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We investigate the superfluidity and the associated Nambu-Goldstone modes in a three-flavor atomic Fermi
gas with SU�3� global symmetry. The s-wave pairing occurs in flavor antitriplet channel due to the Pauli
principle, and the superfluid state contains both gapped and gapless fermionic excitations. Corresponding to the
spontaneous breaking of the SU�3� symmetry to a SU�2� symmetry with five broken generators, there are only
three Nambu-Goldstone modes, one is with linear dispersion law and two are with quadratic dispersion law.
The other two expected Nambu-Goldstone modes become massive with a mass gap of the order of the fermion
energy gap in a wide coupling range. The abnormal number of Nambu-Goldstone modes, the quadratic dis-
persion law, and the mass gap have significant effect on the low-temperature thermodynamics of the matter.
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I. INTRODUCTION

The superfluidity in strongly interacting atomic Fermi gas
and the associated BCS-BEC �Bose-Einstein Condensation�
crossover phenomena �1–3� have been observed in experi-
ments �4–7� via the method of Feshbach resonance. The ex-
perimental study of superfluidity in atomic Fermi gas may be
important for us to understand the solid-state phenomena
such as high-temperature superconductivity, and may give
some clue to search for the ground state of the dense quark
matter and nuclear matter. In the past years, most theoretical
and experimental studies concentrated on the two-flavor sys-
tems such as a 6Li gas with the two lowest hyperfine states.
�In this paper, we use the word “flavor” in particle physics to
denote the internal degrees of freedom of the fermionic at-
oms.� Compared to electrons in solids, atomic systems offer
more internal degrees of freedom. For alkali atoms, nuclear
spin I and electron spin S are combined in a hyperfine state
with total angular momentum F. While typical electronic
systems are constrained to a SU�2� spin rotational symmetry,
the total angular momentum F can be larger than 1/2, result-
ing in 2F+1 hyperfine states differing by their azimuthal
quantum number mF. Therefore, the atomic Fermi gas can
provide us a way to study the superfluidity with broken sym-
metry higher than the U�1� one. In this paper, we will focus
on a three-flavor system with a SU�3� global symmetry. Such
a system has been investigated in some works �8–10�.

It is well-known that, associated with the spontaneous
breaking of a global symmetry, there should be correspond-
ing Nambu-Goldstone �NG� bosons. Such NG bosons domi-
nate the low-temperature thermodynamics of the system. Ac-
cording to the Goldstone theorem �11,12�, if an internal
continuous symmetry group is spontaneously broken down
to a subgroup with N broken generators, N NG bosons ap-
pear in Lorentz-invariant systems, i.e., the number of NG
bosons is equal to the number of broken generators. How-
ever, from the Nielsen-Chadha �NC� theorem �13�, for sys-
tems without Lorentz invariance the number of NG bosons
can be less than the number of broken generators. Let N1 and
N2 be the numbers of gapless excitations which have, respec-
tively, the dispersion laws ���p� � and ���p� �2 in the limit of
long wavelength, the number of broken generators satisfies

the relation N�N1+2N2. For the equality between the num-
ber of NG bosons and the number of the broken generators,
there is an important criterion: If ��Qi ,Qj��=0 for any two
broken generators Qi and Qj, i , j=1,2 , . . . ,N, the number of
NG bosons is equal to the number of the broken generators
�14�.

For the three-flavor Fermi gas with SU�3� symmetry we
will consider in this paper, the ground state of the system
contains both gapped and gapless fermionic excitations.
When the SU�3� symmetry is spontaneously broken to a
SU�2� subgroup with five broken generators, we will show
with an explicit calculation that there are only three NG
modes. Among them, one has linear dispersion law and the
other two have quadratic dispersion law. The reason for the
abnormal number of NG modes and the appearance of qua-
dratic dispersion law is found to be the fact that the condition
��Qi ,Qj��=0 is not satisfied due to the density imbalance
between the gapped and gapless fermions.

