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The combination of a vortex line in a one-dimensional optical lattice with fermions bound to the vortex core
makes up an ultracold superstring. We give a detailed derivation of the way to make this supersymmetric string
in the laboratory. In particular, we discuss the presence of a fermionic bound state in the vortex core and the
tuning of the laser beams needed to achieve supersymmetry. Moreover, we discuss experimental consequences
of supersymmetry and identify the precise supersymmetry in the problem. Finally, we make the mathematical
connection with string theory.
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I. INTRODUCTION

Ultracold quantum gases provide a very exciting branch
of physics. Besides the interesting physics that the gases of-
fer by themselves, it has also been possible in the last few
years to model with quantum gases systems from other
branches of physics, and by doing so to provide answers to
long-standing questions. The latter is mainly due to the
amazing accuracy with which their properties can be tuned
and manipulated. This involves the trapping potential, the
dimensionality, the interaction between the atoms, and the
statistics. By using a three-dimensional optical lattice the
superfluid–Mott-insulator transition in the Bose-Hubbard
model has been observed �1�. Bosonic atoms confined in
one-dimensional tubes by means of a two-dimensional opti-
cal lattice were shown to realize the Lieb-Liniger gas �2,3�.
The unitarity regime of strong interactions was reached by
using Feshbach resonances to control the scattering length
�4–8�.

To this short list of examples from condensed-matter
theory, also examples from high-energy physics can be
added. In a spinor Bose-Einstein condensate with ferromag-
netic interactions skyrmion physics has been studied �9,10�,
whereas an antiferromagnetic spinor Bose-Einstein conden-
sate allows for monopole or hedgehog solutions �11,12�.
There is also a proposal for studying charge fractionalization
in one dimension �13�, and for creating �static� non-Abelian
gauge fields �14,15�. In recent work �16� we have added
another proposal to model a system from high-energy
physics. By combining a vortex line in a one-dimensional
optical lattice with a fermionic gas bound to the vortex
core, it is possible to tune the laser parameters such that a
nonrelativistic supersymmetric string is created. This we
called the ultracold superstring. This proposal combines
three topics that have attracted a lot of attention in the area of
ultracold atomic gases. These topics are vortices �17–21�,
Bose-Fermi mixtures �22–28�, and optical lattices �1,29�.
Apart from its potential to experimentally probe certain as-
pects of superstring theory, this proposal is also very inter-
esting because it brings supersymmetry within experimental
reach.

Supersymmetry is a very special symmetry that relates
fermions and bosons to each other. It plays an important role
in string theory, where supersymmetry is an essential ingre-

dient to make a consistent theory without the so-called
tachyon, i.e., a particle that has a negative mass squared. In
the physics of the minimally extended standard model, su-
persymmetry is used to remove quadratic divergences. This
results in a superpartner for each of the known particles of
the standard model. However, supersymmetry is manifestly
broken in our world and none of these superpartners have
been observed. A third field where supersymmetry plays a
role is in modeling disorder and chaos �30�. Here supersym-
metry is introduced artificially to properly perform the aver-
age over disorder. Finally, supersymmetry plays an important
role in the field of supersymmetric quantum mechanics,
where the formal structure of a supersymmetric theory is
applied to derive exact results. In particular this means that a
supersymmetry generator Q is defined, such that the Hamil-
tonian can be written as H= �Q ,Q†�, which is one of the
basic relations in the relativistic superalgebra. It is important
for our purposes to note that this relation is no longer en-
forced by the superalgebra in the nonrelativistic limit. Care-
ful analysis �31,32� shows that in this limit the Hamiltonian
is replaced by the number operator, i.e., N= �Q ,Q†�. It may
sometimes be possible to write a nonrelativistic Hamiltonian
as the anticommutator of the supersymmetry generators, but
this does not correspond to the nonrelativistic limit of a
relativistic theory.

In our proposal, a physical effect of supersymmetry
is that the stability of the superstring against spiraling out
of the gas is enhanced, because the damping of the
center-of-mass motion is reduced by a destructive
interference between processes that create two additional
bosonic excitations of the superstring and processes that pro-
duce an additional particle-hole pair of fermions. Moreover,
this system allows for the study of a quantum phase transi-
tion that spontaneously breaks supersymmetry as we will
show.

Another very interesting aspect of the ultracold super-
string is the close relation to string-bit models �33�. These
are models that discretize the string in the spatial direction,
either to perturbatively solve string theory, or, more radically,
to reveal a more fundamental theory that underlies super-
string theory. String-bit models describe the transverse de-
grees of freedom of the string in a very similar fashion as in
our theory of the ultracold superstring.

In this paper we investigate in detail the physics of ultra-
cold superstrings, expanding on our previous work �16�. The

PHYSICAL REVIEW A 74, 033607 �2006�

1050-2947/2006/74�3�/033607�15� ©2006 The American Physical Society033607-1

http://dx.doi.org/10.1103/PhysRevA.74.033607


paper is organized as follows. In Sec. II we give the detailed
derivation of the conditions for the ultracold superstring to
be created. In particular, we pay attention to the presence of
the fermionic bound state in the vortex core and the tuning of
the lasers to reach supersymmetry. In Section III we investi-
gate the experimental consequences of the supersymmetry.
Sec. IV contains a detailed description of the supersymmetry
by studying the superalgebra. In Sec. V we make connection
with string theory. Finally, we end with our conclusions in
Sec. VI.

II. ULTRACOLD SUPERSTRINGS

Our proposal makes use of the fact that a vortex line
through a Bose-Einstein condensate in a one-dimensional op-
tical lattice can behave according to the laws of quantum
mechanics �34�. Such an optical lattice consists of two iden-
tical counterpropagating laser beams and provides a periodic
potential for atoms. When applied along the symmetry axis
of a cigar-shaped condensate, which we call the z axis from
now on, the optical lattice divides the condensate into
weakly coupled pancake-shaped condensates. In the case of a
red-detuned lattice, the Gaussian profile of the laser beam
provides also the desired trapping in the radial direction. Ro-
tation of the Bose-Einstein condensate along the z axis cre-
ates a vortex line that passes through each pancake. Quantum
fluctuations of the vortex position are greatly enhanced in
this configuration because of the small number of atoms NB
in each pancake, which can be as low as NB=10, but is
typically around NB=1000. An added advantage of the
stacked-pancake configuration, as opposed to the bulk situa-
tion, is that the dispersion of the vortex oscillations is par-
ticlelike. This ultimately allows for supersymmetry with the
fermionic atoms in the mixture. In the one-dimensional op-
tical lattice the vortex line becomes a chain of so-called pan-
cake vortices. This produces a setup that is pictured sche-
matically in Fig. 1. There is a critical external rotation
frequency �c above which a vortex in the center of the con-
densate is stable. For ���c the vortex is unstable, but be-
cause of its Euler dynamics, it takes a relatively long
time before it spirals out of the gas �19,35,36�. We analyze
in detail the case of �=0, i.e., the situation in which
the condensate is no longer rotated externally after a vortex
is created. However, the physics is very similar for all

���c, where supersymmetry is possible. The temperature
is taken to be well below the Bose-Einstein condensation
temperature, so that thermal fluctuations are strongly sup-
pressed. We only consider the zero-temperature limit,
because supersymmetry is formally broken for nonzero
temperatures.

