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We investigate stability of gap solitons (GSs) in the first two band gaps in the framework of the one-
dimensional Gross-Pitaevskii equation, combining the repulsive nonlinearity and a moderately strong optical
lattice (OL), which is subjected to “management,” in the form of time-periodic modulation of its depth. The
analysis is performed for parameters relevant to the experiment, characteristic values of the modulation fre-
quency being w~ 27X 20 Hz. First, we present several GS species in the two band gaps in the absence of the
management. These include fundamental solitons and their bound states, as well as a subfundamental soliton in
the second gap, featuring two peaks of opposite signs in a single well of the periodic potential. This soliton is
always unstable, and quickly transforms into a fundamental GS, losing a considerable part of its norm. In the
first band gap, (stable) bound states of two fundamental GSs are possible solely with opposite signs, if they are
separated by an empty site. Under the periodic modulation of the OL depth, we identify stability regions for
various GS species, in terms of w and modulation amplitude, at fixed values of the soliton’s norm, N. In either
band gap, the GS species with smallest N has a largest stability area; in the first and second gaps, they are,
respectively, the fundamental GS proper, or the one spontaneously generated from the subfundamental soliton.
However, with the increase of N, the stability region of every species expands in the first gap, and shrinks in
the second one. The outcome of the instability development is also different in the two band gaps: it is
destruction of the GS in the first gap, and generation of extra side lobes by unstable GSs in the second one.
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I. INTRODUCTION AND THE MODEL

An effective means for the control of dynamics of collec-
tive excitations in Bose-Einstein condensates (BECs) is pro-
vided by optical lattices (OLs), which are created as interfer-
ence patterns by counterpropagating laser beams
illuminating the condensate [1]. The spatially periodic distri-
bution of the light intensity in the OL induces a periodic
potential acting on atoms in the boson gas (atoms are at-
tracted to or repelled from intensity maxima if the light
building the OL is, respectively, red- or blue-detuned relative
to the frequency of the internal dipole transition in the atom).
The OLs are especially efficient in supporting matter-wave
solitons. In particular, it has been predicted that two-
dimensional (2D) [2-6] and 3D [2,5] OLs can stabilize soli-
tons of the same dimension in BEC with attractive interac-
tions between atoms (without the lattice, the corresponding
soliton solutions exist too, but they are unstable against col-
lapse). Moreover, it has been demonstrated that low-
dimensional OLs, i.e., 1D and 2D lattice in the 2D [5,6] or
3D [5-7] case, respectively, can also stabilize fully localized
multidimensional solitons, simultaneously giving them the
freedom to move in the unrestricted direction [6]. A related
result is the demonstration of the stability of 2D [8] and 3D
[9] solitons in models with a cylindrical OL, which can be
induced by a diffraction-free Bessel beam (see Ref. [8], and
references therein).

If interactions between atoms in the BEC are repulsive
(which is the most common case [10]), solitons cannot exist
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in the free space, but it was predicted that they could be
supported, in the form of gap solitons (GSs), by periodic OL
potentials, in 1D [11] and multidimensional [12] cases alike
(a counterpart of this mean-field effect at the level of indi-
vidual atoms is formation of a coherent state of two repul-
sively interacting atoms trapped in one well of the OL po-
tential [13]). Creation of a GS in ¥Rb condensate in a
quasi-1D trap supplemented by a longitudinal OL was re-
ported in Refs. [1,14]; the soliton was built of a few hundred
atoms. In a subsequent experiment, extended confined states
containing a larger number of atoms were discovered in a
stronger OL [15]; an explanation to this observation was pro-
posed in Ref. [16], which, essentially, treated the extended
state as a segment of a nonlinear Bloch wave, bounded by
two fronts (domain walls) which are sustained by the strong
OL (a similar OL-sustained border between filled and empty
domains was predicted in BEC with self-attraction in Ref.
[17]). In addition to the fundamental GSs, stable vortical
solitons have also been predicted in the 2D repulsive BECs
trapped in the square-shaped OL [5,18,19]. It is also relevant
to mention that radial gap solitons can be predicted in the
2D repulsive condensate trapped in an axisymmetric poten-
tial which is a periodic function of the radial coordinate [20].