The abnormal number of NG modes and the nonlinear
dispersion law were widely discussed in relativistic field
theory at finite density �14–16�. They were also found in the
study of two-flavor color superconductivity in the Nambu–
Jona-Lasinio model �17� where the condition ��Qi ,Qj��=0 is
not satisfied due to the lack of color neutrality. However, the
abnormal number of NG bosons cannot be realized in super-
fluid quark matter and has no observable effect, since the
color neutrality should be imposed via some mechanism
such as gluon condensation and the NG bosons should be
eaten up by the gluons via the Higgs mechanism. In atomic
Fermi gas, there is no constraint like the color neutrality, and
the NG modes are physical degrees of freedom which domi-
nate the low temperature thermodynamics of the system. The
theoretic prediction of the NG modes may be tested in future
experiments via the measurement of the thermodynamic
quantities. In addition, the mass gap of the two massive col-
lective modes found in �17� is very small compared with the
quark energy gap, while the corresponding mass gap in the
three-flavor Fermi gas is of the order of the fermion energy
gap, which makes remarkable effect on the low-temperature
thermodynamics.

The paper is organized as follows. In Sec. II, we set up the
model for the three-flavor Fermi gas with SU�3� global sym-
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metry. In Sec. III, we investigate the ground state of the
system and the symmetry breaking. In Sec. IV, we investi-
gate the pair fluctuation around the superfluid ground state,
identify the NG modes and find their dispersion laws. In Sec.
V we discuss whether we can recover the five NG modes. We
summarize in Sec. VI. The natural unit of c= � =kB=1 is
used through the paper.

II. THE MODEL

The physical system we are interested in this paper is an
idea system composed of three flavors of fermions with at-
tractive interaction. Such a system can be realized in cold
atomic Fermi gas such as a 6Li or 40K gas where the three
flavors come from three degenerate hyperfine states �18�.
Generally, the system can be modeled by the Lagrangian
density

L = �†	i�t +
�2

2m
+ �
� + Lint, �1�

where ����1 ,�2 ,�3�T and �†���1
* ,�2

* ,�3
*� are the three-

component fermion fields, � is their chemical potential, and
m is their mass. We have assumed that the chemical poten-
tials of three flavors are the same due to the chemical equi-
librium.

It is generally believed that the s-wave channel is the
dominant pairing channel. According to the Pauli principle,
the total wave function of the Cooper pair must be antisym-

metric. Using the decomposition 3 � 3=3̄ � 6 for the SU�3�
group, the s-wave pairing must be associated with the anti-
triplet channel in flavor space. In this paper we consider only
the s-wave pairing channel, the interaction can be modeled
by

Lint = g/4���
* i��	I�	

*�����i���	�I�	�� , �2�

where g is the bare coupling related to the s-wave scattering
length and �ijk is the total antisymmetric tensor. Throughout,
summation is implicit over repeated flavor index. Note that
the interaction Lagrangian can also be written as

Lint = g/4 �
a=2,5,7

��†
a�*���T
a�� , �3�

where 
a�a=1,2 , . . . ,8� are the Gell-Mann matrices. The
model Lagrangian has the symmetry SU�3� � U�1�, i.e., it is
invariant under the transformation

� → e−iTa�a�, a = 0,1,2, . . . ,8, �4�

where T0= I3 is the generator of the U�1� group and Ta

=

a

2 �a=1,2 , . . . ,8� are the generators of the SU�3� group.
Due to the above symmetry, the system possesses nine con-
served charges or generators Qa�a=0,1 ,2 , . . . ,8� given by

Qa =
 d3x�†Ta� . �5�

Like the two flavor or U�1� system, for attractive coupling
g we can perform an exact Stratonovich-Hubbard transfor-
mation to introduce the pair fields

�I � g/2���i��	I�	�, �I
* � g/2���

* i��	I�	
*� �6�

for I=1,2 ,3. With the Nambu-Gorkov fields defined as


 = 	 �

�* 
, 
† = ��† �T � , �7�

the partition function Z of the system can be expressed as

Z =
 �d
†��d
��d�I
*��d�I�e�x

	 1
2


†K
−
�I

*�I

g

 �8�

with the kernel K��I
* ,�I� defined as

K��I
*,�I� =�− �� +

�2

2m
+ � i��	I�I

i��	I�I
* − �� −

�2

2m
− �� �9�

in the imaginary time ��= it� formalism of finite temperature
field theory with �x=�0

	d��d3x, where 	 is the inverse of
temperature, 	=1/T. Integrating out the fermionic degrees
of freedom, we obtain