A. Atomic species

A convenient choice for the boson-fermion mixture is
87Rb and 40K, since such Bose-Fermi mixtures have recently
been realized in the laboratory �23–26�, and because the
resonance lines in these two atomic species lie very close
together. The mostly used �f ,mf� hyperfine spin states are
�9/2 , ±9/2� and �9/2 , ±7/2� for 40K, and �2, ±2�, �1, ±1�,
and �1,0� for 87Rb �37�. They all have a negative interspecies
scattering lenght aBF, which is not desirable for our purposes
as we show below. It might be possible to use other spin
states, which have a positive interspecies scattering length.
Another possiblity is to tune the scattering length, using one
of the various broad Feshbach resonances that can make the
interaction repulsive while keeping the probability of creat-
ing molecules negligible �37�.

In principle it is also possible to use other mixtures.
Another Bose-Fermi mixture that has been realized in the
laboratory consists of 23Na and 6Li atoms �22,27�. This
mixture is less convenient because the resonance lines are
widely separated, so that the two species experience very
different optical potentials and it is hard to trap both with a
single laser. In addition, 6Li is relatively hard to trap
in an optical lattice because of its small mass. For these
reasons, the 23Na-6Li mixture can only be used in a very
restricted parameter regime, as we will show later on in Fig.
5. For the same reasons, the mixture 87Rb-6Li �28� does not
work well either. The mixture 7Li-6Li �38,39� cannot be used
at all, because the resonance lines of the species are the
same, so it is impossible to tune the physical properties of
the mixture.

B. Optical lattice

Because the excited states of the bosonic and fermionic
atoms have different transition frequencies, the optical lattice
produces for the two species a periodic potential with
the same lattice spacing, but with a different height, as
schematically shown in Fig. 2. This is crucial, because it
allows one to tune the optical lattice for the bosonic and
fermionic atoms seperately, by careful adjustement of the
wavelength and the Rabi frequency, i.e., the intensity of the
laser. This is required to be able to tune the system to
become supersymmetric later on.

For the 86Rb-40K mixture the Rabi frequencies are
in a good approximation the same. For other mixtures the
Rabi frequencies are different and we then take the bosonic
Rabi frequency as a reference. We take into account the
fine-structure level scheme of the atoms, but, assuming
that we are sufficiently far from resonance, we neglect
the hyperfine structure. As a result, the optical potential is
given by
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FIG. 1. �Color online� Artist’s impression of the setup. The
disks represent the bosonic condensate density and the �blue� balls
in the vortex core represent the fermionic density. The black line
is a guide to the eye to see the wiggling of the vortex line that
corresponds to a Kelvin mode.
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VB,F�z� = VB,F cos2�2�z/�� , �1�

where the well depths obey

VB,F = −
��B,F

2

3 	
 1

�D1

B,F − �
+

1

�D1

B,F + ��
+ 2
 1

�D2

B,F − �
+

1

�D2

B,F + ��� , �2�

�=2�c /� is the laser frequency, and �D1
and �D2

are
the frequencies of the D1 and D2 resonance lines. Here
we neglected spontaneous emission of photons. This effect
slightly modifies the trapping potential, but gives a finite
lifetime to the atoms. Using the rotating-wave approximation
and neglecting the fine structure, the effective rate of
photon absorption can for red-detuned laser light be estimed
as

�B,F
eff = −

�2�B,F
2

2

�B,F

���B,F − ���2 + ���B,F�2 , �3�

where �B,F is the linewidth of the bosonic or fermionic ex-
cited state, respectively. For blue-detuned laser light, the at-
oms are trapped in the regions of low laser intensity and
spontaneous emission is strongly reduced.

The optical potential should be sufficiently deep to have a
bound state for the bosonic and fermionic atoms. To make
sure that that is the case we impose the condition

VB,F

EB,F
	

3

2
, �4�

where we have used the recoil energy

EB,F =
2�2

mB,F�2 , �5�

which is the energy associated with the absorption of
a photon. On the other hand, the optical lattice should
not be so strong as to drive the system into the Mott-insulator
state �1,29,40�. In one dimension with many atoms per
site, this requires an exceptionally deep lattice, which
only occurs if the laser frequency is very close to the reso-
nance frequency of the atomic species. Since we stay
away from resonance, this situation does not occur in our
calculations.

The wave functions in the z direction are assumed to be
the ground-state wave functions of the harmonic oscillator
associated with the optical lattice and thus given by


B,F�z� =
1

�1/4
�B,F
z

exp
−
z2

2�B,F
z � , �6�

where

�B,F
z = 
EB,F

VB,F
�1/4 �

2�
. �7�

For the tunneling amplitude, we use the expression �41�

JB,F = 4
�VB,F

3 EB,F�1/4


�
exp�− 2
VB,F/EB,F� , �8�

which becomes exact for a deep lattice. Therefore, the
atomic dispersions along the z axis are given by

�B,F�k� = 2JB,F�1 − cos�k�/2�� . �9�

Later on we need for the fermions the relation between
the average number of particles per site and the chemical
potential �F. From the above dispersion we derive at zero
temperature that

NF =
2

�
arcsin

�F

4Jf
� , �10�

where we neglect also interaction effects.

C. Kelvons

The wave function in the �axial� z direction is fully speci-
fied by the optical lattice, and all the dynamics thus takes
place in the radial direction, i.e., in the xy plane. Since the
vortex fluctuations form the lowest-lying modes, we restrict
the dynamics to the vortex motion. We follow the derivations
in earlier work �34,42�, where a specific ansatz for the wave
function was used, to achieve this. In this work the conden-
sate density was described by a Gaussian wave function with
size RTF and the vortex core was approximated by a step
function. Furthermore, it was assumed that the vortex is
close to the center. The motion of the vortices results in

(a)

(b)

FIG. 2. �Color online� �a� Schematic picture of the setup. Here r
is the radial distance in the xy plane. The light �pink� and dark
�blue� blobs represent the bosonic and fermionic densities, respec-
tively. Moreover, � is the wavelength of the laser. The upper �blue�
and lower �red� lines indicate the strength of the optical potential,
respectively, for the bosons and fermions as a function of the z
coordinate. �b� Schematic fine-structure level scheme of the bosonic
and fermionic atomic species. Because we consider only suffi-
ciently large detunings the hyperfine level structure is not resolved.
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kelvons, i.e., quantized oscillations of the vortex, described
by the creation and annihilation operators

b̂ =

Nb

RTF
�x̂ + iŷ�, b̂† =


Nb

RTF
�x̂ − iŷ� , �11�

which obey �b̂ , b̂†�=1. Without the optical lattice Kelvin
waves have already been observed �43,44�. The kelvons have
the dispersion

��K�k� =
���2

2RTF
2 	1 − ��0,
 l

RTF
�4�� + ��

+ 2JK�1 − cos�k�/2�� , �12�

where

JK = ��0,��/RTF�4�JB, �13�

��0,z� is the incomplete Gamma function, RTF is the
Thomas-Fermi radius in the radial direction, � is the bosonic
harmonic length in the radial direction, and � is the associ-
ated frequency. Using another ansatz for the condensate
wave function can slightly change the constant of propor-
tionality in the definition of the kelvon operators and in the
details of the dispersion, but the dispersion always stays
tight-binding-like.