Another effective tool for testing and steering BEC dy-
namics is the use of periodic time modulation of various
parameters affecting behavior of the condensate. These
methods belong to the general class of management tech-
niques, originally developed in nonlinear optics and then ap-
plied to BEC [21]. Among them are periodic time modula-
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tion of the strength of the magnetic (parabolic-potential) trap
confining a self-repulsive [22] or attractive [23] condensate,
which gives rise to various parametric resonances in the BEC
dynamics, and periodic time modulation of the nonlinearity
coefficient (i.e., the scattering length of atomic collisions) via
the Feshbach resonance in ac magnetic fields. The latter
management mode was predicted to stabilize 2D solitons in
free space [24] and 3D solitons in the presence of a quasi-1D
OL potential [25]. In the 1D setting, the technique of the
Feshbach-resonance management gives rise to dynamical
states of a condensate trapped in the parabolic potential, such
as breathers oscillating between Thomas-Fermi and qua-
sisoliton configurations, and stable two-soliton states [26].
An effect predicted as a result of the interplay between the
OL in two or one dimension and the periodic low-frequency
modulation of the nonlinearity coefficient is the emergence
of robust alternate solitons, whose shape adiabatically oscil-
lates between those of the GS and ordinary soliton [27].

Various results outlined above suggest, as a natural exten-
sion of the study of the management techniques for BEC, to
consider effects of periodic time modulation of the OL
strength on the stability of GSs in self-repulsive condensates,
which is the subject of the present work. In the experiment,
the modulation can be easily realized by periodic attenuation
of the intensity of the laser beams illuminating the conden-
sate. As GSs cannot exist without the OL, it is quite interest-
ing to explore the limits of their robustness against periodic
variations of the amplitude of the lattice which supports
them. It is relevant to note that gradual variation of the OL
depth in time was already used in the experiment, with the
objective to probe the linear band-gap spectrum induced by
the lattice (in particular, to transfer atomic populations be-
tween different bands) [28]. Exploration of effects caused by
the periodic variation of the lattice depth may lead to predic-
tions for experiments aiming to test dynamical properties of
condensates in the fully nonlinear regime.

In this paper, we focus on the GS stability limits in the 1D
geometry (i.e., in “cigar-shaped” traps; the 2D situation will
be considered separately). As is well known, the BEC dy-
namics in this case obeys the accordingly reduced (trans-

versely averaged) Gross-Pitaevskii equation (GPE)
[1,10,29]. In the normalized form, the equation is

u 1 Pu

on_Lou 2

i ——2&x2+|u| u—V,cos(2x)u. (1)

Here 1=T(m*h/md?) and x=mwX/d, where T and X are the
time and longitudinal coordinate in physical units, m the
atomic mass, and d the lattice period. Further, u(x,?) is the
accordingly normalized effectively one-dimensional mean-
field wave function (generated by averaging the full three-
dimensional GPE in the transverse plane [29]), the corre-
sponding full three-dimensional wave function being

W(X,R,T) = 7/ (2a,d*)u(x,t)exp[—iw, T — (w, m/2h)R*],

where w, and R are the transverse trapping frequency and
radial coordinate, and a, the s-wave scattering length, all
taken in physical units (in the underlying three-dimensional
GPE, the coefficient in front of the nonlinear term is 4 7#’%a,
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[10]). In this setting, the lattice strength is represented by
Vo=Ey/E . where E,..=(mh)?/(md?) is the lattice recoil en-
ergy, and E is the depth of the periodic potential, in physical
units. In experiments with the ¥’Rb condensate (which has
m=1.4X10"% kg and a,=5.77 nm) [1], the lattice period
varies between 0.4 and 1.6 um, the corresponding normal-
ized lattice depth being V(,=<20. In this paper, we report re-
sults for Vy=5; comparison with other physically relevant
values of V,, shows that this case adequately represents the
generic situation.