Z =
 �d�I
*��d�I�e−Sef f��I

*,�I� �10�

with the effective action

Sef f��I
*,�I� = 


x

�I
*�I

g
−

1

2
Tr ln K��I

*,�I� . �11�

III. THE GROUND STATE

At some critical temperature Tc the system should un-
dergo the phase transition from the normal phase with the
SU�3� symmetry to the superfluid phase where the SU�3�
symmetry is spontaneously broken. Since we focus on the
low-temperature region where T�Tc, the mean field ap-
proximation or saddle point approximation is believed to be
a good treatment for the ground state. The order parameters
which characterize the superfluid phase or symmetry broken
phase are defined as the expectation values of the pair fields

�I = ��I�, �I
* = ��I

*�, I = 1,2,3. �12�

Let us consider the homogeneous and isotropic superfluid
state where the order parameters are independent of the co-
ordinates. The thermodynamic potential � in mean field ap-
proximation can be expressed as

� =
1

	V
Sef f��I

* = �I
*,�I = �I�

=
�I

*�I

g
−

1

2	
�

n

 d3p

�2��3Tr ln G−1�i�n,p� , �13�

where V is the volume of the system and G−1 is the inverse of
the fermion propagator in momentum space,
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G−1�i�n,p� = 	i�n − �p i��	I�I

i��	I�I
* i�n + �p


 �14�

with �n the Matsubara frequency for fermions and �p
= p2 / �2m�−�. A straightforward algebra shows that the de-
terminate of G−1 in the Nambu-Gorkov�flavor space reads

det G−1 = ��i�n�2 − �p
2���i�n�2 − �p

2 − �2�2, �15�

which indicates that the thermodynamic potential depends
only on the quantity �2 defined as

�2 = ��1�2 + ��2�2 + ��3�2. �16�

The fermionic excitation spectra can be determined by
det G−1=0. For positive chemical potential, the superfluid
phase contains both gapped and gapless fermionic excita-
tions,

�1,2�p� = ± ��p
2 + �2, �3�p� = �p. �17�

With the quasiparticle dispersions, the thermodynamic poten-
tial can be evaluated as

� = −
m�2

4�as
− �2
 d3p

�2��3	 1

Ep + �p
−

1

2�p



−
1

	

 d3p

�2��3 �2 ln�1 + e	Ep� + ln�1 + e	�p�� , �18�

where we have defined the notation Ep=��p
2 +�2 and re-

placed the bare coupling g by the low-energy limit of the
two-body T matrix

m

4�as
= −

1

g
+
 d3p

�2��3

1

2�p
�19�

with as the s-wave scattering length and �p= p2 / �2m�.
Now we discuss the symmetry breaking pattern. Similar

to the two-flavor color superconductivity, the symmetry
breaking pattern in the current case is

SU�3� � U�1� → SU�2� � Ũ�1� . �20�

To see the broken and unbroken symmetry groups explicitly,
it is convenient for us to choose

�1 = �2 = 0, �3 � � � 0 �21�

without loss of generality. In this case, only flavors 1 and 2
participate in the Cooper pairing and flavor 3 remains un-
paired, a SU�2� subgroup with generators T1 ,T2 ,T3, and a

Ũ�1� subgroup with generator T̃0= ��3T0−T8� /2 remain un-

broken, and the broken generators are T4 ,T5 ,T6 ,T7, and T̃8
= �T0+�3T8� /2. We should emphasis that all the physical re-
sults do not depend on the specific choice of symmetry
breaking direction due to the fact that the Lagrangian is in-
variant under the SU�3� transformation.

To determine physical quantities in the superfluid state,
we should solve the gap equation together with the number
equation. Assuming the total number density n is fixed, we
can introduce the Fermi momentum pF and Fermi energy �F
through the definitions n=3� pF

3 / �6�2� and �F= pF
2 / �2m�. At

mean field level, the gap equation which determines the en-
ergy gap � can be derived via �� /��=0, namely,

−
m�

4�as
= �
 d3p

�2��3�1 − 2f�Ep�
2Ep

−
1

2�p
� , �22�

and the number equation can be derived via n=−�� /��,
namely,

n =
 d3p

�2��3�	1 −
�p

Ep

 + 2

�p

Ep
f�Ep� + f��p�� , �23�

where f�x� is the Fermi-Dirac distribution function. For the
specific choice of symmetry breaking direction �21�, the
number densities n1 ,n2 for the paired flavors and n3 for the
unpaired flavor can be evaluated as

n1 = n2 =
 d3p

�2��3�1

2
	1 −

�p

Ep

 +

�p

Ep
f�Ep�� ,

n3 =
 d3p

�2��3 f��p� , �24�

which satisfy n=n1+n2+n3. Once the Cooper pairing occurs,
the number of the paired fermions becomes different from
the number of the unpaired fermions, n1=n2�n3. This dif-
ference can be parametrized by the ratio � defined as

