (c) in Fig. 4. But al-
though its amplitude makes it visible with a 14 ms dissipa-
tion time, the time of flight limitation will prevent it from
being observed in the experiment. The same conclusion
holds for the delayed revival predicted also in the N=2 at-
oms case.

D. Finite temperature

1. Thermalization procedure

Experiments with Rydberg atoms in high-quality micro-
wave cavities are performed at low temperatures (7=0.8
—1.4 K). In order to wash out photons resulting from thermal

1=
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0.4

0.2

5 ] 10 ¢
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FIG. 10. Modulus of the decoherence coefficient F,(r) for ¢
=1 (plain lines), g=2 (dashed lines), and g=3 (dotted lines) as a
function of ¢ for dissipation times 14, 5, and 1 ms in the case of
n=10 photons (left graph) and 7=20 photons (right graph). The
vertical dashed line corresponds to the largest reachable ¢ (atoms at
100 ms™).
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FIG. 11. Echo signal (function of ¢=gt/2\n1) simulated for i
=15 at ;=30 us and g/27=49 kHz. All graphs on a row corre-
spond to the same dissipation time (a) y"'=14 ms, (b) y'=5 ms,
and (c) N=3 and vy '=1 ms. All graphs in a column correspond to
the same number of atoms. The arrow shows the time of the echo
pulse. The vertical dashed line corresponds to the largest reachable
¢ value (slowest atoms at 100 m s™'). The initial condition is m
=3/2 (all atoms excited).

leaks, an erasing procedure using auxiliary atomic samples is
applied [1]. Once the erasing procedure has been completed,
a coherent field is injected inside the cavity. Because of the
imperfections of the procedure and because of the necessary
delay ;=200 us between the erasing sample and the coher-
ent field injection, this creates a translated thermal state, par-
tially thermalized. This state would then evolve during time
7,==50 us before the experimental atomic sample enters the
cavity.

In order to model this preparation, we have performed a
quantum Monte Carlo simulation involving a finite tempera-
ture environment and an initial thermalization period of du-
ration 7,. At the beginning of this preparation period, a co-
herent state is injected in the dissipative cavity and evolves
decoupled from the atoms during time ¢,. Then the coupling
to the atoms is turned on to model the experiment. A rather
pessimistic estimate of the average number of thermal pho-
tons per mode of the reservoir has been used for this simu-
lation (ny,=0.4 corresponding to T=2 K at 51 GHz). It has
been estimated that thermal fluctuations left by the imperfect
erasure procedure correspond to at most ny=0.15 photons
per mode on the average. Using ny=ny(1—e™"7), this sets
vi,=0.47 used in our numerical thermalization protocol.
The injected c_oherent state before thermalization has an am-
plitude ay=\ize””’? in order to take into account the expo-
nential decay during the preparation phase (7 denotes the
average photon number when the experimental atomic
sample is injected inside the cavity).

2. Finite temperature results

Figure 12 presents the results of these simulations for N
=1 atom. The main curve presents the Rabi oscillation sig-
nals obtained from a quantum Monte Carlo simulation
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FIG. 12. Rabi oscillation signals obtained from quantum Monte
Carlo simulations for one atom using the thermalization protocol
producing a thermal state with 0.15 photons displaced in Fresnel
plane by an amplitude corresponding to 7=15 photons, for (a)
v '=14 ms, (b) 5 ms, and (c) 1 ms. Graph (d): comparison between
zero temperature signals (dashed line) and finite temperature signals
(full line) at short times for y~'=5 ms. Graph (e): comparison be-
tween zero temperature signals (full line) and finite temperature
signals (dotted line) for y~'=5 ms. Dashed lines represent the upper
and lower envelopes P. obtained by taking temperature into ac-
count by rescaling y— (1+2ny,) 7.

implementing the thermalization procedure described above
for y''=1, 5, and 14 ms. In order to compare it with the
analytical model we have used the fact that, in the present
case, at times short compared to the dissipation time, the
main effect of finite temperature is to speed up decoherence.
This is taken into account by replacing y by y(1+2ny,) in the
decoherence functional [Egs. (45) and (46)]. This ansatz is
used to compute the upper and lower envelopes that appear
in Fig. 12.