The main integral characteristic of the BEC is the norm,
N=["?|u(x)|*dx, which is proportional to the number of
trapped atoms. Together with the Hamiltonian,

1 1
Hzf [5|ux|2+5|u|4—V0 cos(2x)|u|? |dx,

N is a dynamical invariant of Eq. (1).

Equation (1), being the nonlinear Schrédinger equation
with a periodic external potential, is definitely nonintegrable,
as well as Eq. (2) with the time-modulated potential [30] (see
below), hence the term “soliton” is used in this work in a
loose sense, as a synonym of a robust solitary pulse in a
conservative model. We also note that, being interested in
GSs whose size is essentially smaller than the effective lon-
gitudinal length of the trap, we do not add a parabolic trap-
ping potential to Eq. (1).

To include the periodic time modulation of the OL depth
at frequency w, we replace Eq. (1) by the following one,

i—=———+|ulfu- Vo[l + 2 cos(wt)}cos(Zx)u, (2)
ot 2

where the modulation amplitude takes values 0<g<2 (ob-
viously, the intensity modulation cannot change the sign of
the OL potential, although the sign may be changed by trans-
lation of the OL, which amounts to a simple substitution, x
—x=+/2, and may be implemented through a change of the
relative phase between the two laser beams, cf. techniques
used to create moving OLs [31,32]). It is relevant to mention
that a discrete limit of the GPE with a very strong OL, i.e.,
the discrete nonlinear Schrodinger equation (DNLSE), with
periodic time modulation of the intersite coupling, which
corresponds to the lattice management in Eq. (2), was intro-
duced in Ref. [33]. The subject of that work was the modu-
lational instability of a uniform state in the periodically
“managed” DNLSE against parametric perturbations.

The paper is structured as follows. In Sec. II, we use Eq.
(1) to describe several families of stable GSs supported by
the static OL in its first and second finite band gaps. The
families include both fundamental, subfundamental (whose
meaning is explained below), and higher-order solitons
(bound complexes). This set of solutions actually provides
for a rather comprehensive (although not exhaustive) de-
scription of practically relevant GS families in the first two
band gaps in the 1D model. Except for the subfundamental
solitons and complexes which include them, all other GS
species are found to be stable. Systematic results concerning
stability limits of the GSs of these types in the time-
modulated lattice, collected by means of massive direct
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FIG. 1. The band-gap diagram for the linear version of Eq. (3).
Band areas are shaded; numbered regions, I and II, are two lowest
finite band gaps where gap solitons will be considered (the un-
shaded area below band gap I is the semi-infinite gap, where the
Gross-Pitaevskii equation with the repulsive nonlinearity does not
give rise to solitons). The dotted vertical line shows the particular
value, V=5, for which typical results are presented below.

simulations of Eq. (2), are reported in Sec. III. The results
are summarized in the form of sets of stability borders in the
(e, w) plane [recall & and w control the time modulation in
Eq. (2)], at fixed values of the norm, N. Variation of the
stability regions with N is investigated too; it is concluded
that all stability regions in the first and second band gaps
expand and shrink, respectively, with the increase of N. The
paper is concluded by Sec. IV.

II. GAP-SOLITON FAMILIES IN THE STATIC LATTICE

Stationary GSs in the periodic potential are localized so-
lutions to Eq. (1), u(x,1)=y{(x)exp(—iut), where real chemi-
cal potential u and stationary wave function ¢(x) obey the
time-independent GPE,

wih=— 2Ty Vyeos2, )
ox

which, in the linear limit, goes over into the classical
Mathieu equation. The band-gap spectrum of the latter equa-
tion is well known; for reference purposes, we display it in
Fig. 1. To generate this figure, borders between bands and
gaps were computed by using a numerical spectral method
on interval [0,27]. In the computations, we approximated
the second derivative by a second-order spectral-
differentiation matrix, and a diagonal matrix represented the
periodic potential, V,, cos(2x).