� =
n1 + n2 − 2n3

n
. �25�

Solving the coupled set of gap equation and number equa-
tion, we can obtain the gap �, the chemical potential �, and
the ratio � as functions of the coupling �pFas�−1. Before the
detailed numerical calculation, we give a qualitative estimate
at T=0. In the BCS limit, the energy gap � is very small and
the chemical potential is approximately the Fermi energy, the
ratio � will be very small. In the BEC limit, the chemical
potential becomes negative and the unpaired fermions disap-
pear, the ratio approaches to the limit �=1. In Fig. 1, we

FIG. 1. The chemical potential � scaled by the Fermi energy �F

and the ratio � as functions of �pFas�−1 at T=0.
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show the numerical results of the chemical potential � and
the ratio � at T=0. The ratio � is always positive which
means n1=n2�n3.

What does the nonzero ratio � mean? To answer this
question, we calculate the expectation values of the genera-
tors Qa�a=1,2 , . . . ,8�. They can be calculated via the for-
mula

�Qa� =
V

2	
�

n

 d3p

�2��3 Tr��3 � TaG�i�n,p�� , �26�

where �3 is the third Pauli matrix in the Nambu-Gorkov
space. The explicit form of the fermion propagator in the
Nambu-Gorkov�flavor space can be evaluated as

G�i�n,p� =�
G−

� 0 0 0 − iF 0

0 G−
� 0 iF 0 0

0 0 G−
0 0 0 0

0 − iF 0 G+
� 0 0

iF 0 0 0 G+
� 0

0 0 0 0 0 G+
0

� �27�

with the nonzero matrix elements defined as

G±
� =

i�n � �p

�i�n�2 − Ep
2 , G±

0 =
1

i�n ± �p
,

F =
�

�i�n�2 − Ep
2 . �28�

After a straightforward matrix algebra, we find

�Qa� = 0, a = 1,2, . . . ,7,

�Q8�
V

=
n1 + n2 − 2n3

�3
=

�n
�3

. �29�

According to the commutation relation of SU�3� group, we
have

��Q4,Q5�� = ��Q6,Q7�� = i�3�Q8� = i�nV � 0. �30�

Therefore, the nonzero ratio � in the superfluid phase means
that the condition ��Qi ,Qj��=0 which is sufficient for the
equality between the number of NG bosons and the number
of the broken generators is not satisfied in such a system.
However, we now cannot conclude that the number of NG
bosons is not equal to the number of broken generators.

IV. THE NAMBU-GOLDSTONE MODES

We investigate now the pair fluctuations around the super-
fluid state and examine whether there are five NG modes. If
there exist five NG modes, they must be the collective modes
associated with the pair fluctuations. After the field shift
�3→�3+�, the effective action reads

Sef f = 

x

�I
*�I

g
−

1

2
Tr ln�G−1 + ���I

*,�I�� �31�

with the matrix � defined as

� =�
0 0 0 0 i�3 − i�2

0 0 0 − i�3 0 i�1

0 0 0 i�2 − i�1 0

0 i�3
* − i�2

* 0 0 0

− i�3
* 0 i�1

* 0 0 0

i�2
* − i�1

* 0 0 0 0

� .

�32�

To identity the existence of NG modes and study their
dispersion laws, we need to evaluate the effective action only
to the quadratic terms of the pair fields. Using the derivative
expansion, the effective action up to the quadratic terms can
be expressed as

Sef f = 

x

�I
*�I

g
+

1

4
Tr�G���I

*,�I�G���I
*,�I�� . �33�

To do calculations in momentum space, we define the
Fourier transformations

�I�x� =
1

�	V
�

q

e−i�n�+iq·x�I�q� ,

�I
*�x� =

1
�	V

�
q

e−i�n�+iq·x�I
*�q� �34�

for the pair fields, where the four momentum in the imagi-
nary time formalism is defined as q= �i�n ,q� with �n the
Matsubara frequency for bosons. We have �I

*�−q�
= ��I�q��* due to the above definitions. After a straightfor-
ward matrix algebra, the effective action of the pair fields
can be decomposed into three parts:

Sef f��I
*,�I� = S1��1

*,�1� + S2��2,�2� + S3��3,�3� .

