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For two-component Fermi gases at zero temperature, through a general derivation based on the BCS wave
function, our research shows that the nonuniform molecular Bose-Einstein condensate has off-diagonal long-
range order and can be described well by an order parameter when the size of molecules is much smaller than
the size of the whole system. We also give the equation of state and nonlinear evolution equation for the order
parameter of nonuniform molecular condensates, which is similar to the Gross-Pitaevskii equation of atomic
Bose condensate. The nonlinear evolution equation is applied to consider the Josephson effect for two weakly
linked molecular condensates in the presence of nonuniform magnetic field. We find clear particle-number
oscillation where spatially dependent binding energy of molecules plays an important role.
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I. INTRODUCTION

With remarkable experimental realizations of molecular
Bose-Einstein condensates �BECs� �1� for two-component
Fermi gases near a Feshbach resonant magnetic field �2�,
molecular BECs, and the physics of BCS-BEC crossover
have attracted more and more theoretical and experimental
studies from different physical disciplines �3�. Theoretically,
there are a lot of studies �4–19� relevant to ultracold two-
component Fermi gases such as resonance superfluid �7,8�,
and universal behavior with divergent scattering length
�16–18�, etc. Experimentally, a lot of pioneering works were
done such as the condensate fraction �20�, collective excita-
tion �21�, pairing gap �22�, heat capacity �23�, Efimov state
�24�, etc. For two-component Fermi gases, below a critical
magnetic field, there is repulsive interaction between atoms
in different internal states, and the atoms are converted into
stable molecules due to the mechanism of magnetic-field
Feshbach resonance. Similarly to the atomic condensate, be-
low a transition temperature, stable molecular BECs can be
created in thermal equilibrium.

Most recently, stable vortex lattices for two-component
Fermi gases were observed in a beautiful experiment �25�.
This experiment gives strong evidence that molecular BEC
has superfluid behavior and can be described by a macro-
scopic wave function or an order parameter. About fifty years
ago, the idea of off-diagonal long-range order �ODLRO� �26�
was proposed to give the general criterion of a Bose conden-
sate. The ODLRO describes the essential quantum feature of
a Bose condensate because it has no classical analog �26,27�.
For a Bose condensate, if the one-particle density matrix can
be factorized, there is an ODLRO for the condensate, and the
condensate can be regarded as a macroscopic quantum object
which has stable spatial coherence property. On the side of
molecular BECs for two-component Fermi gases, it is nec-
essary to carefully consider the ODLRO and order parameter
of the system because a bosonic molecule consists of two
fermionic atoms.

Presently, the theoretical studies on the ODLRO and order
parameter are mainly carried out for uniform two-component

Fermi gases �29–31�. In this paper, we give a general study
on the ODLRO and order parameter of nonuniform molecu-
lar BECs for two-component Fermi gases. The analytic deri-
vations show clearly that molecular BECs have ODLRO and
can be described by an order parameter. On the other hand,
we also give the equation of state �or analytic expression of
the overall energy� for nonuniform two-component Fermi
gases in the deep BEC regime, which is consistent with a
previous conjecture �32�. The special case for uniform sys-
tem of our results agrees with the low-order term of the
equation of state based on Monte Carlo method �33� and the
result obtained from a new many-body wave function �35�.
From the expression of the overall energy, we give the non-
linear evolution equation for the order parameter of molecu-
lar BECs, and consider the role of spatially dependent bind-
ing energy in the Josephson effect for two weakly linked
molecular BECs in a double-well potential.

The paper is organized as follows. In Sec. II, we consider
the ODLRO and order parameter for nonuniform molecular
BEC based on the BCS wave function. In Sec. III, we
give the nonlinear evolution equation for the order parameter
of molecular BECs. In Sec. IV, based on the nonlinear
evolution equation, we consider the Josephson effect for two
weakly linked molecular BECs in the presence of a nonuni-
form magnetic field near the Feshbach resonance. A brief
summary and discussion is given in Sec. V.