For the calculation of the bound state in the vortex core,
we need to go beyond the description of the core by a step
function. This change of the calculation could improve the
value of JK, but not the functional form of the kelvon disper-
sion. Since the corrections on the value of JK are small, we
just use the result in Eq. �13�. Besides the bandwidth JK we
derive from Eq. �12� also the chemical potential for the
kelvons, which gives

�K � − ��K�k = 0� =
���2

2RTF
2 	��0,
 l

RTF
�4� − 1� − �� .

�14�

Note that the chemical potential is positive only for
sufficiently small rotations, which is due to the fact
that the vortex is in principle unstable for these values of
the rotation and wants to spiral out of the center of the gas
cloud.

D. Bound states in the vortex core

By treating the interaction between the bosonic and
fermionic atoms in mean-field approximation, we have to
solve the Gross-Pitaevskii equation for the condensate wave
function 
�r� coupled to the Schrödinger equation for the
fermion wave function 
�r�:


−
�2�r

2

2mB
+

1

2
mB�B

2r2 − �B +
UBB

2
�
�r��2

+ UBF�
�r��2 − ��L̂z�
�r� = 0, �15�


−
�2�r

2

2mF
− E +

1

2
mF�F

2r2 + UBF�
�r��2�
�r� = 0, �16�

which we investigate for the case that �=0. The interaction
paramaters are related to the scattering lengths according
to

UBB =
4��2


2�mB

aBB

�B
z , �17�

UBF =
2��2


�mR

aBF


��B
z �2 + ��F

z �2
, �18�

with aBB the boson-boson scattering length and aBF the
boson-fermion scattering length and mR the reduced mass
mBmF / �mB+mF�. Although it is very well possible to solve
these equations numerically, we prefer an analytic treatment,
to gain more insight into the problem. To proceed we make
the approximation that the condensate wave function is not
affected by the presence of the fermions. This is justified,
because the contribution of the fermions is NF /NB smaller
than the contribution of the bosons, where NB,F is the aver-
age number of bosons and fermions at a lattice site. This
ratio will be smaller than 10−3 as it turns out. Taking
into account the interaction with the fermions leads to a
slightly wider vortex core, which enhances the possibility
of a bound state. So we first solve the Gross-Pitaevskii equa-
tion for the condensate density, neglecting the presence
of the fermions, and then use the condensate density as an
effective potential for the fermions. Since we only want to
estimate when there is a bound state and we do not need
the details of this bound state, we make the following ap-
proximations. First, we assume the vortex to be in the center
such that the problem is rotationally symmetric and we only
have to solve the radial equation. Because of the quantum
uncertainty the vortex position in principle fluctuates around
the center of the trap, but these fluctuations are small. Sec-
ond, we assume the envelope condensate wave function to be
Thomas-Fermi-like, i.e.,

�
�r��2 = nTF�r� =
�B − �mB/2��B

2r2

UBB
= n0
1 −

r2

RTF
2 � .

�19�

Third, we describe the vortex core by r2 / �r2+2�2� �45�, such
that the total bosonic density is given by

nB�r� = 
 r2

r2 + 2�2�nTF�r� . �20�

If we take for the healing length � the usual expression in the
center of the trap, i.e.,

� =
�


2mBnTF�0�UBB

, �21�

we obtain the relation
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�

�
=

�

RTF
. �22�

By expressing the energy in terms of �BmB /mF we can write
the Schrödinger equation for the fermions as

	−
�2�r

2

2
− � +

r2�2

��F
r �4 +

mF

mB

UBF

UBB

r2

2�2 + r2
1 −
r2�2

�4 ��
�r� = 0,

�23�

where �=mFE /�BmB and the dimensionless parameter

� =
mF

mB

UBF

UBB
=

1

2
 2

1 +
VB

VF

EF

EB


1 +
mF

mB
�aBF

aBB
�24�

determines whether or not there is a bound state in the core
of the vortex.

If we assume that ��� and ���r
F, we can neglect the

harmonic confinement and the Thomas-Fermi profile of
the Bose-Einstein condensate. The effective potential for the
fermionic atoms is then given by �r2 / �r2+2�2�. This poten-
tial has a bound state for each value of �, because for large
distances from the core, it behaves as ��1−2�2 /r2�. How-
ever, the size of the wave function describing the bound state
becomes extremely large for small values of �. Hence
it is necessary to take into account the exact form of
the potential to make a quantitative estimate of the existence
of the bound state. The potential is determined by the values
of the radial bosonic and fermionic harmonic length �
and �F

r . Since �F
r determines the potential outside the conden-

sate, it determines whether or not the fermions can tunnel
out of the core to this region. For the existence of the bound
state we can neglect this contribution, which is always
justified, because it enhances the possibility of having a
bound state.

The radial bosonic harmonic length � is fixed by the
normalization of the condenstate wavefunction

� d2r�
�r��2 =� d2r
r2

r2 + 2�2nTF�r� = NB. �25�

Neglecting the presence of the core we find the usual
expression for the Thomas-Fermi profile

�4

�4 =
RTF

4

�4 =
4mBNBUBB

��2 =
16
2�NBaBB

�

VB

EB
�1/4

. �26�

Using that

� d2r
 r2

r2 + 2�2�
1 −
r2

RTF
2 �

=
�

2
RTF

2 + 2��2	1 − 
1 +
2�2

RTF
2 �ln
RTF

2 + 2�2

2�2 �� ,

we see that taking into account the core implies that we have
to solve the equation

�4

�4 =
4mBNBUBB

��2 + 4
1 +
2�4

�4 �ln
1 +
�4

2�4� − 4, �27�

where the last two terms come from the presence of the
core. Since the core is small in this approximation, this re-
sults in a radial harmonic length that is only slightly modi-
fied. The requirement that the wave function should vanish
well within the condensate can then be quantified to yield the
expression

�
�2

�2 + 2�2
1 −
�2�2

�4 � � � , �28�

where � is the radial size of the fermionic wave function. In
this way we obtain that for typical densities there is a bound
state for �	1.5, which means that aBB /aBF	2.

In contrast to the radial bosonic length �, the fermionic
radial harmonic length �F

r is not fixed. When the optical lat-
tice is red detuned, the lattice can be used to trap the atoms
also in the radial direction. As a consequence, the total con-
fining potential for the fermions is a multiple of the confining
potential of the bosons, i.e.,

r2

�2 +
z2

��B
z �2 �

r2

��F
r �2 +

z2

��F
z �2 .