Note that some features are not reproduced by our ana-
Iytical ansatz since the overlap factor we use does not take
into account thermalization of the quasicoherent state
|h,,(t)). As shown in graph (d), the initial collapse of Rabi
oscillations occurs earlier than at zero temperature. On the
other hand, the envelope of the spontaneous revival is well
described by our model [see graph (e)]. This shows that our
analytical approach is quite efficient in predicting the con-
trast of spontaneous revivals of the Rabi oscillation signals
even at finite temperature.

Results for the case of three atoms are presented on Fig.
13. The same effects as for N=1 can be observed here. Note
that thermal fluctuations do reduce the contrast of spontane-
ous revivals albeit not enough to make them unobservable
for y"'=5 and 14 ms. As shown in graph (e), thermal effects
reduce the contrast of the main secondary revival from 15 to
11 % for 5 ms dissipation time. As mentioned above, im-
proving the dissipation time reduces the impact of thermali-
zation.

E. Discussion of the results

1. Perspectives for the ENS experiment

Within the context of cQED experiments performed at
ENS, our results suggests that spontaneous revivals of Rabi
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FIG. 13. Rabi oscillation signals obtained from quantum Monte
Carlo simulations for N=3 atoms using the thermalization protocol
producing a thermal state with 0.15 thermal photon number dis-
placed in Fresnel plane with 7= 15 for (a) y™'=14 ms, (b) 5 ms, and
(c) 1 ms. Graph (d): comparison between zero temperature signals
(dashed line) and finite temperature signals (full line) at short times
for y'=5 ms. Graph (e): comparison between zero temperature
signals (full line) and finite temperature signals (dotted line) for
y'=5 ms. Dashed lines represent the upper and lower envelopes
P, obtained by taking temperature into account by rescaling
y—=>(1+2n4)7y.

oscillations could be observed in an improved experimental
setup with two or three atoms and an initial coherent state
containing from 10 to 15 photons on the average. A convinc-
ing test of the generation of three- and four-component
Schodinger cat states involving 10 photons and two or three
atoms would require to probe the phase distribution using a
homodyne method [3]. The splitting of the initial state into
N+1 separated phase peaks followed by the recombination
of some of them at the time of partial spontaneous revivals
would provide an experimental proof of the scenario pre-
sented in the present paper. A more detailed insight into the
field dynamics could be gained by reconstructing the cavity
field Wigner function, using the method proposed by and
Davidovich and already implemented on a one-photon field
in Ref. [24].

2. Experimental consequences for circuit QED experiments

Our analysis can be used to discuss the case of circuit-
QED experiments [12]. Of course, our model does not take
into account relaxation nor dephasing of the atoms them-
selves, since they are not relevant for the Rydberg atom ex-
periments. In the case of circuit QED, the relaxation and
decoherence of Josephson qubits must be taken into account
to obtain a precise model of the dissipative dynamics. In the
literature, the g/ ratio is around 20 [25,26]. Therefore, our
model suggests that observing the effects discussed in the
present paper in circuit QED experiments requires an im-
provement of roughly two orders of magnitude on this ratio.

Increasing g/ would then require either an increase of
the resonator quality factor or an increase of the qubit/cavity
coupling. Using classical eletrodynamics, an upper bound on
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the value of g can be estimated to be of the order of g/wj
=A\2a/e, where « is the fine structure constant, €, the
relative permittivity of the substrate and A collects geometri-
cal form factors and capacitance ratios determining the mi-
crostrip impedance and its coupling to the qubit. For resona-
tors in the 1-10 GHz frequency range, values of g/2 of the
order of 100 MHz are quite realistic and would already pro-
vide a factor 5 on g/vy. In present circuit-QED experiments,
detection is performed by probing the cavity through trans-
mission measurements. This requires lowering the quality
factor from 10° [27] to 10* which is still in the strong cou-
pling regime but not as deeply as for Rydberg atom experi-
ments. Less dissipative cavities could then be used provided
one could improve the qubits properties or use an alternative
measurement method. Recently, new detection schemes
based on dynamical bifurcation of Josephson junctions have
been developed and provide high contrast, rapid measure-
ment, low back action and absence of on-chip dissipation
[28-30]. Thus, although important progress is required for
circuit-QED devices, the rapid improvement of Josephson
device technology is very encouraging and provides a strong
motivation for further theoretical studies.