�35�

The pair fields for I=1,2 ,3 do not mix with each other,
which makes the calculation of NG modes quite easy. Each
part of the effective action SI takes the form

SI =
1

2�
q

��I
11�q��I

*�− q��I�q� + �I
22�q��I

*�q��I�− q�

+ �I
12�q��I

*�− q��I
*�q� + �I

21�q��I�q��I�− q�� , �36�

where the functions �I
ij�q� for I=1,2 take the same form due

to the residue SU�2� symmetry,

�I
11�q� = �I

22�− q� =
1

g
+

1

2	V
�

p

�G+
0�p�G−

��p + q�

+ G+
��p�G−

0�p + q�� ,

�I
12�q� = �I

21�q� = 0, �37�

and the functions �3
ij�q� are given by

�3
11�q� = �3

22�− q� =
1

g
+

1

	V
�

p

�G+
��p�G−

��p + q�� ,
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�3
12�q� = �3

21�q� =
1

	V
�

p

�F�p�F�p + q�� . �38�

The functions �I
ij for I=1,2 ,3 are evaluated in Appendixes

A and B. To identify the existence of the NG modes and
determine their dispersion laws, it is convenient to use the
real and imaginary parts of the complex pair fields defined as

�I�x� = ��I�x� + i�I�x��/�2,

�I
*�x� = ��I�x� − i�I�x��/�2 �39�

for I=1,2 ,3. The dispersion laws are determined by the ze-
ros of the determinate of the matrix �I

ij,

�I
11�q��I

22�q� − �I
12�q��I

21�q� = 0. �40�

A. The I=1,2 or T4 ,T5 ,T6 ,T7 sector

For I=1,2, after the analytical continuation i�n→q0+ i�,
the function �I

11 can be expressed as

�I
11�q0,q� = q0H�q0,q� + J�q0,q� , �41�

where the functions H and J are even function of q and
hence depend only on q2, see Appendix A. First, let us ex-
amine whether there are four gapless NG modes correspond-
ing to the broken generators T4 ,T5 ,T6 ,T7. To this end, we
take q2=0 to calculate the mass gaps of the collective modes.
The mass gaps of the collective modes are given by the roots
of the equation

q0
2H�q0,0�H�− q0,0� = 0, �42�

where we have used the fact J�q0 ,0�=0. Obviously, q0
2=0 is

a root which gives two gapless NG modes. To examine
whether there exist other two gapless modes, we need to
check whether the equation

H�0,0� = 0 �43�

is satisfied in the superfluid phase. It is easy to find the in-
teresting relation between H�0,0� and �Q8�,

H�0,0� = −
n1 + n2 − 2n3

�2 = −
�3�Q8�

�2V
= −

�n

�2 . �44�

Since � cannot be zero once BCS pairing occurs, as we have
shown in the last section, we conclude that there are only
two gapless NG modes, and the other two expected NG
modes become massive.

We now calculate the dispersion law of the gapless NG
modes and the mass gap of the massive modes. In the low-
energy limit q0→0, q→0, we can expand the functions H
and J as Taylor series of �q0 ,q� at the point �0,0� and keep
only the leading terms. To find the dispersion law of gapless
NG modes, we take the expansion

�q0H�0,0� +
q2

2

�2J�q0,q�
�q2 �

�0,0�
= 0. �45�

Due to the relation obtained in Appendix A,

� �2J�q0,q�
�q2 �

�0,0�
= −

1

m
H�0,0� , �46�

the NG modes have a quadratic dispersion law near q2=0,

q0 =
q2

2m
. �47�

It is very interesting that here the quantity m is just the fer-
mion mass. For the massive modes, we try to find the zero of
the function H�q0 ,q�. In the low-energy limit, we take the
expansion

�H�0,0� + q0
�H�q0,q�

�q0
�

�0,0�
+ �q2

2

�2H�q0,q�
�q2 �

�0,0�
= 0,

�48�

which leads to the dispersion law

q0 = m1 +
q2

2m2
, �49�

where the mass gap m1 is given by

m1 = − H�0,0��� �H�q0,q�
�q0

�
�0,0�
�−1

, �50�

and the quantity m2 is defined as

�m2 = −
�H�q0,q�

�q0
�

�0,0�
�� �2H�q0,q�

�q2 �
�0,0�
�−1

. �51�

In the above calculations, we have employed the trick of
Taylor expansion which is valid in the low-energy limit. In
Fig. 2 we showed the ratio between the mass gap m1 of the
massive collective modes and the energy gap � of the fermi-
onic excitations as a function of the coupling �pFas�−1 at T
=0. In the weak coupling limit, the ratio approaches to zero,
which reflects the fact that the effect of nonzero � and hence