This gives the relation

�F
r

�
=

�F
z

�B
z , �29�

from which we derive


�F
r

�
�4

= 
�F
z

�B
z

�

�
�4

= 
�

�
�4EF

EB

VB

VF
. �30�

However, if the lattice is blue detuned or if the radial
trapping is tuned independently, this relation is not true. The
radial trapping can be tuned by introducing a second running
laser in the same direction as the optical lattice, as shown in
Fig. 3. The new laser beam has a constant intensity along the
z axis, and does not influence the one-dimensional potential
wells, but it does change the radial confinement. In principle
this second laser also introduces interference terms, but they
are much faster than the atoms can follow for the frequencies
of interest to us. Therefore, the intensities of the two lasers
can simply be added. In particular, as we show later on,
adjusting the radial trapping potentials is needed to get su-
persymmetric interaction terms. The condition imposed by
this requirement is

FIG. 3. �Color online� Setup with the additional laser to manipu-
late the radial trapping potential.
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 �

�F
r �4

=
mB

mF

 �

�
�4	��0,
 �

�
�4� −

3

2
� , �31�

which gives the following expression for the fermionic radial
harmonic length:


�F
r

�
�4

=
mF

mB

�

�
�8 1

�„0,��/��4
… − 3/2

. �32�

In this last case, the harmonic radial potential for the
fermions is very small. In principle this allows the fermionic
atoms to tunnel out of the vortex core, to the region where
the condensate density vanishes. However, the tunneling
is suppressed by increasing the parameter �. A WKB esti-
mate gives that for �	5 the lifetime of the fermions in the
core is larger than 1 s. This means that aBB /aBF	8. Further
increasing this ratio increases this lifetime dramatically.
Since adjusting the radial trapping potentials is only needed
close to the center of the trap, it is also a possibility to
use a second laser with a much smaller waist, such
that higher-order contributions from the potential prevent
the fermions from tunneling out of the core. For various
situations, the effective potential for the fermions is shown
in Fig. 4.

E. Interactions

In our superstring realization there are also boson-boson
and boson-fermion interactions. The kelvons interact
repulsively among each other when ���c. For �=0
the kelvon-kelvon interaction coefficient is given by �46�

VKK =
�2

2NBmBRTF
2 
�„0,��/RTF�4

… −
3

2
� . �33�

In addition, a repulsive interaction between the kelvons and
the fermionic atoms is generated by the fact that physically
the presence of a kelvon means that the vortex core is shifted
off center, together with the fermions trapped in it. Because
of the radial confinement experienced by the trapped fermi-
ons, this increases the energy of the vortex. When the vortex
core is shifted from 0 to r, the fermion Hamiltonian is
extended by a term

HKF =
mF��F

r �2

2
r2c†c , �34�

where c†c is the number operator for the fermions in the
core. Defining CB,F as the spring constants associated with
the radial confinement of the bosonic and fermionic atoms,
respectively, and using the definition of the kelvon operators,
this translates into

HKF =
CFRTF

2

2NB
c†cb†b . �35�

So the kelvon-fermion interaction coefficient is found to be

VKF =
CFRTF

2

2NB
. �36�

F. Supersymmetry

To obtain a supersymmetric situation we have three re-
quirements. In the first place the hopping amplitudes have to
be the same

JF = JK � t . �37�

This can be done by adjusting the laser parameters � and �B,
as shown in Fig. 5. The freedom in choosing the wavelength
of the laser can be used to minimize the atom loss. In Fig. 6,
we plot the atom loss as a function of the wavelength of the
laser.

Second, the chemical potentials have to be the same,

�F = �K � � . �38�

This can be achieved by adjusting the fermion filling
fraction NF, as shown in Fig. 7. Using the result from Eq.
�10� and using the requirements for supersymmetry we
obtain

NF =
2

�
arcsin

����2/2RTF

2 ����0,l4/RTF
4 � − 1�

4JB��0,l4/RTF
4 �

�
=

2

�
arcsin
 �

�B
z 

���2/RTF

2 ����0,l4/RTF
4 � − 1�e
VB/EB

16�VB/EB�1/4��0,l4/RTF
4 �

� .

The ratio � /�B
z is undetermined by supersymmetry

constraints. In order for the Thomas-Fermi approximation to
apply in the radial direction, versus the Gaussian wave func-
tion in the z direction, this ratio needs to be sufficiently
small. In the figure a ratio of 1 /5 is chosen.

FIG. 4. Effective potential for the fermions. Lengths are mea-
sured in units of � and energies in units of �BmB /mF. �a� �=0.5,
�F

r ��: No bound state, since the potential is too small. �b� �=2.6,
�F

r ��: Bound state in the core, but possibility to tunnel outside. �c�
�=2.6, �F

r ��: Bound state in the core, no tunneling possible.
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Finally, the interaction terms have to be the same. This
implies

VKK = VKF � U . �39�

Setting these coefficients equal to each other gives a
condition on the radial trapping given by

CF

CB
= 
 �

RTF
�4
�„0,��/RTF�4

… −
3

2
� . �40�

The radial trapping can be tuned by introducing a second
running laser, as explained before. For the second laser, we
can again independently choose both the wavelength and the
Rabi frequency as shown in Fig. 8. This can again be used to
minimize the atom loss due to the red-detuned laser, but it
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FIG. 5. Tuning of the lattice laser to obtain supersymmetry.
Plotted is the Rabi frequency for the bosonic atoms versus wave-
length for 87Rb-40K for 10 000 �solid line�, 1000 �dashed line�, and
500 �dotted line� bosonic atoms per site. Note that for the blue-
detuned part, i.e., ��760 nm for the 87Rb-40K mixture, extra radial
trapping is needed, either magnetically, or by using an extra running
laser as discussed in the text and shown in Fig. 3. In Fig. 8 below
we display how to tune the running laser to also obtain supersym-
metric interactions. In the inset we plotted the Rabi frequency that
is required for the 23Na-6Li mixture to obtain supersymmetry, again
for 10 000 �solid line�, 1000 �dashed line�, and 500 �dotted line�
bosonic atoms per site. Note that this can only be obtained in a very
limited range of wavelengths.
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FIG. 6. Effective rate of photon absorption as a function of the
wavelength of the optical lattice for 1000 bosonic atoms per site.
The solid line is for the bosonic atoms, whereas the dashed line is
for the fermionic atoms in the 87Rb-40K mixture.
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FIG. 7. Tuning of the average number of fermions per lattice
site to obtain supersymmetry for 10 000 �solid line�, 1000 �dashed
line�, and 500 �dotted line� bosonic atoms per lattice site. The result
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and radial directions � /�B

z . This ratio should be sufficiently small to
be radially in the Thomas-Fermi limit. For this plot a ratio of 1 /5 is
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FIG. 8. Tuning of the additional laser to obtain supersymmetric
interactions for 1000 bosonic atoms per lattice site. The Rabi fre-
quency is plotted versus the wavelength of the running laser for
different wavelengths of the lattice laser beam: 1000 nm for the left
curve and 600 nm for the right curve. In the inset the effective rate
of photon absorption originating from the additional laser is plotted,
again the left curves are for a lattice laser of 1000 nm and the right
curves are for a lattice laser of 1000 nm. The solid lines indicate the
rate of photon absorption for the bosonic atoms, whereas the dashed
lines are the rates of photon absorption for the fermionic atoms.
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turns out that atom loss is always quite small anyway for
reasonable system parameters. Only for very small detunings
the lifetime is less than a second.

G. Hamiltonian

Combining everything, our superstring is described by the
supersymmetric Hamiltonian

H = − t�
�ij�

�bi
†bj + ci

†cj�

+ �
i

− ���bi

†bi + ci
†ci� +

U

2
bi

†bi
†bibi + Ubi

†bici
†ci� .