V. CONCLUSION

We have studied the resonant interaction of an ensemble
of N atoms symmetrically coupled to a resonant mesoscopic
field in a cavity. The interaction between the atomic en-
semble and the cavity produces an entangled state with N
+1 components leading to a rich pattern for Rabi oscillation
revivals that generalizes the ones obtained in the N=1 case.
In particular, “fractional” spontaneous revivals reflecting par-
tial disentanglement of the atom + cavity state are expected
to occur earlier than the first spontaneous revival in the N
=1 case.

Dissipation in the cavity will lead to decoherence of this
mesoscopic entangled state and we have proposed a simple
analytical model that enables us to compute the Rabi oscil-
lation signals in the presence of dissipation. This model pro-
vides simple expressions for the spontaneous Rabi oscilla-
tions revivals as well as for the ones induced in an echo
experiment. Analytical results are in good agreement with
quantum Monte Carlo simulations and provide an intuitive
view of the evolution of the dissipative atoms+ cavity sys-
tem. We have obtained an analytical expression for the accu-
mulated decoherence of the N+ 1-component Schrédinger cat
state resulting from the atom +field interaction which could
be used for tests of decoherence.

We have shown that in a forthcoming generation of cQED
experiments, spontaneous revivals of Rabi oscillations asso-
ciated with the recombination of a fraction of the N+1 com-
ponents of the entangled atoms + cavity state should be
observable. An improvement by a factor 10 in the cavity
quality factor as well as the use of slow atoms (100 m/s) are
required. Our analysis also suggests that the situation is not
so favorable within the context of circuit-QED experiments,
due to the measurement limited quality factor. However,
rapid progress in this field is extremely encouraging and mo-
tivates further theoretical studies taking into account relax-
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ation and dephasing of the qubits. The stochastic wave func-
tion approach could be used to take these dissipative
phenomena into account at least for the part due to high
frequency noise. Dissipative dynamics in the presence of a
strong low frequency 1/f noise cannot be accounted for
within the framework of the Bloch-Redfield equations [31].
Nevertheless, providing a simple analytical model for the
dissipative dynamics of a combined qubits + cavity system
taking into account all possible sources of dissipation would
be an interesting challenge.
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APPENDIX A: MESOSCOPIC APPROXIMATION

In the classical limit, we expect eigenstates of J* to re-
main unentangled with the cavity state. Therefore, let us start
from an initial state

J
-1
why= 2 R,

m'"==J

J.m") ® |ay, (A1)

il

where a=\ and R, =(J,m"|&™ |J,m). Since we are in
the mesoscopic regime, most of the weight of the state is
concentrated in stable subspaces H,, with n close to 7. Apart
from the term m’'=J, the above sum also spreads on the
lower dimensional stable subspaces. Since we expect this
contribution to be exponentially weak in the mesoscopic do-

main, we focus the projection [WX) of [W¥) in ®,H,,. Be-
cause the effective Hamiltonian (12) is written in terms of
the J* generator, it is useful to decompose |\I’X Yon the basis

m
vectors |sz)>. We start from
X _n ﬁk/z —1 (k=J+m")
[W)=e2X =R, 12,7, (A2)
k,m' \k
where the sum over k ranges from J—m' =0 to +o°. Shiftin,
the index k into p=k+m’~J=0 and approximating \iz*/k!

by Vi?/p! enables us to do the summation over m’ using
|Z7)=3, /R,y ,v|X")). This finally leads to

Gxy S 2 )

(A3)
p=0 \'p!