FIG. 2. The ratio between the mass gap m1 of the massive col-
lective modes and the energy gap � as a function of �pFas�−1 at T
=0.
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nonzero H�0,0� can be neglected. In this case, we can ap-
proximately find five NG modes with linear dispersion law in
the energy and momentum region

m1 � q0 � �, m1 � vF�q� � � , �52�

where vF= pF /m is the Fermi velocity, and our result is con-
sistent with the numerical calculation in �10� where the au-
thors worked in the weak coupling limit and found five NG
modes. However, in a wide range of the coupling such as
−1� �pFas�−1�1 shown in Fig. 2, the mass gap m1 is of the
order of � and hence the order of Tc, which means that the
effect of nonzero � cannot be neglected and the mass gap m1
becomes important for the low-temperature thermodynamics.

We conclude that the abnormal number of NG modes and
the mass gap m1 make sense in a wide range of the coupling
and have significant effect on the low-temperature thermody-
namics. This situation is quite different from the case of two-
flavor color superconductivity in the Nambu-Jona-Lasinio
model where the mass gap of the massive modes is very
small compared with the energy gap of the quarks �17�.

B. The I=3 or T̃8 sector

For I=3, the situation is quite conventional. One can
check that the functions take the same form as the ones in the
two-flavor or U�1� system. Let us first identify that there
exists a gapless NG mode corresponding to the broken gen-

erator T̃8. To complete this task we need only the explicit
form of the functions �3

ij at q0=q=0 and check the relation

�3
11�0,0��3

22�0,0� − �3
12�0,0��3

21�0,0� = 0. �53�

Using the explicit form of the functions �3
ij and the gap

equation for �, we obtain the relation

�3
11�0,0� = �3

22�0,0� = − �3
12�0,0� = − �3

21�0,0� �54�

at any temperature below Tc. Hence we have proven that
there must be a gapless NG mode corresponding to the bro-

ken generator T̃8.
Next we determine the dispersion law of this NG mode.

Similarly, we expand the functions �3
ij�q0 ,q� as Taylor series

of �q0 ,q� at the point �0,0� and keep only the leading terms.
From the explicit form of the functions �3

ij evaluated in Ap-
pendix B, the Taylor expansions to the lowest order take the
following form

�3
11�q0,q� = A + q0B + q2D/2,

�3
22�q0,q� = A − q0B + q2D/2,

�3
12�q0,q� = − A + q0

2C/2 + q2E/2,

�3
21�q0,q� = − A + q0

2C/2 + q2E/2, �55�

where the coefficients A ,B ,C ,D ,E are not explicitly shown.
The dispersion law of the NG mode is determined by the
equation

�A + q0B + q2D/2��A − q0B + q2D/2�

− �− A + q0
2C/2 + q2E/2�2 = 0. �56�

Keeping the lowest order in q0 and q, we obtain a linear
dispersion law

q0 = vs�q� . �57�

The velocity of the NG mode is given by

vs =�A�D + E�
B2 − AC

. �58�

Since the functions �3
ij take the same form as the ones in the

two-flavor system with broken U�1� symmetry, the behavior
of this NG mode will be the same as the one in the two-
flavor system �21,22�.

V. CAN WE RECOVER FIVE NG MODES?

We have shown that in a three-flavor Fermi gas with
SU�3� gauge symmetry that there are only three gapless NG
modes in the superfluid state. A natural question we may ask
is the possibility to recover the five NG modes. In this sec-
tion we will argue that there is no way to obtain five NG
modes in such a system.

First, one may criticize that the abnormal number of NG
modes may be due to the specific choice of the symmetry
breaking direction �1=�2=0, �3��. If we take the follow-
ing symmetry breaking direction

�1 = �2 = �3 = �/�3, �59�

we have automatically n1=n2=n3 and hence �Q8�=0, and we
may expect five NG modes with this choice. However, as we
have emphasized, the physical quantities such as the ground
state and the number and dispersion laws of the NG modes
do not depend on the specific choice of the symmetry break-
ing direction. In the symmetric case with �1=�2=�3, the
broken and unbroken generators will be changed, and corre-
spondingly �Q1� , �Q4�, and �Q6� are nonzero. If one works
with this choice, he will certainly obtain the same number
and dispersion laws of the NG modes as we have obtained.