�41�

Here bi is the annihilation operator of a kelvon at site i,
ci is the annihilation operator of a fermion at site i, �ij�
means that the summation runs over neighboring sites, and
��=�−2t. We used the convention for the Fourier transfor-
mation fk= �1/
Ns��neikznfn, where Ns is the number of lat-
tice sites. We define a=� /2 as the lattice spacing and
L=Nsa as the length of the system. Assuming that Ns�1,
such that L�a, we can perform a continuum approximation
to obtain for the Hamiltonian

H =� dz b†�z�
−
�2

2m*

�2

�z2 − ��b�z�

+� dz c†�z�
−
�2

2m*

�2

�z2 − ��c�z�

+
U

2
� dz�b†�z�b†�z�b�z�b�z� + 2b†�z�b�z�c†�z�c�z�� ,

�42�

where we introduced the effective mass m*=�2 /2a2t.
This continuum Hamiltonian turns out to be exactly solvable
�47,48� by a straightforward generalization of the Bethe-
ansatz solution of the one-dimensional Bose gas �49,50�.
However, the exact solutions spontaneously break supersym-
metry and do not give much insight into the role of
supersymmetry in the problem.

Using that the Lagrangian is given by

L = �
i

bi

†i�
�

�t
bi + ci

†i�
�

�t
ci� − H�b†,b;c†,c� , �43�

the action in the continuum limit is obtained as

S =� dt� dz	b*
i�
�

�t
+

�2

2m*

�2

�z2 + ��b

+ c*
i�
�

�t
+

�2

2m*

�2

�z2 + ��c −
U

2
��b�2 + �c�2�2� , �44�

which now explicitly shows the supersymmetry of the prob-
lem, because it remains invariant when b and c are rotated
into each other. If we neglect the interaction terms, which are
rather small anyway, the fermions fill a Fermi sea and the
low-energy excitations are particle-hole excitations around

the Fermi surface. Therefore, the low-energy part of the
theory is properly described by linearizing the fermionic dis-
persion around the Fermi level. To preserve supersymmetry
we do the same for the bosons and obtain at the quadratic
level the action

S = �
�=±

� dt� dk�b�
*�k,t��i��t − �vF��k − kF��b��k,t�

+ c�
*�k,t��i��t − �vF��k − kF��c��k,t�� ,

where � indicates whether the particles are right movers
or left movers and vF=�kF /m* is the Fermi velocity. We
used that �=�2kF

2 /2m*. We identify the Fermi velocity with
the velocity of light c and perform the transformation
c��z , t�= �1/
L��ke

ikzc��k+�kF , t�. We introduce the Dirac

spinor 
�z , t�= (c+�z , t� ,c−�z , t�) and 
̄�z , t�=
†�z , t��0, with
�0=�y. The other Dirac matrices are �1= i�x and �5=�z. The
two bosonic fields can be captured in a single Klein-Gordon
field X�z , t�= �1/
L��ke

ikz
� /k�b+�k+kF , t�+b−�k−kF , t��,
such that ����X= ��t

2 /c2−�z
2�X=0. This enables us to rewrite

the linearized action as

S =� d2x���X*��X + i�
̄����
� , �45�

which is the action for the transverse modes of a free rela-
tivistic N=1 superstring in 3+1 dimensions �51�. In modern
language, the Lorentz invariance of this action appears here
as an emergent phenomenon at long wavelengths, because
the underlying theory is not Lorentz invariant. This is very
similar to the way in which Lorentz invariance appears in
string-bit models �33�. A second property of this action is
that the fermionic part has classically chiral symmetry, but
quantum-mechanically suffers from a chiral anomaly.
Whereas in string theory this is an unwanted feature, in our
case it has a physical origin, because it comes about from the
fact that the underlying microscopic theory does not con-

serve the chiral current i
̄���5
, and only conserves the

current 
̄��
 associated with the conservation of the total
number of fermions.

H. Nonlocal interaction

The presence of a kelvon implies that neighboring vortex
cores are slightly shifted with respect to each other. This
effect decreases the fermionic hopping amplitude and results
in an interaction term that couples fermions on neighboring
sites of the form

H� = t�
kk�

A�k��cos�k�ck
†ckbk�

† bk�. �46�

Since this term breaks supersymmetry, we want to investi-
gate the system parameters for which it can be neglected,
i.e., for which A�k���1. To do so we consider a kelvon with
a certain wave number k. The relative distance between
neighboring cores can then be estimated to be
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�r =
RTF


NB

k�

2
. �47�

From Eq. �20� we know that for small distances the vortex
core can be modeled as a harmonic potential with width �.
Hence, the fermionic wave functions are Gaussians with the
same width. So we have to compute

A�k� = 1 −
� d2r e−r2/2�2

e−�r − �r0�2/2�2

� d2r e−r2/�2

= 1 − e−�r0
2/4�2

�
�r0

2

4�2 =
k2�2RTF

4

16Nb�4 , �48�

where we used the relation from Eq. �26�. From this same
relation we see that �RTF/��4 scales with the number of
bosonic atoms NB, such that A�k� is independent of NB. We
can estimate RTF

4 /NB�4 to be of order unity, such that the
requirement for A�k� to be small only depends on the wave
number k. If we identify this wave number with the Fermi
momentum, i.e.,

kF
2�2

16
� 1, �49�

we obtain a restriction on the fermionic filling fraction that
can be estimated to be

NF � 0.1. �50�

From Fig. 7 we see that for most of the parameter space this
condition is satisfied.

III. EXPERIMENTAL SIGNAL

It is an important question how the supersymmetry can be
observed. Therefore we need to distinguish between the situ-
ation where the Hamiltonian is tuned to be supersymmetric
and where the quantum ground state is supersymmetric,
since it is possible that the ground state can spontaneously
break supersymmetry. We are primarily interested in the situ-
ation that both the Hamiltonian and the quantum ground state
are supersymmetric.

A. Density measurements

The two observables that are most easy to measure
experimentally are the average number of fermions at a site
NF and the average number of kelvons NK. The average fer-
mion number can be determined by the usual absorption
measurements. The number of kelvons can be obtained from
the mean-square displacement �r2�= �1/Ns��i�xi

2+yi
2� of the

pancake vortices, which can be measured by imaging along
the z direction the size of the circle within which the vortex
positions are concentrated �42�. Because

bi
†bi = NB

xi
2 + yi

2

RTF
2 −

1

2
, �51�

this can directly be translated to the number of kelvons at a
site. It is clear that in order to have a supersymmetric state,

the kelvon and fermion modes should have the same average
occupation number, i.e.,

�bi
†bi� = �ci

†ci� . �52�

This allows us to devise an experimental measure for the
proximity to the supersymmetric point, which can be directly
measured, namely,


NB
�r2�
RTF

2 − NF − 1/2�2

.

This quantity has an absolute minimum of zero at the
supersymmetric point, so that its magnitude is a measure of
the deviation from supersymmetry. We can extend this to
higher-order correlation functions. The condition that

��bi
†bi�2� = ��ci

†ci�2� = �ci
†ci� �53�

can be used to prove that in order to have supersymmetry
also the condition

NB
2 �r4�

RTF
4 = 2NF +

1

4
�54�

should hold. The quantiy �r4� can again be measured from
the distribution of the measured vortex positions.