When evolved during time ¢ under the effective Hamiltonian
(12), this state becomes

~ i o —
[Ph0) =33 =Py (Ad)
p=0 \P:

We now use the R™' matrix to go back to the usual basis
|X(”)>=Em,R:”lm, |Zf: ). In order to rewrite the resulting state

m
as a tensor product of an atomic polarization and a field state,
it is necessary to introduce the same approximations as be-
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fore. We first approximate +(p+1)!/p! n?~ 1. The coeffi-

cient of |J,J-1)® |p+1) is then equal to
—(p+)/2 .
n R—l —ignzt\fp+c'
i+t ™"

We then replace e”$™"\P*¢ by ¢~&mip+l muyltiplied by the
phase factor e€™/(\P+=\p+e) This last phase factor is then ex-
panded to first order near 77 which leads to a slowly varying
phase ¢!¢"=/2\ The resulting coefficient now only de-
pends on / and p+I. We then define k=p+I and extend its
summation range from k=0 to +%, introducing an exponen-
tially small error in the mesoscopic regime 72>>2J. The re-
sulting vector is now our mesoscopic approximation to
|WX(1)). 1t is obtained as a tensor product

(WX (1) = e ™D, (1)) @ [, (1)),

where |D,,(1)) and |i,,(¢)) are defined, respectively, by Egs.
(15) and (14). Equation (16) is recovered by expanding
J,mg) over the atomic polarizations at initial time |D,,(0))
(=J=m=J).

(AS)

APPENDIX B: ROTATION MATRICES

Matrix elements of SU(2) general elements are given, for
example, in Ref. [32]. The matrix elements R,
=(J,m'|exp(im/”/2)|J,m) needed in the present paper are

_ J-m)'(J=m'")!
mm= N (T +m) (T +m')!

J-max(m,m")

(- DY *27-k)!
% EO 2N T =m=k) ! (J—m' k)

R

Starting from excited atoms and looking for the probability
of detecting finally all the atoms in the excited state involves

» 1 Q2!
R, =(-1) Rim=75; =m) L (J+m)!

APPENDIX C: DECOHERENCE AND PHASE
DIFFUSION

In the y#=1 case, the decay of the average photon num-
ber n(t)=n e prevents the sequence of quantum jumps
from being a renewal process with a stationary waiting times
probability distribution. Nevertheless, the probability that no
quantum jump happens between ¢ and 7+ 7 knowing that one
occurred at time ¢ is given by

HO(I’ T) = H

t=t'<t+r

[1=yn(t")dt'] = exp(— 'yJTﬁ(t+ T’)dr’).

0

(C1)

The probability distribution for having quantum jumps at
times ¢ and 7+ 7 is therefore given by
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all,
(1, 1) = — — = yit(t + P)e W) (C2)
ar
The probability for having exactly p quantum jumps between
0 and 7 at times 0=t =---=t,=t is equal to P,

><(l‘ls ,[p)ZI,lf(O,[])lﬁ(tl ’t2). ..Ip(tp—l ’[p)HO(tpst_tp):

4
1) =IO ] [yi(e)]. (C3)

k=1

7)[0’[](1‘1, PN

Using the exponential relaxation of the mean photon number
[71(t)=ne™""], this leads to a Poisson distribution law for the
number N[0, 7] of photons emitted between 0 and 7 with av-
erage value 71(1-e7"). Therefore, the decoherence coeffi-
cient is equal to

<gi0N[O,r]> — exp[r_z(eia— 1)(1 _ e—%)]

which is exactly the solution of the master Eq. (26).

(C4)

APPENDIX D: EFFECT OF DISSIPATION ON THE ATOMS
+ CAVITY

We consider the dissipative dynamics of the strongly
coupled atoms + cavity systems in the mesoscopic regime.
For weak dissipation y< g, we show that a family of gener-
alized Gea-Banacloche states is stable under an effective sto-
chastic dynamics naturally arising from these approxima-
tions. We then consider the evolution of the states |WX)
(=J=m=1J) and show that each of them decoheres on a time
scale much longer than the decay time of the |\If},fl+><\lfffl |
coherence for m, # m_. These results validate the simplified
analysis presented in Sec. III B.