II. ODLRO AND ORDER PARAMETER OF NONUNIFORM
MOLECULAR BECS

We first consider the off-diagonal long-range order
�ODLRO� and order parameter of molecular BECs based on
the BCS wave function. On the repulsive side of interatomic
interaction, the BCS wave function has been studied using
the Monte Carlo method for uniform trapping potential
�28,29,33�. Recently, the BCS wave function was also used
to consider the two-component Fermi gases at finite tempera-
ture and in the regime of unitarity limit �34�, and interesting
results about condensate fraction and critical temperature
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were given. The BCS wave function can be applied to the
regimes of molecular BECs and unitarity limit. In the regime
of fermionic superfluid, however, the Jastrow-Slater wave
function is more appropriate because the ground-state energy
based on this wave function is smaller than that based on the
BCS wave function. On the side of molecular BECs, here we
give general analytic derivations for nonuniform two-
component Fermi gases by using the BCS wave function.
For an equal number of fermionic atoms in two different
internal states, at zero temperature, the BCS wave function
takes the following form:

�BCS =
c

�N↓!
A��a�r11�� . . . �a�rii�� . . . �a�rN↑N↓

�

� �0�R11�� . . . �0�R j j�� . . . �0�RN↑N↓
�� , �1�

where A=�P�−1�pP is the antisymmerizer about r1� , . . .,
ri� , . . . ,rN↓

. �P is extended over the N↓! possible permuta-
tions. Here i , j , . . ., and i� , j� , . . ., label the atoms with internal
states �↑� and �↓�, respectively. N↑ and N↓ are, respectively,
the number of atoms in the internal states �↑� and �↓�. We
consider here the case of N↑=N↓. rii�=ri−ri� and Rii�= �ri

+ri�� /2 are, respectively, the relative coordinate and coordi-
nate of the center of mass of two paired atoms with coordi-
nate ri and ri�. �a is the wave function of the bound-state
solution of two paired atoms. �0 is the wave function for the
spatial freedom of molecules which is crucial when a non-
uniform trapping potential is considered. �a and �0 are both
normalized to 1.

In Eq. �1�, c is a normalization constant which is
determined by

� ��BCS�2�i=1
N↑ dri� j=1

N↓ dr j� = 1. �2�

After straightforward calculations, we have

c2	1 −
N↓�N↓ − 1��1

2
+

N↓�N↓ − 1��N↓ − 2��2

3

+ �higher-order terms�
 = 1. �3�

Here �1 and �2 are

�1 �� ��0�r��4dr� �a
*�− r1���a

*�r2 − r2���a�− r2��

��a�r2 − r1��dr1�dr2dr2� �4�

and

�2 �� ��0�r��6dr� �a
*�− r1���a

*�r2 − r2���a
*�r3 − r3��

��a�− r2���a�r2 − r3���a�r3 − r1��dr1�dr2dr2�dr3dr3�.

�5�

Here �1 and �2 represent, respectively, the four-body
and six-body correlations. In �1 and �2, we have used the
condition that the size lm of a molecule is much smaller
than the overall size L of the system. In the final expression

of the ODLRO, order parameter and overall energy, the co-
efficient c2 is cancelled out with an error on the order of
1 /N↓. Thus, we omit here the cumbersome expression for the
higher-order terms in Eq. �3�.

We define the ODLRO of molecular BECs as follows:

��x,x�;y,y�� =� �BCS
* �x,x�;r2,r2�; . . . ;rN↑

,rN↓
�

��BCS�y,y�;r2,r2�; . . . ;rN↑
,rN↓

�

��i=2
N↑ dri� j=2

N↓ dr j�. �6�

When lm�L and N↓	1, our calculations give

��x,x�;y,y�� � N↓�0
*�x + x�

2
�0�y + y�

2
�a

*�x − x��

��a�y − y�� . �7�

It is natural to define further the following ODLRO
f�x ,y� which is determined by

f*�x,y�f�x,y� =� �*�x,x�;y,y����x,x�;y,y��dx�dy�

= N↓
2��0�x��0�y��2. �8�

We see that f�x ,y�=N↓�0
*�x��0�y� shows the ODLRO of

molecular BECs when the internal freedom of molecules is
omitted. The factorability of f�x ,y� shows that there is off-
diagonal long-range order for molecular BECs when the fer-
mionic atoms in different internal states are in pairs.
�m=�N↓�0 is then the order parameter of the molecular
BEC, and nm=N↓��0�2 is the density distribution of the mo-
lecular BEC. These properties about molecular BECs are
natural results of the BCS wave function, because �a�rii��
and antisymmerizer A in Eq. �1� mean the pairing of all the
fermionic atoms �in different internal states� in the same way.