B. Dissipation

Another consequence of supersymmetry that can be
directly measured is the reduced dissipation. Dissipation in
this context results in the vortex spiraling out of the
gas �35,36�. The dominant part of the dissipation is given by
the coupling to the kelvon modes and the fermionic
modes. The lowest-order diagrams are given in Fig. 9 and
denoted by �KK�k ,�� for the coupling to the kelvon
modes and �KF�k ,�� when there is also coupling to the
fermionic modes. The imaginary part of these diagrams mea-
sures the dissipation. In order to be able to know the
dissipation away from the supersymmetric point we perform
the calculation for unequal dispersions �K,F�k� and unequal
coupling constant UKK and UKF. We introduce the usual no-
tation for the Bose-Einstein and Fermi-Dirac distribution
functions

NB���k�� =
1

e��k�/kBT − 1
, NF���k�� =

1

e��k�/kBT + 1
.

The diagrams are then given by
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�KK�k,i�� = 2UKK
2 � dp

2�
� dp�

2�

�1 + NB��K�p�� + NB��K�p����NB��K�p + p� − k�� − NB��K�p��NB��K�p���
i�� − �K�p� − �K�p�� + �K�p + p� − k�

�KF�k,i�� = − UKF
2 � dp

2�
� dp�

2�

�− 1 − NB��K�p�� + NF��F�p����NF��F�p + p� − k�� + NB��K�p��NF��F�p���
i�� − �K�p� − �F�p�� + �F�p + p� − k�

,

where the minus sign in front of the expression for
�KF�k , i�� comes from the presence of the fermion loop.
Note that due to the different combinatorial factors the dia-
gram �BB comes with an extra factor of 2, which is lacking
in the case of the diagram �BF. As a result, the two diagrams
do not cancel exactly at the supersymmetric point, as we
claimed previously �16�. Instead, the dissipation is reduced
by a factor 2 �52�. The imaginary part of the diagrams gives
the following expressions:

Im��KK�k,��� = 2UKK
2 � dp

2�
� dp�

2�
†�„�� − �K�p� − �K�p��

+ �K�p + p� − k�…„�1 + NB��K�p��

+ NB��K�p����NB��K�p + p� − k��

− NB��K�p��NB��K�p���…‡ ,

Im��KF�k,��� = − UKF
2 � dp

2�
� dp�

2�
†�„�� − �K�p� − �F�p��

+ �F�p + p� − k�…„�− 1 − NB��K�p��

+ NF��F�p����NF��F�p + p� − k��

+ NB��K�p��NF��F�p���…‡ . �55�

At zero temperature we have that NF���k��=�(��k�), and
NB���k��=−�(��k�)=−NF���k��. Using this, we see that if
there is supersymmetry, i.e., if �K�k�=�F�k� and UKK=UKF,
we have that

�KK�k,�� = − 2�KF�k,�� ,

and in particular that

Im��KK�k,�� + �KF�k,��� =
1

2
Im��KK�k,��� ,

such that at zero temperature supersymmetry results in a dis-
sipation rate that is only half as large as in the case of an
ordinary vortex line. Using these expressions, it is also pos-
sible to calculate the quantum dissipation at nonzero tem-
perature, or when supersymmetry is broken. In particular,
when the interaction coefficients are tuned away from the

supersymmetric point such that UBF=
2UBB and supersym-
metry is maintained at the quadratic level, the dissipation
exactly vanishes and the superstring is extremely stable in
the center of the condensate.

C. Spontaneous supersymmetry breaking

When the Hamiltonian is supersymmetric, the ground
state still can break supersymmetry. This is the phenomenon
of spontaneous supersymmetry breaking. For ���c,
the ultracold superstring is unstable against Bose-Einstein
condensation of kelvons. This breaks supersymmetry,
because the fermionic modes cannot Bose-Einstein con-
dense. Bose-Einstein condensation implies that the kelvon
annihilation operator obtains an expectation value

�bi� � 0. �56�

From the definition of the kelvon operator we conclude that
as a consequence

�x�2 + �y�2 	 0. �57�

This means that the vortex moves out of the center of the
trap. Experimentally this is easy to measure. Moreover, by
monitoring the vortex position when it moves out of the
center of the trap, this also allows for the experimental in-
vestigation of the dynamics of supersymmetry breaking. As a
consequence of the breaking of the U�1� symmetry because
of the Bose-Einstein condensation, the dispersion of the
kelvon modes becomes gapless. The dispersion becomes the
usual Bogoliubov dispersion, which reads

��B�k� = 
��k�2 + 2���k� , �58�

with ��k�=�2k2 /2m*. For long wavelengths this yields a lin-
ear behavior. Also the fermionic modes become gapless. This
is a result of the breaking of supersymmetry and this mode is
called the goldstino. Because �b�=
� /U, the dispersion for
the goldstino is given by

��F�k� = ��k� − � + ��b��2 = ��k� , �59�

which results in a quadratic dispersion. Clearly the bosonic
and fermionic dispersion in Eqs. �58� and �59� are now
different, which signals a nonsupersymmetric situation.

IV. SUPERSYMMETRY

In this section we review the algebra associated with
supersymmetric field theories both in the relativistic �super
Poincaré algebra� and the nonrelativistic �super Galilei

FIG. 9. Diagrams that contribute to the dissipation of the vortex
line. The solid lines represent bosonic propagators; the dashed lines
represent fermionic propagators. The left diagram is called
�KK�k ,��; the right diagram is called �KF�k ,��.
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algebra� limit. We give an explicit representation of the super
Galilei algebra in terms of the bosonic and fermionic
operators.

A. Super Poincaré algebra

Associated with a relatisitic field theory in D=d+1 di-
mensions is the Poincaré algebra, whose generators consist
of a vector P� that generates translations and an antisymmet-
ric tensor J�� that generates Lorenz transormations. The
greek indices run from 0 to d=D−1, such that P0 should be
identified with the Hamiltonian H, up to a constant. The
algebra is then given by

�P�,P�� = 0,

�J��,P�� = i����P� − ���P�� ,

�J��,J��� = i����J�� + ���J�� − ���J�� − ���J��� , �60�

where ��� is the flat space Minkowski metric. When there is
supersymmetry we can extend this to the super Poincaré al-
gebra. For N=1 supersymmetry in 1+1 dimensions this in-
volves the two-component Majorana spinor Q�, �=1,2,
which is the generator of supersymmetry transformations.
The algebra is then extended to include also

�P�,Q�� = 0, �61�

�P�,Q̄�� = 0, �62�

�J��,Q�� = −
i

4
���,�����Q�, �63�

�Q�,Q̄�� = 2���
� P�, �64�

where the �� are again the Dirac matrices. We use conven-
tions such that Q� has two real components. To make
connection with the supersymmetry in the ultracold super-
string we combine these two components in one complex
supersymmetry operator

Q =
Q1 + iQ2

2
. �65�

This decomposition breaks manifest Lorentz symmetry, but
since we are ultimately interested in the nonrelativistic limit,
this is of no concern to us here. As a result we obtain the
following algebra

�P�,Q� = 0, �66�

�J��,Q� = −
i

2
���Q†, �67�

�Q,Q†� = P0, �68�

�Q,Q� = �Q†,Q†� = − P1. �69�

In particular, we see that the Hamiltonian P0 is fixed by the
supersymmetry generator. This is a very peculiar restriction

on the Hamiltonian, which is only true for the relativistic
theory. In the nonrelativistic limit, the supersymmetry de-
couples from the space-time translation symmetry as we
show now.