Second, we may relax the constraint of equal chemical
potentials for the three flavors. For instance, with the choice
�1=�2=0 and �3��, we can set �1=�2=� for flavors 1
and 2 and �3=�+�0 for flavor 3. By requiring n1=n2=n3
we can guarantee that all �Qa� are zero and the condition
��Qi ,Qj��=0 is satisfied for any i and j. However, in this
case, the chemical potentials must be adjusted, a proper
value of �0�0 is needed, and the SU�3� symmetry of the
model Lagrangian is explicitly broken with the broken gen-
erators T4 ,T5 ,T6 ,T7. An explicit calculation like the one in
�19� shows that the four NG modes corresponding to the I
=1,2 sector obtain a mass gap �0. In the BCS region where
the quantity � in the equal chemical potential system is
small, the corresponding �0 is also small. Such a phenom-
enon can be regarded as the spontaneous breaking of the
approximate symmetry, and the corresponding collective
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modes with a small mass gap �0 can be considered as
pseudo-NG modes like the case of color superconductivity in
the Nambu-Jona-Lasinio model �19�. However, since the
nonzero �0 explicitly breaks the SU�3� symmetry, a specific
choice of the symmetry breaking direction may be dangerous
�20�. In fact, if we calculate the susceptibilities

� �2�

��1
2�

�1=�2=0

= � �2�

��2
2�

�1=�2=0

, �60�

we find they are negative for �0�0. This indicates that if the
numbers of the three flavor are fixed, the specific choice of
the pairing pattern is forbidden. In this case, we should solve
the chemical potentials �1 ,�2 ,�3 and the condensates
�1 ,�2 ,�3 from a large set of equations.

In conclusion, we can never find five NG modes in the
SU�3� system. Only in the BCS limit we can obtain five
approximate NG modes with linear dispersions via neglect-
ing the effect of nonzero �.

VI. SUMMARY

We have investigated the superfluidity and the associated
NG modes in an atomic Fermi gas with three degenerate
hyperfine states. In our model, the pairing occurs in the s
wave and flavor antitriplet channel, and the chemical poten-
tials are constrained to be equal due to chemical equilibrium.
In the superfluid state, there are both gapped and gapless
fermionic excitations, i.e., paired and unpaired fermions.
Only in the BEC region where the chemical potential be-
comes negative, the unpaired fermions disappear at zero tem-
perature. Once the pairs are condensed, the SU�3� symmetry
is spontaneously broken down to a SU�2� subgroup with five
broken generators. We showed that there are only three NG
modes, the one corresponding to the diagonal generator is
conventional and has linear dispersion law, and the other two
have quadratic dispersion law. The additional two expected
NG modes obtain a mass gap. While the mass gap is very
small compared with the energy gap � of the fermions in the
BCS limit, it is of the order of � in a wide range of the
coupling �pFas�−1 and can be reached in experiments of
atomic Fermi gas. As a consequence, the abnormal number
of the NG modes, the quadratic dispersion law, and the mass
gap have significant effect on the low-temperature thermody-
namics of the three-flavor Fermi gas.
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APPENDIX A: THE FUNCTIONS �I
ij
„q… FOR I=1,2

In this Appendix we evaluate the functions �I
ij�q� for I

=1,2. From the relations �I
22�q�=�I

11�−q� and �I
12�q�

=�I
21�q�=0, we need to evaluate �I

11 only. After the Matsub-
ara frequency summation and the analytical continuation
i�n→q0+ i�, we obtain