1. Effective stochastic dynamics in the mesoscopic regime

The non-Hermitian Hamiltonian that describes the dy-
namics of the atoms + cavity system between quantum
jumps is Hyc—ifi ya'a/2, where Hy is the Tavis-Cummings
Hamiltonian (3). Replacing Hyc by the effective Hamiltonian
(12) leads to an effective non-Hermitian Hamiltonian over
each subspace H,:

I
H=ﬁgvp+cj‘—z;(p+]—f). (D1)
The constant term ifJy/2 can be discarded in the evolution
between quantum jumps since it is canceled by the normal-

ization of the state vector. It is then useful to decompose the
atoms + cavity vector over EB,,HP as

W (1)) = M) 2 |\I' (), (D2)
where |‘I’,,(t)> belongs to H,, a(t) denotes some time depen-
dent function and N(r) is the normalization factor. Taking
a(t)=a(0)e™ " enables to absorb the p-dependent part in the
non-Hermitian term of Eq. (DI1). As a consequence, each
vector |\I’p(t)) evolves in 7, under the non-Hermitian
Hamiltonian
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H,=fhg\p+cT +i(hyl2) T.

The time dependence of « reflects the acquisition of infor-
mation arising from the absence of quantum jumps on the
cavity. Because of the strong coupling between the atoms
and the cavity, the state of the atoms is also altered and this
is why dissipation has to be taken into account in the evolu-
tion of each |\I'p(t)> through the non-Hermitian term in Eq.
(D3). Note that this induces a change in the probabilities for
the cavity to release a photon into its environment and thus
modifies the cavity relaxation.

It is possible to solve analytically the resulting
Schrodinger equation for each [W,(r)) but the resulting ex-
pressions are very complicated. In particular, taking into ac-
count the back action of cavity dissipation through the atoms
on the statistics of photon emission leads to very cumber-
some expressions. Nevertheless, in the strong coupling re-
gime of cQED (y< g), neglecting the effect of cavity dissi-
pation on the atoms seems to be reasonable and turns out to
make the problem much more tractable. For values of 7 such
that 72(1)=ie™">>1, we expect H, to be dominated by its
Hermitian part. Discarding the non-Hermitian part in Eq.
(D3) means that each |‘pr(t)) has the same unitary evolution
than in the dissipationless case. Therefore, within this ap-
proximation, the atoms + cavity state evolves in the absence
of quantum jumps between 0 and 7 as

(D3)

_nmz a<f>' T (0)),  (D4)

p=0 \PD:

|q’(t)>nj

where 71(t)=|a(t)|*=|af?e .

Let us now consider a state of the form (A3) and compute
its evolution during a time ¢ in the absence of quantum jump.
Equation (D4) leads to

—n(t)/ZE CY() —lgmt\p+c|X(p)>

(D5)
p=0 \p!

[V (1)) . =

Note that, within the mesoscopic approximation, this state
can be approximated by a factorized state of the form (A5)
taking into account dissipation through the exponential decay
of 7(zr). For yt< 1, Eq. (A5) provides a good approximation
to Eq. (D5).

We now consider the effect of quantum jumps on state
(D5). Within the mesoscopic approx1mat10n the action of the

creation operator on states |X"’1’ ) can be simplified:
alxyy = = 1) = \plx").

(D6)

Using this expression, we see that a|\I’X (t))nJ has the same
form as (D5), the phase e8P in front of |X(p )> being
replaced by e 8""\P*1+¢ This shows that all states of the form

Y 1 L
W L)) = S, L isnly) ()
p=0 \p!

where ®(#) denotes the set of all phases ¢(p,r) (p=0) at
time #, form a stable class along the stochastic evolution. The
phases ¢(p,t) follow a stochastic trajectory consisting of
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smooth deterministic evolution periods between quantum
]umps The deterministic evolution is ruled by d¢(p,?)
=mg\p+c. The quantum jumps correspond to discontinuous

steps @(p,tH)=d(p+1,1).
2. Solution for the states |WX)