Next, the full nonlinear stationary equation (3) was
solved by means of Newton’s method on a finite-differ-
ence grid, with an initial guess (x)=A,sech(ax) or
A, sech(ax)sin(kx) (to generate even and odd solutions, re-
spectively), where Ay, a, and k are free parameters (both
initial anscitze were used in either band gap). The computa-
tions were run till a relative accuracy no worse than 10~ was
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FIG. 2. Lowest-order families of gap solitons, shown in terms of
the N(u) dependence. Shapes of the gap solitons corresponding to
the marked points are displayed in Figs. 3 and 4, for the first and
second band gaps, respectively. The arrows originating from the
marked points belonging to branch F of the subfundamental solitons
in the second gap (see definition in the text) indicate that instability
quickly rearranges them, with conspicuous loss of the norm, into
fundamental solitons of type A, belonging to the first band gap.

achieved, which usually required seven iterations of New-
ton’s algorithm.

This way, known results for the GSs in the static OL with
the repulsive nonlinearity were reproduced (and, in fact,
some additional results for higher-order solitons were ob-
tained too, see below). GSs were found in all finite band gaps
explored. Several families of the lowest-order solitons in the
first and second finite gaps, which will be considered below
under the action of the periodic time modulation of the OL
strength, are presented in Fig. 2, which shows the soliton’s
norm versus the chemical potential for each family. Typical
shapes of the respective GSs are displayed in Figs. 3 and 4,
which include two examples for each branch, one taken very
close to the right edge of the respective band gap, and an-
other one deeply inside the gap. The examples were chosen
this way because, close to the edge, the shape changes con-
spicuously, developing a complex intrinsic structure, in com-
parison with a relatively simple shape of the GSs found deep
inside the gaps. This complex structure may be realized as
being similar to the Bloch functions of quasiperiodic linear
states found on the other side of the band-gap border.

Fundamental solitons, which belong to branches A and E
in the first and second band gaps in Fig. 2, are distinguished
by the well-pronounced single peak (in particular, the funda-
mental GS in the first band gap, of type A, is trapped prac-
tically in a single potential well and is very similar to ordi-
nary solitons in the one-dimensional GPE with the attractive
nonlinearity and no OL). Some higher-order solitons may be
clearly interpreted as bound states of two (branches D) or
three (B,C,G,H) peaks corresponding to the fundamental
solitons. It is noteworthy too that, alongside “densely
packed” bound states (in particular, all three-peak ones),
“rarefied” bound states are also found, such as the out-of-
phase two-peak state D in the first gap. We stress that, in the
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FIG. 3. Soliton profiles in the first band gap, which appertain to
the labeled families in Fig. 2. Each branch is illustrated by two
examples, the left one taken deep inside the gap, and the right one
near the gap’s edge. The dotted lines show the OL potential.

considered parameter region, two-peak bound states (in- or
out-of-phase ones) without an empty site between them have
not been found, probably because the interaction between
two closely set peaks is too strong, and cannot be balanced
by their pinning to the OL. It is also relevant to mention that
a two-peak bound state like D, but with equal signs of the
peaks, could not be found either.

The interpretation of states D and B, C, G, H as bound
states of two and three fundamental solitons is well corrobo-
rated by the fact that their norms are close, respectively, to
the double or triple norm of the fundamental soliton at the
same value of wu, as seen in Fig. 2. On the other hand, we
have also found several multipeak species that are not bound
states of fundamental solitons, but have a clearly different
nature. The most basic among such additional solitons is
state F found in the second gap, which features two out-of-
phase peaks, with a zero between them, squeezed into a
single potential well. This localized solution may be consid-
ered as a soliton of a “dark-inside-bright” type; formally
similar solitons (that are stable in a certain parameter region)
were found in the GPE combining the OL potential or an
external parabolic-potential trap and the attractive nonlinear-
ity (on the contrary to the present model), in Ref. [34]. In
that work, it was also demonstrated that, in the limit of a
very strong OL, such solitons go over into known twisted
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FIG. 4. The same as in Fig. 3, for the labeled gap-soliton
branches belonging to the second band gap from Fig. 2.