For lm�L, the factor N↑ in f�x ,y� shows that the conden-
sate fraction at zero temperature can approach 100%. This
result for uniform case is consistent with the result based on
the diffusion Monte Carlo method �29� and recent works in
Refs. �30,31�. Because Jastrow-Slater wave function is more
appropriate to consider the fundamental properties of fermi-
onic superfluid, even when the size of atomic Cooper pairs is
much smaller than L, we cannot get the result that the con-
densate fraction approaches 100%. As shown in Refs.
�29–31� based on the Jastrow-Slater wave function for fer-
mionic superfluid, the condensate fraction is much smaller
than 1 in the regime of fermionic superfluid. In the regime of
unitarity limit, because the BCS wave function can give
quite good description for two-component Fermi gases, we
expect that there is quite large condensate fraction at zero
temperature �29–31,34�.

III. NONLINEAR EVOLUTION EQUATION
OF MOLECULAR BECS

When the trapping potential and magnetic field inducing
the Feshbach resonance are considered, the two-component
Fermi gases in which all the fermionic atoms are paired into
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molecules are described by the following Hamiltonian:

Ĥ = Ĥ1 + Ĥ2 �9�

with

Ĥ1 = −

2

2m��
i=1

N↑

�ri

2 + �
i�=1

N↓

�ri�

2  + �
i,i�

v�rii�� �10�

and

Ĥ2 =
1

N↓
�
i,i�

Vext�Rii�� −
1

N↓
�
i,i�

B · �m�rii�� . �11�

Here m denotes the mass of fermionic atom. v�rii�� is the
two-body potential between two fermionic atoms in different
internal states, while Vext�Rii�� is the trapping potential for
the molecule. B and �m are, respectively, the magnetic field
and molecular magnetic moment.

The overall energy of the system is then

E = ��BCS�Ĥ��BCS� . �12�

Considering the permutation symmetry of the Hamiltonian
and the permutation antisymmetry for any two atoms
with the same internal state in the BCS wave function, we
have

��BCS�Ĥ1��BCS� = ��BCS��N↓
2
	−


2

2m
��r1

2 + �r2

2 + �r1�

2

+ �r2�

2 � + v�r11�� + v�r22��

+

N↓�N↓ − 1�
2

�v�r12�� + v�r1�2�����BCS� .

�13�

Introducing the relative coordinate and the coordinate
of the center of mass, the above equation can also be written
as

��BCS�Ĥ1��BCS� = ��BCS��N↓
2
	−


2

2M
��R11�

2 + �R22�

2 �

−

2

2�
��r11�

2 + �r22�

2 � + v�r11�� + v�r22��

+

N↓�N↓ − 1�
2

�v�r12�� + v�r1�2�����BCS� .

�14�

Here M is the molecular mass, while the reduced mass
is �=m /2. It is obvious that this equation can be simplified
as

��BCS�Ĥ1��BCS� = ��BCS��N↓	−

2

2�
�r11�

2 + v�r11��

−


2N↓
2M

�R11�

2 +
N↓�N↓ − 1�

2
�v�r12��

+ v�r1�2�����BCS� . �15�

We see that in the brace of the above equation, the first term
represents the molecular binding energy, while the second
term represents the kinetic energy of molecules. In the last
term in the brace v�r12��+v�r1�2� denotes the interacting po-

tential between two molecules. When lm� l̄ with l̄ being the
mean distance between particles, v�r12��+v�r1�2� can be re-
garded as gm�3��R11�−R22�� according to the pseudopoten-
tial method �36�. Here gm=4�
2am /M with am being the
scattering length between molecules.