B. Super Galilei algebra

The Galilei algebra can be derived as a limit of the
Poincaré algebra by performing an Inönü-Wigner contraction
�53� in the following way �31,32�. We write

P0 =
1

c
�m*Nc2 + H� , �70�

P1 = P , �71�

J01 = cK , �72�

Q = 
m*c Q , �73�

where c is the speed of light and m* denotes the mass, which
is the same for the bosonic and fermionic degrees of free-
dom. We also defined a number operator N, which counts all
the particles in the system, and boost operators K. Further-
more, we still have the space translation generators P and the
Hamiltonian H. We can now take the limit c→� to obtain
the super Galilei algebra. The Galilei algebra obtained in this
manner has nonvanishing commutators

�P,K� = im*N , �74�

�H,K� = iP . �75�

The part involving the supersymmetry becomes only

�Q,Q†� = N . �76�

This defines the algebra S1G �33�. As is clear, in this case the
Hamiltonian is decoupled from the supersymmetry. In 1+1
and 2+1 dimensions, it is sometimes possible to define an
extended superalgebra S2G, which again involves the Hamil-
tonian �33,54,55�. In d=1 this amounts to introducing an
extra scalar supersymmetry generator R with the algebra

�Q,R†� = − P , �77�

�R,R†� = H/2. �78�

C. Representation

The representation for the S1G algebra in terms of the
bosonic and fermionic operators b and c can easily be found
to be

N =� dz�b†�z�b�z� + c†�z�c�z�� , �79�

P = −
i�

m* � dz�b†�z��zb�z� + c†�z��zc�z�� , �80�

Q =� dzc†�z�b�z� , �81�
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Q† =� dzb†�z�c�z� . �82�

In addition, we can thus also define

R =
�


m* � dzc†�z��zb�z� , �83�

R† = −
�


m* � dzb†�z��zb�z� . �84�

This produces

�R,R†� =� dz
− b†�z�
�2

m*

�2

�z2b�z� − c†�z�
�2

m*

�2

�z2c�z�� ,

�85�

which indeed is the kinetic energy part of the Hamiltonian.
The full quadratic part of the Hamiltonian can be expressed
as

H =
1

2
�R,R†� − ��Q,Q†� . �86�

For completeness, we mention that we can also use super-
space techniques to write the Hamiltonian in a manifestly
supersymmetric way. This involves the introduction of a
complex superfield


�z,�� = e−�*�/2�b�z� + �*c�z�� , �87�


*�z,�� = e−�*�*/2�b*�z� + c*�z��� , �88�

where � is a Grassman variable such that �� ,��= ��* ,�*�=0
and �� ,�*�=0. The Hamiltonian is in terms of the superfield
given by

H =� d�*d�� dz
 �2

2m* ��z
�z,���2 − ��
�z,���2

+
U

2
�
�z,���4� . �89�

In this formulation the spontaneous breaking of supersym-
metry is particularly elegant, because the Hamiltonian has
the form of a standard Landau theory of a second-order
phase transition with �
�z ,��� as the order parameter.

V. CONNECTION WITH STRING THEORY

In this section, we discuss the similarities and differences
with superstring theory. For some textbooks on the subject,
we refer to Refs. �51,56,57�. In string theory, one usually
starts with the Polyakov action �58�, describing the coordi-
nates X��� ,��, with �=0,1 , . . . ,D−1, of the string propa-
gating in a D-dimensional curved space-time with metric
G���X�,

S = −
T

2
� d2�
hh����X���X�G���X� . �90�

Here ��= �� ,�� are coordinates on the worldsheet swept out
by the string, � is the worldsheet time, and � runs longitudi-

nally over the string. Furthermore, T is the string tension, and
h�� is a two-dimensional metric on the worldsheet with
h=−Det�h���. In agreement with the standard practice in
high-energy physics we are momentarily using units such
that �=c=1. We restore units when we come to the precise
connection with our ultracold superstring. In fully quantized
string theory, one also performs a path integral over these
metrics, and this leads to the string loop expansion where
one sums over all two-dimensional surfaces containing an
arbitrary number of holes. In our setup, the worldsheet of the
string is completely fixed, and contains no holes, i.e., it is
just the two-dimensional plane. On the plane, we can then
make use of the local symmetries of the Polyakov action,
that are the reparametrizations of the worldsheet coordinates
and the Weyl rescalings of the metric. Doing so, we can
make the gauge choice

h�� = 
1 0

0 − 1
� . �91�

This gauge choice is referred to as the conformal gauge.
The space-time in which the string propagates is coordi-

natized by X� ,�=0, . . . ,D−1. In quantized superstring
theory one has that D=10, but at the classical level one can
have D=4 as well. We come back to this issue below. It is
useful to introduce light-cone variables

X± =
1

2

�X0 ± XD−1� �92�

and Xi, i=1, . . . ,D−2. Then X± and Xi describe the longitu-
dinal and transversal degrees of freedom of the string, re-
spectively. String theory has the special feature that there are
only transversal physical degrees of freedom. This is because
string theory has an additional constraint that can be under-
stood as the equation of motion of the worldsheet metric h��.
Defining �±=�±�, these constraints read in conformal gauge

�±X��±X�G���X� = 0, �93�

and are sometimes called the Virasoro constraints. In prac-
tice, solving the constraints is difficult, but in the so-called
light-cone gauge

X+ = 2��p+� , �94�

where ����2�T�−1 and p+ is the center-of-mass momentum
in the X+ direction, the longitudinal modes X± can be elimi-
nated explicitly, at least for certain space-time metrics G��.
The light-cone gauge can always be taken as a consequence
of the residual gauge symmetry after the gauge choice of Eq.
�91� has been imposed �51,56,57�.

The implementation of the constraints in Eq. �93� in the
quantum theory leads to the critical dimension, namely,
D=26 for the bosonic string and D=10 for the superstring.
In our condensed-matter setup, these constraints are not
present. There are physical longitudinal degrees of freedom,
so this makes it different from the superstring. However, the
longitudinal modes are suppressed and at the energy scales
we are looking at, it suffices to study only the transversal
degrees. It is in this transversal sector that we connect to
string theory. To make this connection, we have to specify
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the space-time metric G��. A class of backgrounds that has
been intensely studied in the string literature is that of plane-
wave metrics �59,60�. The simplest of these backgrounds,
and also the one relevant for our case, is given by

ds2 � G���X�dX�dX� = − 2dX+dX− + H�Xi��dX+�2 + dXidXi,

�95�

where H�Xi� is a function of the transverse coordinates only.
In light-cone gauge, the Lagrangian for the string propagat-
ing in this background now becomes

T−1L =
1

2 �
i=1

D−2 	
 �Xi

��
�2

− 
 �Xi

��
�2� − V�Xi� , �96�

where V�X�=−2���p+�2H�X�. To derive this result, we
simply substitute the background in Eq. �95� into Eq. �90�,
and use the light-cone gauge from Eq. �94� to produce
the potential V�X� term in the Lagrangian �61�. Furthermore,
this produces a term proportional to X− that is decoupled
from the Xi. Therefore this term can be dropped. In fact X− is
fixed by the Virasoro constraints in Eq. �94�, so we only need
a Lagrangian for the transverse degrees of freedom.