localized modes [35] in the DNLSE model. However, the
similarity of our type-F two-peak solitons to those reported
in Ref. [34] is only formal, as the solitons found in Ref. [34]
were, in fact, out-of-phase bound states of fundamental soli-
tons, clearly located in two adjacent wells of the OL poten-
tial. State F in Fig. 4 is principally different, as seen from the
fact that its norm is much smaller than that of the fundamen-
tal GS (of type E) found at the same value of u, see Fig. 2;
for this reason, we will call it a “subfundamental” GS. In
fact, state F does not have any counterpart in the DNLSE
model.

Direct simulations of the full GPE with the unmodulated
OL potential, i.e., Eq. (3), demonstrate that the subfunda-
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FIG. 5. (Color online) (a) Instability-induced spontaneous rear-
rangement of an the unstable subfundamental gap soliton, shown in
panel F in the right column of Fig. 4 (©=3.62, N=6.955), into a
stable fundamental gap soliton, which keeps only 50% of the initial
norm, and belongs to branch A in the first band gap; (b) comparison
of the initial (dotted) and final (solid) shapes of the solitons in this
case. (c) Similar spontaneous rearrangement of compound state J,
which is made of a subfundamental soliton of type F and two fun-
damental solitons (the compound, corresponding to u=3.62 and
N=29.622, is shown in panel J in the right column of Fig. 4), into
a stable bound state of three fundamental solitons. In this figure and
all figures below, which display the temporal evolution of solitons,
time is shown in typical physical units for the ’Rb condensate.

mental solitons are always unstable, featuring, as shown in
Figs. 5(a) and 5(b), rapid spontaneous rearrangement into a
stable fundamental GS, with conspicuous loss of the norm,
as illustrated by arrows in Fig. 2. Because of the loss, the
stable fundamental solitons, into which the subfundamental
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ones relax, always fall into the first band gap. If soliton F is
taken very close to the left edge of the second band gap (for
instance, with initial norm N,=7.318) it eventually loses
(through emission of radiation) 50% of the norm, and the F
soliton with Ny=4.416 keeps, in the end, only 51% of the
norm. However, subfundamental solitons with a very small
initial norm lose a small part of it; for instance, one with
Ny=1.110 keeps 90% of the norm after the transformation
into the fundamental soliton of type A.

In the second band gap, we have also found several spe-
cies of higher-order solitons that may be considered as com-
pounds including both fundamental and subfundamental
GSs. In particular, species I (see Fig. 4) is a bound state of a
fundamental GS (of type E), set at the center, and two sub-
fundamental modes of type F; species J is built as a com-
pound including two fundamental GSs and a subfundamental
soliton between them. Accordingly, solitons of species / and
J feature, respectively, five and four peaks per three wells of
the periodic potential. These compound states feature the
same instability of the subfundamental (type-F) constituent
as in Fig. 5(a): it spontaneously transforms into a fundamen-
tal GS, losing a considerable part of its norm, while the regu-
lar constituents of the compound are not affected by this
transition, see an example for the type-J state in Fig. 5(c).