After straightforward calculations, for lm�L and N↓	1,
we get

E = N↓�b + N↓� �0
*�−


2

2M
�2 + Vext − B · �m�0dV

+
N↓�N↓ − 1�gm

2
� ��0�4dV . �16�

The last term represents the interaction energy between mol-
ecules. Because N↓ is the number of molecules Nm, we see
that this term is similar to that of atomic condensate, espe-
cially the identical factor 1 /2. Together with the ODLRO
and order parameter in the last section, these calculations
show clearly the validity of the concept of molecular BECs
for two-component Fermi gases in the deep BEC regime.
This equation of state is consistent with a previous work in
Ref. �32�.

In the above formal derivation, we give general studies on
the overall energy, and do not involve the concrete calcula-
tions about the two-body interaction potential and scattering
length. In Ref. �37�, it is shown based on four-body colli-
sions that am�0.6a with a being the scattering length be-
tween fermionic atoms in different internal state, and the
binding energy �b=−
2 /ma2. When this important result
about the molecular scattering length and binding energy is
used, the overall energy for the special case of uniform sys-
tem given by Eq. �16� agrees with the result of Monte Carlo
method �33� in the deep BEC regime.

Based on the overall energy given by Eq. �16� and the
ordinary action principle, we get the following nonlinear
evolution equation about the order parameter �m:

i

��m

�t
= �−


2

2M
�2 + Vext + �b − B · �m�m + gm��m�2�m.

�17�

We see that this equation is similar to that of atomic conden-
sate. We stress that the valid condition of this equation is

lm� l̄, and this equation can be applied for nonuniform trap-
ping potential and nonuniform magnetic field once this
condition is satisfied for the whole system.
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IV. JOSEPHSON EFFECT OF TWO WEAKLY LINKED
MOLECULAR CONDENSATES

For two weakly linked atomic condensates, the Josephson
effect has been studied both theoretically and experimentally
�see Ref. �38�, and references therein�. Here we consider
the Josephson effect of two weakly linked molecular conden-
sates confined in a double-well potential based on the
evolution equation �17�.

We first give a general study based on the widely used
two-mode approximation. Assume that

�m = �1�t��1�x� + �2�t��2�x� . �18�

Here �1,2�t�=�N1,2�t�ei�1,2�t� with N1 and N2 being the num-
ber of molecules in each well. Based on Eq. �17�, it is
straightforward to get

S = − �1 − z2 sin � ,

�
·

= �z +
z

�1 − z2
cos � + �E . �19�

Here z= �N1−N2� /Nm and �=�2−�1. In addition

�E =
E1

0 − E2
0

2K
+

�U1 − U2�Nm

4K
,

� =
�U1 + U2�Nm

4K
, �20�

where

E1,2
0 =� 	 
2

2m
���1,2�2 + �Vext + �b − B · �m���1,2�2
dV ,

U1,2 =� gm��1,2�4dV ,

K = −� 	 
2

2m
� �1 · ��2 + �Vext + �b − B · �m��1�2
dV .

�21�

Although the formal solution for the Josephson effect
given by Eq. �19� is similar to atomic condensate �39�, the
coefficients given by Eq. �21� are quite different by noting
especially the binding energy �b which is spatially dependent
in the presence of a nonuniform magnetic field near B0.
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FIG. 1. �a� shows the double-well potential Vext, while Fig. 1�b�
shows the effective potential Veff �solid line� and Vbin �dashed line�
when the potential �ex ·�m due to a nonuniform magnetic field is
not considered. Here Vext, Veff, and Vbin are in units of E0, while the
spatial coordinate is in units of lz. We see that the spatially depen-
dent binding energy can change significantly the effective potential,
while the term �ex ·�m plays a minor role.
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FIG. 2. Shown are the density
distribution and particle-number
oscillation with the development
of time. A clear particle-number
oscillation driven mainly by the
spatially dependent binding en-
ergy is shown in this figure. The
density distribution in Figs.
2�a�–2�d� corresponds to the
circles in Fig. 2�e�. Here the spa-
tial coordinate is in units of lz,
while the time is in units of T0.
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We calculate numerically the evolution equation �17�
for two weakly linked molecular condensates confined
in a double-well potential and in the presence of a nonuni-
form magnetic field. We consider the two-component
fermionic gases of 6Li with �↑ �= �F=1/2 ,mF=1/2� and
�↓ �= �F=1/2 ,mF=−1/2�. For a magnetic field inducing the
Feshbach resonance, a�B�=Aar�1−w / �B−B0�� with ar being
the Bohr radius. We stress in the present work the role of the
spatially dependent binding energy �b in the Josephson effect
of two weakly linked molecular BECs. Thus, we consider the
narrow resonance located at B0=543.25 G. For this narrow
resonance, A=60 and w=0.1 G �40�. The merit of the narrow
resonance is that a specific nonuniform magnetic field can
influence largely the binding energy, while the term B ·�m is
weakly spatially dependent. In this situation, the spatially
dependent binding energy can play an important role in the
Josephson effect.