Studying the evolution of a superposition of states of the
form (A3) leads to consider the evolution of a coherence
between |‘I’X ) and W) ). After time ¢, the stochastic evolu-
tion of |\IfX ><\IfX | produces an ensemble of projectors of the
form |‘I’ e, {® (NN, [a,{®_(n}]]. Denoting by
pm+,m_(t) the operator obtained by averaging these projectors

over the measure given by the stochastic trajectories, we ob-
tain

. a(r)
Pun (=0 3 ===, , OIX}")x;],
(r_.py) ND- 'py!
(D8)
where Dpyp_(t) denotes the average over all stochastic trajec-

tories of the relative phase factor ¢l%+P-0-4-(+0] where the
phases ¢.(p,t) are relative to the states W, . Because the
quantum jump process is memoryless, these averages obey
the following set of coupled first order differential equations

D.ppp_(t) =D, 41, 1) =D, , (1)]
-0y (m_m,)
-iQ,""'D, , (1), (DY)
where

QUm-md) - glm\Np,+c—m_\p_+c). (D10)

Pyl

Let us first focus on the case m,=m_=m. Probing the
(p+.p-) dependence of D, , (1) gives us an insight of the
decoherence of the initial pure state W) of the atoms +
cavity system. Decoherence arises from the quantum jumps
that lead to the spreading of d)(p+,t)—¢(p_,t). Let us esti-
mate the decoherence coefficient between |X P+)y and | X))
w1t}Mhe mesoscopic approximation. Expanding p+c+l
=\p+c+1/ 2\p /p the phase factor associated with a single
jump at time ¢; is gmi;/ 2\p,— gmt v 2\'p which is approxi-
mately equal to gmt; (p —p)14in*? for p, close to i1 (we
assume y;=<1 for sm1p11c1ty) Thus, for m,=m_=m, the de-
coherence factor Dpyp_(t) can be approximated by

o (l) —~ e—igmt(\s“m—\fm)<ei[(p+—p_)/271]2jgmtj/2\“‘;7>’
(D11)

Remembering that the statistics of occurrence times of quan-
tum jumps for all states of the form (D7) is computed in
Appendix C, we immediately obtain (yr=<1)
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D (l) ~e—zgmt(\p++(‘—\p +c) nyfo(e”’mﬁ O(7)_ l)dT
P b

(D12)

where 0,,(7)=gmT/ 247 and n=(p,—p_)/2n. The second fac-
tor in Eq. (D12) is responsible for decoherence of the state
|\I’ f;) of the atoms + cavity system. Because of the amplitude

a(t)’=
-0/ ZT in the atoms + cavity states, the values of p, that

contribute to the sum lie within |p,—p_| = \m and there-
fore |7| <1 within the mesoscopic regime and for yr=<1.
That’s why decoherence of a state (A3) can be neglected as
in Ref. [11].

Before moving on the m, # m_ case, it is interesting to see
how his results (Sec. IIT A) are recovered within the present
approach. Following Ref. [11], we ignore the discrete char-
acter of p and replace the finite difference equation (D9) by
partial differential equation. Solving this equation can easily
be done using the characteristics method. Starting from the
initial condition [W), this leads to p,, ()=

m

where
o @O” oty
[V, (1) = TP, == OWIxP)  (D13)
p=0 \'p!
and
0
O(p,t) = gmf Ve +p+n(7) —n(r)dr. (D14)

Evaluating the integral and for all p leads to expressions
corresponding to Egs. (18a)—(18c) of Ref. [11].

The case m,#m_ can then be studied along the same
lines. Within the mesoscopic approximation, the phase jump
associated with a quantum jump occurring at time #; can be
evaluated as exp[igt,(m_—m,)/ Z\W )]. Note that it does not
vanish for p,= p_—n(t) This is why decoherence for m,
# m_ occurs on a much shorter time scale than the decoher-
ence of the state [WX). In principle, P, m_(1) could be com-
puted from the formalism presented here but this is not nec-
essary for the present purpose. In the yr<1 case, the
problem can be simplified by considering that the evolution
of the atoms + cavity state with initial condition [W%) pro-
duces a pure state as in the previous paragraph and by ap-
proximating this pure state by |WX(z)) [see Eq. (35)]. The
argumentation presented in Sec. III B then leads to the deco-
herence properties of the atoms + cavity state suitable for
this regime.
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