One of the remarkable facts of string theory is that
its conformal symmetry at the quantum level forces the
metric to satisfy Einstein’s equations in general relativity.
This is the way in which gravity emerges from string theory.
When there are no other background fields present, as in our
case, Einstein’s equations reduce to a single constraint on the
function H given by

�H � �
i=1

D−2
�2

��Xi�2H = 0. �97�

In other words, H has to satisfy the Laplace equation in the
transverse space. This constraint has to be understood on an
equal footing as the constraint on the space-time dimension.
They both follow from a consistent implementation of the
conformal symmetry at the quantum level. Since we are not
taking into account the Virasoro constraints in our system,
and hence the conformal symmetry, we therefore also ignore
the constraint in Eq. �98�. Doing so, we can work with arbi-
trary potentials V�X�. When we take D=4, as we shall below,
the scalar potential depends on two real fields.

We now include the fermions, and discuss supersymme-
try. To make a superstring we have to add additional terms to
the Lagrangian in Eq. �90� containing the fermions in such a
way that there is supersymmetry. We can then impose the
conformal or light-cone gauges to arrive at a supersymmetric
generalization of the Lagrangian in Eq. �96�. Alternatively,
we can directly study supersymmetric extensions of Eq. �96�
as two-dimensional field theories. The general construction
of supersymmetric two-dimensional field theories with scalar
potentials V�X� was given in Ref. �62�. Not all potentials lead
to Lagrangians that can be supersymmetrized. For the case of
minimal supersymmetry �SUSY� with two supercharges,
sometimes denoted as �1,1� SUSY, the potential needs to be
of the following type:

V�Xi� = �
i=1

D−2

���iW�2 + Gi
2�X�� , �98�

where W is a real function, �i stands for the derivative
with respect to Xi, and the quantities Gi�X� satisfy
�iGj +� jGi=0 together with �iG

i�iW=const. The supersym-
metric Lagrangian can then be written as

2T−1L = ��Xi��Xi + i
̄i����
i − V�X� − Wij�X�
̄i
 j

− Wij
�5��X�
̄i�5
 j , �99�

with

Wij = �i� jW, Wij
�5� = �iGj . �100�

The supersymmetry variations are

�Xi = �̄
i, �101�

�
i = − i����Xi� − �iW� − Gi�5� , �102�

and leave the Lagrangian invariant, up to a total derivative.
Here 
i and � are two-component Majorana spinors, and in
our model we thus have two Majorana spinors. The � matri-
ces are related to the Pauli matrices as �0=�y ,�1= i�x, and
�5=�z as before. For more details on the spinor conventions,
see Ref. �62�.

Examples of supersymmetric models are given by

Gi = ��ijX
j, W�r� = �R + �R3, �103�

where R�
�X1�2+ �X2�2 and � ,� ,� are arbitrary
parameters. Plugging this into Eq. �98� leads to �63�

V�R� = �� + 3�R2�2 + �2R2. �104�

Up to an irrelevant additive constant, the coefficients � ,� ,�
can be chosen such that the potential is as in our condensed-
matter setup. Furthermore, we have that Wij

�5�=�� ji, which
leads to mass terms for the fermions, and supersymmetry
variations of the fermions of the form

�
i = ¯ + ��ijXj�
5� . �105�

This term rotates the fermions into the bosons, just as for the
ultracold superstring. If we compute Wij to determine the
interactions between bosons and fermions, it produces
complicated interaction terms

Wij = �ij
�

R
+ 3�R� + XiXj
−

�

R3 +
3�

R
� �106�

as a result of the supersymmetry constraints.

A. Nonrelativistic limit

To connect to our condensed-matter setup, we have to
take the nonrelativistic limit in which only particle excita-
tions of the two-dimensional field theory survive, and the
antiparticle excitations are absent. To illustrate this proce-
dure, we start with the bosonic part of the Lagrangian in Eq.
�99�, based on two real scalar fields. In terms of the complex
field
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X = X1 + iX2, X* = X1 − iX2, R2 = �X�2, �107�

the Lagrangian reads

T−1L =
1

c2 ���X�2 − ���X�2 − V��X�� , �108�

where we have reinserted the speed of light c in order to take
the nonrelativistic limit c→� below, and we further used
that the potential is a function of R only since this is the case
of interest.

Using now the mass m*, we decompose the complex sca-
lar field in terms of positive and negative frequency modes

X��,�� =
1


2m*T
�e−im*c2�b��,�� + eim*c2�a��,��� ,

�109�

and call b the particle field and a the antiparticle field. Both
b and a are complex. We now substitute Eq. �109� into Eq.
�108� and send c→�. In this limit, the Lagrangian becomes
first order in time derivatives, and particles and antiparticles
decouple from each other such that we can effectively set
a=0. The remaining terms in the nonrelativistic limit are

L = i�b*��b −
�2

2m* ���b�2 − V��b�� , �110�

where we have reinserted the various factors of �. Moreover,
we have absorbed a mass term proportional to �b�2 into the
potential. Recall that we have chosen a potential of the form
given in Eq. �104�, so this mass term can easily be absorbed
into a change of the coefficients � or ��. Notice that this
Lagrangian precisely coincides with the bosonic sector of
Lagrangian of the ultracold superstring given in Eq. �43�.
The fermionic sector can be obtained in a similar way.

VI. CONCLUSION

In this paper we presented a detailed account of the con-
ditions under which the ultracold superstring can be created.
The requirements for the laser parameters and the atomic

interactions were given. Moreover, we paid attention to the
experimental signatures of supersymmetry. The supersym-
metry in the problem was investigated by studying the ap-
propriate superalgebra. Finally, a precise mathematical con-
nection with string theory in 3+1 dimensions was made.

The discussions in this paper were limited to the case of a
single string. It is left for future investigation to extend the
analysis to involve more strings. A complication in this case
is that for parallel vortex lines, supersymmetry is not pos-
sible, because of the different way vortices and fermions
interact with each other. A proposal to overcome this prob-
lem is to study the interaction of two superstrings that are
both in the center of the condensate, but are separated on the
z axis. This would correspond to merging and splitting of
ultracold superstrings.

The fermionic number of particles that is needed to obtain
supersymmetry is typically around 0.1 per site. This is rather
low, both to control and to observe. However, the density is
rather high and can be estimated to be at least 1013 cm−3.
Moreover, a disadvantage of a higher fermionic atomic den-
sity is that this makes also the contribution of the kelvon-
fermion hopping interaction more important. It remains to be
investigated, whether a change of the varous parameters can
improve on this situation.

Apart from the other possibilities mentioned in this paper,
it is also possible to gain experimental insight into the sys-
tem by coupling the vortex motion to resonant quadrupole
modes �42�. This gives the possibility of measuring the
kelvon dispersion directly. If the system is brought out of
equilibrium by populating a high-lying kelvon mode, it also
opens up the exciting possibility of studying collapse and
revival phenomena between the bosonic and fermionic
modes.
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