The double-well potential is

Vext =
1

2
M���

2 �x2 + y2� + �z
2z2� + Ue−z2/�z

2−�x2+y2�/��
2

,

�22�

with the first term being the harmonic potential due to an
optical trap, while the second term being the central barrier
due to a far-off blue-detuned laser beam located at the center
of the harmonic potential �41�. Here U is proportional to the
intensity of the laser beam.

For t�0, we assume that two weakly linked molecular
condensates are confined in this double-well trap with a uni-
form magnetic field B= �B0+�B�ex. For t�0, we change the
magnetic field with the following form:

B�r,t� = �B0 + �B + ��r,t��ex. �23�

In numerical calculations, it is useful to introduce
the transformations t=2� /�z and x= lzx0, y= lzy0, z= lzz0 with
lz=�
 /M�z. With these transformations, x0, y0, z0, and �
become dimensionless. Introducing further the transforma-
tion �m=�Nm�d / lz

3/2, we get the following dimensionless
evolution equation:

i
��d

��
= − �0

2�d + 	z0
2 +

��
2

�z
2 �x0

2 + y0
2�

+ U0e−z0
2/��z

0�2−�x0
2+y0

2�/���
0 �2
�d −

2B · �m


�z
�d −

4

a0
2�d

+ g0�z0,����d�2�d, �24�

where �0
2=�2 /�x0

2+�2 /�y0
2+�2 /�z0

2, �z
0=�z / lz, ��

0 =�� / lz,
U0=2U /
�z, a0=a / lz. �d is normalized to 1. In addition, the
dimensionless coupling constant g0=8�Nmam / lz. In the
above equation, time and length are, respectively, in units of
T0=2/�z and lz, while energy is in units of E0=
�z /2. The
parameters are chosen as �z=2��50 s−1, ��=5�z,
Nm=103, �B=−0.002 G, U0=60, �z

0=1, ��
0 =5�z

0. Here,
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FIG. 3. Illustration of Veff �solid line� and Vbin �dashed line� in
the presence of the gradient magnetic field 2.44 G/m. Here Veff and
Vbin are in units of E0, while the spatial coordinate is in units of lz.
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FIG. 4. In the presence of the
gradient magnetic field, shown are
the density distribution and
particle-number oscillation with
the development of time. The den-
sity distribution in Figs. 4�a�–4�d�
corresponds to the circles in Fig.
4�e�. Here the spatial coordinate is
in units of lz, while the time is in
units of T0.
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��B� is much smaller than the field width w, so that the
analytic expression of the binding energy used in the present
work may be applied approximately. In addition, ��m�=2�B
with �B being the Bohr magneton �see Ref. �42��. The spa-
tially dependent magnetic field ��r , t� will be chosen as two
different cases as shown in the following subsections.