�I
11�q� =

1

g
+

1

2

 d3p

�2��3�1 − f�Ep� − f��p−q�
q0 − Ep − �p−q

up
2

+
f�Ep� − f��p−q�
q0 + Ep − �p−q

vp
2 +

1 − f�Ep� − f��p+q�
q0 − Ep − �p+q

up
2

+
f�Ep� − f��p+q�
q0 + Ep − �p+q

vp
2� �A1�

with the coherent coefficients up
2 and vp

2 defined as up
2 = �1

+�p /Ep� /2 and vp
2 = �1−�p /Ep� /2. In the superfluid phase

with ��0, using the gap equation for �, we can express it as

�I
11�q� = q0H�q� + J�q� �A2�

with the functions H�q� and J�q� defined as

H�q� =
 d3p

�2��3

1

2Ep
�1 − f�Ep� − f��p−q�

q0 − Ep − �p−q
−

f�Ep� − f��p−q�
q0 + Ep − �p−q

+
1 − f�Ep� − f��p+q�

q0 − Ep − �p+q
−

f�Ep� − f��p+q�
q0 + Ep − �p+q

� ,

J�q� =
 d3p

�2��3� �p − �p−q

2Ep
	1 − f�Ep� − f��p−q�

q0 − Ep − �p−q

−
f�Ep� − f��p−q�
q0 + Ep − �p−q


 +
�p − �p+q

2Ep
	1 − f�Ep� − f��p+q�

q0 − Ep − �p+q

−
f�Ep� − f��p+q�
q0 + Ep − �p+q


� . �A3�

We now list some properties of the functions H�q� and
J�q� which are useful to determine the dispersion laws. It is
easy to observe that the functions H and J are both even
functions of q,

H�q0,q� = H�q0,− q�, J�q0,q� = J�q0,− q� . �A4�

The function H�0,0� can be expressed as

H�0,0� = −
 d3p

�2��3

1

Ep
�1 − f�Ep� − f��p�

Ep + �p
+

f�Ep� − f��p�
Ep − �p

� .

�A5�

By using the identities

1

Ep

1

Ep + �p
=

2vp
2

�2 ,
1

Ep

1

Ep − �p
=

2up
2

�2 , �A6�

we derive the relation between H�0,0� and �Q8�,

H�0,0� = −
n1 + n2 − 2n3

�2 = −
�3�Q8�

�2V
. �A7�

The derivative of the function H with respect to q0 at q0
=0 ,q=0 can be written as
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� �H�q0,q�
�q0

�
�0,0�

= −
 d3p

�2��3

1

Ep
�1 − f�Ep� − f��p�

�Ep + �p�2

−
f�Ep� − f��p�

�Ep − �p�2 � . �A8�

The function J�q� can be expressed as

J�q� = −
q2

2m
H�q� +

1

m

 d3p

�2��3

p · q

2Ep
�1 − f�Ep� − f��p−q�

q0 − Ep − �p−q

−
f�Ep� − f��p−q�
q0 + Ep − �p−q

−
1 − f�Ep� − f��p+q�

q0 − Ep − �p+q

+
f�Ep� − f��p+q�
q0 + Ep − �p+q

� , �A9�

from which we obtain J�q0 ,0�=0 and

� �nJ�q0,q�
�q0

n �
�0,0�

= 0 �A10�

for any integer n. For the derivative with respect to q, only
the second derivative is nonzero,

� �2J�q0,q�
�q2 �

�0,0�
= −

1

m
H�0,0�, � �nJ�q0,q�

�qn �
�0,0�

= 0,

n � 2. �A11�

APPENDIX B: THE FUNCTIONS �I
ij
„q… FOR i=3

In this Appendix we evaluate the functions �I
ij�q� for I

=3. From the relations �3
22�q�=�I

11�−q� and �3
21�q�

=�I
12�q�, we need to evaluate �3

11 and �3
12 only. Completing

the Matsubara frequency summation and performing a shift-
ing p→p−q /2, we obtain

�3
11�q� =

1

g
+
 d3p

�2��3�	 up−q/2
2 up+q/2

2

q0 − Ep−q/2 − Ep+q/2

−
vp−q/2

2 vp+q/2
2

q0 + Ep−q/2 + Ep+q/2

�1 − f�Ep−q/2� − f�Ep+q/2��

+ 	 vp−q/2
2 up+q/2

2

q0 + Ep−q/2 − Ep+q/2
−

up−q/2
2 vp+q/2

2

q0 − Ep−q/2 + Ep+q/2



��f�Ep−q/2� − f�Ep+q/2��� ,

�3
12�q� = �2
 d3p

�2��3�	 1

q0 − Ep−q/2 − Ep+q/2

−
1

q0 + Ep−q/2 + Ep+q/2

1 − f�Ep−q/2� − f�Ep+q/2�

2Ep−q/2Ep+q/2

+ 	 1

q0 + Ep−q/2 − Ep+q/2

−
1

q0 − Ep−q/2 + Ep+q/2

 f�Ep−q/2� − f�Ep+q/2�

2Ep−q/2Ep+q/2
� .
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