The fundamental GSs (species A and E in Figs. 2-4), and
their ordinary bound states (species D and B, C, G, H) were
all found to be stable in direct simulations [typically, the
simulations were run, by means of the split-step fast Fourier
transform (FFT) method, with absorbers set at edges of the
integration domain, up to =10 000, which corresponds to an
experimentally relevant time, =1.4 s in the *Rb conden-
sate]. It is interesting to compare findings concerning the
stability of bound states in the present model, and a general
conclusion for the stability of bound discrete solitons, drawn
in the DNLSE model with the onsite self-focusing nonlinear-
ity. In the latter context, it was concluded that a bound state
of two fundamental solitons may only be stable if they have
opposite signs [36]. Our model, however, relates to the
DNLSE with self-defocusing nonlinearity, which, in the dis-
crete system, can be transformed into its self-focusing coun-
terpart by means of the known staggering transformation,
u, = (—1)"it,, where n is the discrete coordinate on the lattice.
Analysis of the stability of bound states of staggered DNLSE
solitons (in the model with the self-attraction) yields results
which are, roughly, inverse to the above-mentioned conclu-
sion. In particular, a m-out-of-phase bound state of two stag-
gered discrete solitons is never stable, while their in-phase
bound state may be stable; an additional result is that the
character of the stability reverses again if an empty site is
inserted between two bound solitons [37]. These predictions
agree with our observation that the loosely packed out-of-
phase bound state of two fundamental GSs in the first band
gap (species D in Figs. 2 and 3), and the densely packed
in-phase states of three fundamental solitons (species C and
H) are stable. Nevertheless, three-peak bound states with op-
posite signs of adjacent solitons (species B in Fig. 3 and G in
Fig. 4) seem completely stable too. It may happen that insta-
bility of the latter state is extremely weak and remains invis-
ible in the simulations, or the conclusions drawn in the
DNLSE system cannot be transferred onto all types of bound
states in the continuum GPE model.
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FIG. 6. (Color online) An example of the soliton of type B
which remains stable under the action of the “lattice management,”
with £=0.4 and w=0.02 (in physical units, this frequency, for which
all other examples are displayed below, corresponds to 2
X 20 Hz). The initial profile of the soliton, which has norm N
=17.731, is the same as in panel B in the right column of Fig. 3.
Top and bottom panels display the spatiotemporal evolution of the
density in terms of contour and three-dimensional plots.

III. STABILITY LIMITS OF GAP SOLITONS
IN THE TIME-MODULATED LATTICE

A. Generic examples of stable and unstable solitons
under the action of the lattice management

The stability or instability of solitons in Eq. (2) with the
explicit time modulation was identified by means of suffi-
ciently long direct simulations, with the initial condition
taken as a stationary soliton of the corresponding equation
without the “management,” i.e., Eq. (3). Typical examples of
solitons from the first band gap which turn out to be stable
and unstable under the action of the lattice management are
shown, respectively, in Figs. 6 and 7, for out-of-phase three-
peak bound states of type B belonging to the first band gap.
These examples and ones presented below are displayed for
the modulation frequency w=0.02, which, in physical units,
typically corresponds to =27 X 20 Hz (in the case of the
$'Rb condensate).

In the first band gap, the only instability mode, as ob-
served in all simulations under the lattice management, is
direct destruction of the soliton, such as in Fig. 7. However,
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FIG. 7. (Color online) The same as in Fig. 6, but for an unstable
soliton of type B, under the lattice management with e=1.8 and
®=0.02. The initial soliton is identical to that in Fig. 6.

in the second band gap the instability develops in a different
way (if the GS is unstable)—namely, by generating extra
side lobes attached to the soliton, as seen in Fig. 8 for the
fundamental GS (of type E). Additionally, Fig. 9 displays an
example of multiple formation of side lobes, in the soliton of
type G. The situations with the emergence of side lobes are
categorized as unstable not only due to the conspicuous
change in the soliton’s shape, but also because of the loss of
its norm: in truly stable cases, the norm loss is negligible,
while in cases leading to the transformation of the GS into
one with extra lobes, it loses ~20% of the norm.

A common feature of the picture of the instability onset
and development in both band gaps, evident in the above
examples (Figs. 7-9), is some (although not very strong)
spontaneous symmetry breaking of unstable solitons. The
feature may be explained by the fact that the instability am-
plifies very small random asymmetric numerical perturba-
tions.