A. Josephson effect driven by binding energy

To show the Josephson effect driven mainly by the bind-
ing energy, in this subsection, � is assumed as

��z0,�� = �0�1 − e−���
e�z0 − e−�z0

e�z0 + e−�z0
. �25�

In the numerical calculations, the parameters are �=1 and
�=1. In Fig. 1�a�, we show the double-well potential
Vext, while we show in Fig. 1�b� the effective potential
Veff�x0=y0=0 ,z0�=Vext−�ex ·�m+�b−�b�z0=0� for �0=3
�10−5 G and �	1 by solid line. We also give in this figure
Vbin�x0=y0=0 ,z0�=Vext+�b−�b�z0=0� with the same param-
eters for Veff by dashed line. It is shown clearly that the term
�ex ·�m plays a minor role in the effective potential. We see
that the binding energy can change significantly the effective
potential, and make the effective potential become nonsym-
metric about z0=0. It is natural that for nonzero �0, there
would be particle-number oscillation between two wells. For
�0=3�10−5 G, �gm /gm�5% ��gm is the difference of the
coupling constant between two wells�. Thus, the weakly spa-
tially dependent coupling constant also plays a minor role in
the Josephson effect.

In our numerical calculations, the initial ground state at
�=0 is obtained based on Eq. �24� with an imaginary time
propagation method. n0�z0 ,��=���d�2dx0dy0 is shown in Fig.
2�a� at �=0. For ��0, the evolution of �d is calculated by a
split-step Fourier method. In Figs. 2�b�–2�d�, the density
distribution n0�z0 ,�� is shown for different dimensionless
time. In Fig. 2�e�, we give the evolution of the proportion
N1 /Nm of the number of molecules in the regime z0�0, i.e.,
N1 /Nm=�−�

� dx0dy0�−�
0 dz0��d�2, and clear particle-number

oscillation is shown.

B. Josephson effect driven by a gradient magnetic field

At least in the near feature, the Josephson effect driven by
a gradient magnetic field is feasible because the gradient
magnetic field is a routine experimental technology. For this
situation, however, in addition to the binding energy, the
term B ·�m and spatially dependent coupling constant gm also
play an important role in the Josephson effect. For the
gradient magnetic field, � is

��z,�� = ��1 − e−���z , �26�

with �=1 and �=2.44 G/m. In Fig. 3, we give Veff and Vbin
for these parameters, which show that both the spatially
dependent binding energy and �ex ·�m play an important role
in the Josephson effect. In Fig. 4�e�, we give the numerical
result of N1 /Nm with the development of time. In Figs.
4�a�–4�d�, the density distribution n0�z0 ,�� for different
dimensionless time is shown. This sort of gradient magnetic
field and �B=−0.002 G can be realized in the present
experimental manipulation of magnetic field with a pair of
anti-Helmholtz coils and magnetic field shielding �43�.

V. SUMMARY AND DISCUSSION

In summary, for ultracold two-component Fermi gases,
we have shown that nonuniform molecular condensates
have off-diagonal long-range order and can be described by
an order parameter when the size of molecules is much
smaller than the effective size of the whole system. In the
deep BEC regime, we give the nonlinear evolution equation
for nonuniform molecular condensates based on some formal
derivations. Obviously, the general nonlinear evolution equa-
tion for nonuniform external potential and nonuniform mag-
netic field �or spatially dependent scattering length and bind-
ing energy� has a lot of interesting applications for the
dynamic evolution of the ultracold two-component Fermi
gases. As an application of this nonlinear evolution equation,
we have studied the Josephson effect of two weakly linked
molecular condensates after a nonuniform magnetic field is
imposed. In our numerical results, clear particle-number os-
cillation is shown. At least for the case of gradient magnetic
field, the theoretical predication may be tested in the present
experimental technology. In previous work �44�, our research
shows that with an appropriate gradient magnetic field for
6Li near the narrow resonance, ultracold two-component
Fermi gases would be in a coexistence of the regimes of
BCS, BEC, and unitarity limits. Combining with a double-
well system, this coexistence gives us opportunities to inves-
tigate a new type of Josephson effect such as the Josephson
effect between molecular BEC and gas in the unitarity limit
�or BCS superfluid and gas in the unitarity limit, molecular
BEC, and BCS superfluid�. As a first step, here we have
studied the Josephson effect driven by spatially dependent
binding energy in the presence of a gradient magnetic field.
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