In the presence of the time modulation of the lattice, as
well as in the model with the static OL, the subfundamental
soliton in the second band gap—a free one (type F), or a
constituent of a compound—rapidly transforms itself into a
fundamental GS. Usually, the transformation happens earlier
than the generation of the side lobes under the action of the
lattice management (if the resulting fundamental or com-
pound soliton is unstable under the lattice management). An
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FIG. 8. (Color online) The same as in Figs. 6 and 7 for the
fundamental soliton of type E in the second band gap, with initial
norm N=10.680, under the action of the lattice management with
e=1 and w=0.02 (the initial shape of the soliton is the same as in
panel E in the left column of Fig. 4). Emergence of side lobes in the
soliton’s profile is obvious.

example of that is displayed in Fig. 10, for a compound of
type J [cf. Fig. 5(c)]. If the spontaneous rearrangement of the
subfundamental soliton into its fundamental counterpart is
the only instability observed in the course of the evolution,
the established soliton is classified as a stable one, as this
rearrangement has nothing to do with the periodic modula-
tion of the OL strength.

B. Stability diagrams

Data produced by massive simulations of Eq. (2), with
initial conditions corresponding to various types of GSs in
the first and second band gaps, are collected in the stability
diagrams displayed in Fig. 11. The diagrams are drawn in the
plane of the management parameters, viz., amplitude and
frequency, € and w. The solitons are unstable to the right of
the borders shown in Fig. 11. Each border appertains to a
fixed value of N (see the figure), which is taken, for a given
soliton species, very close to the right edge of the respective
band gap, cf. Fig. 2 (i.e., this fixed N is, as a matter of fact,
the largest norm available to the given branch of solitons).
As said above, in the first band gap the unstable solitons
suffer full destruction (see Fig. 7), while in the second band
gap they develop the instability through the generation of
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FIG. 9. (Color online) The same as in Fig. 8, but with the initial
soliton of type G, shown in panel G in the right column of Fig. 3
(the norm of the initial soliton is N=35.967). Multiple formation of
side lobes in the gap soliton under the action of the lattice manage-
ment is observed in this case.

sidelobes, see Figs. 8—10. It is noteworthy that, in either gap,
the largest stability area is featured by the “lightest” species
(one with the smallest value of N). In the first band gap, this
is, naturally, the fundamental GS, of type A. In the second
gap, it is, originally, the subfundamental soliton of type F,
which is quickly transformed (with considerable loss of the
norm), as explained above, by the intrinsic instability (unre-
lated to the lattice management) into a fundamental soliton
which actually belongs to the fundamental branch, A, in the
first band gap.

As said above, each stability border in Fig. 11 is drawn, as
a matter of fact, for the largest value of N that can be attained
by a given soliton species in the given band gap, as N is
taken very close to the right edge of the band gap. A relevant
issue is the change of the stability area [in the (&, w) plane] if
smaller values of N are taken. A general result is that the
direction of the change is opposite in the first and second
band gaps: in the former one, the stability region monoto-
nously shrinks with the decrease of N, while, in the second
gap, the region occupied by solitons which are stable against
the lattice management monotonously expands with decreas-
ing N. These conclusions are valid for all species of the GSs
in either band gap.

In a more particular form, the dependence of the stability
area in the (¢, ) plane on N is illustrated, in Fig. 12, by a set
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FIG. 10. (Color online) The same as in Figs. 8 and 9 but with
the initial soliton of type J, shown in panel J in the right column of
Fig. 3 (the norm of the initial soliton is N=29.622). In this case, as
well as in the model with the static lattice, the subfundamental
constituent of the compound quickly turns into a fundamental soli-
ton; then, the formation of side lobes occurs, under the action of the
lattice management. Spontaneous symmetry breaking is evident in
this picture, as well as in Figs. 7-9.

of stability borders for the fundamental GSs, of types A and
E, in both band gaps, drawn at different values of N. In both
cases, the smallest and largest values of N are taken close to
the left and right edges of the respective band gap (see Fig.
2), while intermediate values are chosen so as to adequately
represent the situation in inner parts of the gaps.

A common feature of all stability charts displayed above
is that the stability region is limited to € <1, and in most
cases, to £<<(0.5. On the other hand, it is natural that the
stability regions do not shrink to nil with the increase of the
management frequency, as, in the case of a very high fre-
quency, the ac (time-modulated) term in Eq. (2) averages to
zero, and the remaining dc (constant) part readily supports
GSs. The latter argument implies that the stability region
may feature expansion with further increase of w, provided
that the management period, 27/, becomes much smaller
than a characteristic dispersion time of the solitons, which is
~0.5 (in the normalized units), as suggested by the soliton
profiles displayed in Figs. 3 and 4. In other words, the ex-
pansion of the stability region may commence at w= 10 (in
physical units, this would correspond to the management fre-
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---F:N=695

-==]:N=2323
—J:N=29.62 |]

FIG. 11. Stability borders of various species of solitons in the
first (top) and second (bottom) band gaps, in the plane of the lattice-
management parameters, amplitude (¢) and frequency (w), see Eq.
(2). The species are identified by labels A through J as per Figs.
2-4. Each stability border is drawn at a fixed value of the soliton’s
norm indicated in the box. These values are chosen so as to take
solitons of each type close to the right edge of the respective band

gap.

quency =2 X 10 kHz), which is far larger than the range of
values displayed in Figs. 11 and 12.

IV. CONCLUSIONS

The objective of this work was to investigate the stability
of gap solitons (GSs) in the first two finite band gaps in the
one-dimensional Gross-Pitaevskii equation (GPE) combining
the repulsive nonlinearity and the periodic potential created
by an optical lattice (OL), in the case when the lattice is
subjected to the “management,” in the form of the time-
periodic modulation of its depth. The analysis, while per-
formed in the normalized form, implied values of the modu-
lation frequency (w), stability/instability time, and OL depth,
respectively, of roughly 277X 10 Hz, 1.5 s, and 10 recoil en-
ergies, which are parameters relevant to the current experi-
ments.
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FIG. 12. Stability borders of the fundamental solitons, of types
A and E, in the (e, ) plane, in the first (top) and second (bottom)
band gaps, at different values of the fixed norm, N.

Before producing the results for the solitons under the
lattice management, we have presented several GS species in
the two band gaps, which include fundamental solitons, their
bound states, and also the subfundamental soliton in the sec-
ond band gap (along with complexes including subfunda-

PHYSICAL REVIEW A 74, 033616 (2006)

mental solitons), i.e., a localized structure featuring two
peaks with opposite signs and zero between them, squeezed
into a single well of the OL potential. This soliton is unstable
(without any management), and quickly rearranges itself into
a regular fundamental soliton, which is accompanied by the
loss of up to half of its norm, and turns it into a fundamental
soliton belonging to the first band gap (the same happens
with subfundamental solitons which are constituents of vari-
ous complexes). It is noteworthy too that, in the first band
gap of the sufficiently strong OL, the bound state of two
fundamental solitons (which is stable) is only possible when
the solitons have opposite signs, and are separated by an
empty potential well.

In the model with periodic time modulation of the OL
depth, we have identified stability regions for various types
of GSs in both band gaps, in the plane of w and modulation
amplitude (&), at fixed values of the soliton’s norm, N. In
either band gap, the state with smallest N has the largest
stability area (in the first and second gaps, these are, respec-
tively, the fundamental soliton, and another fundamental one
generated by the spontaneous transformation of the subfun-
damental soliton). However, a drastic difference between the
two band gaps is that the stability area of each soliton species
affected by the lattice management increases with N in the
first gap, and decreases in the second one. Another difference
between them is the outcome of the instability development:
in the first band gap, unstable GSs are destroyed, while in the
second one, they generate extra side lobes. In either case, the
instability development features some spontaneous symme-
try breaking.

Finally, it is worthy to note that extension of this work for
two-dimensional solitons may be relevant to the theory and
experiment alike. Results for this case will be reported else-
where.
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