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We study the action of the force and torque induced by a guided light field on a cesium atom outside a
nanofiber. We demonstrate that the evanescent light field in a circular fundamental guided mode can force the
atom to rotate around the nanofiber for a macroscopic time. We find that, due to the action of the torque, the
angular momentum of the atom increases with time.
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I. INTRODUCTION

The tightly confining traps of cold atoms allow one to
envisage a broad spectrum of applications ranging from
highly sensitive sensors to quantum information technology
�1,2�. With the use of microstructured surfaces �atom chips�,
it becomes possible to confine and manipulate cold atoms on
the micrometer-length scale �1,2�. Microtraps used in the
previous experiments are magnetic traps produced by
current-carrying wires or periodically magnetized surfaces.
Recently, the limitations of the coherent manipulation of
neutral atoms have been found in the traps based on current-
carrying wires �3,4�. An alternative way for tightly confining
of cold atoms is based on a photon-carrying nanofiber �5,6�.
The method requires the use of a single �red-detuned� light
beam �5� or two �red- and blue-detuned� light beams �6�
launched into the fiber. In the single-color scheme �5�, the
trapping is achieved by the balance between the optical di-
pole force of a red-detuned light field and the centrifugal
force on a spinning atom. In the two-color scheme �6�, the
trapping is achieved by the balance between the optical di-
pole forces of a red-detuned light field and a blue-detuned
light field. The optical dipole forces used in the above
schemes are produced by the gradient of the field intensity in
the radial direction. Such forces are conservative. When the
fields are far from resonance with the atom, the dissipative
forces are negligible. With anticipation of preserving the co-
herence of the matter waves, a photon-carrying nanofiber
could be a more quiet environment for cold atoms than a
current-carrying microwire.

When the guided light field is not very far from resonance
with the atom outside the nanofiber, the force of light on the
atom is complicated. Because of the specifics of the nanofi-
bers, the electric and magnetic field vectors of a guided mode
have three different substantial components: axial, radial,
and azimuthal �7�. Consequently, the Poynting vector for the
field in a circular fundamental guided mode has two different
substantial components, axial and azimuthal, which lead to
axial and azimuthal pressure forces on the atom. These
forces are substantial when the detuning of the field is not
very large compared to the absorption linewidth of the atom.

The axial force influences the translational motion of the
atom along the fiber. The azimuthal force yields a torque that
influences the rotational motion of the atom around the fiber.

In this paper, we study the action of the light-induced
force and torque on a cesium atom outside a photon-carrying
nanofiber. We demonstrate that the evanescent light field in a
circular fundamental guided mode can force the atom to ro-
tate around the nanofiber for a macroscopic time, with an
increasing angular momentum.

The paper is organized as follows. In Sec. II, we describe
the model. In Sec. III, we derive the basic equations for the
internal state and center-of-mass motion of the atom. In Sec.
IV, we present numerical results. Our conclusions are given
in Sec. V.

II. MODEL

We consider a cesium atom interacting with light in a
circular fundamental mode of a subwavelength-diameter
single-mode fiber �nanofiber� �see Fig. 1�. The thin fiber has
a cylindrical silica core of radius a and refractive index n1
and an infinite vacuum clad of refractive index n2=1.

A. Evanescent light field outside the fiber

We first describe the guided light field. The frequency,
free-space wave number, and free-space wavelength of the
field are denoted by �, k=� /c, and �=2� /k, respectively.
For certainty, we assume that the rotation direction of the
field polarization around the fiber axis z is counterclockwise.

We represent the electric component of the field as E
= �Ee−i�t+E*ei�t� /2. We introduce the notation E−1= �Ex

− iEy� /�2, E0=Ez, and E1=−�Ex+ iEy� /�2 for the spherical
tensor components of the field envelope vector E. Outside
the fiber, in the cylindrical coordinates �r ,� ,z�, the spherical
tensor components of the field are given by �7,8�

E−1 = �2 iN�1 − s�K0�qr�ei�z,

E0 = N2q

�
K1�qr�ei��z+��,

E1 = − �2iN�1 + s�K2�qr�ei��z+2��. �1�

Here, � is the axial propagation constant for the fiber funda-
mental mode, q= ��2−n2

2k2�1/2 characterizes the decay of the
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field outside the fiber, and s is defined as s= �1/q2a2

+1/h2a2� / �J1��ha� /haJ1�ha�+K1��qa� /qaK1�qa��, with h
= �n1

2k2−�2�1/2 being a parameter for the field inside the fiber.
The coefficient N characterizes the amplitude of the field.
The notation Jn and Kn stand for the Bessel functions of the
first kind and the modified Bessel functions of the second
kind, respectively.

We note that, for conventional, weakly guiding fibers �7�,
the components E1 and E0 are negligible as compared to E−1.
However, for subwavelength-diameter fibers, E1 and E0 are
not negligible at all �9�. In the close vicinity of the surface of
a thin fiber, the components E−1, E0, and E1 are comparable to
each other. The effects of these components on the atom are
of the same order. Therefore, we must include all the three
components of the field in the calculations for the atomic
state.

An important characteristic of the light propagation is the
cycle-averaged Poynting vector S= �1/2�Re�E�H*�. Here,
H is the envelope vector of the magnetic component of the
field. The parameter Pz=�0

2�d��0
�Szrdr, which is the integral

of the axial flow of energy Sz over the transverse plane of the
fiber, is the propagation power of light. Since the mode con-
sidered is a guided mode, the radial component of the Poyn-
ting vector is vanishing, that is, Sr=0. The explicit expres-
sions for the axial component Sz and the azimuthal
component S� of the Poynting vector are given in Ref. �10�.
In the case of conventional weakly guiding fibers �7�, S� is
small compared to Sz. However, in the case of nanofibers, S�

is comparable to Sz �see Fig. 2�. The component S� describes
the energy flow that circulates around the fiber. The presence
of this flow is a consequence of the fact that the longitudinal
component of the field in the fundamental mode is not zero.

Outside the fiber, the linear and angular momentum den-
sities of the electromagnetic field are given by p=S /c2 and

j	�r�p�= �r�S� /c2, respectively �11�. The axial flow of
energy Sz produces the axial linear momentum density pz
=Sz /c2. The azimuthal flow of energy S� produces the azi-
muthal linear momentum density p�=S� /c2. Note that S�

also produces the angular momentum density jz=rS� /c2 with
respect to the fiber axis �10�.

B. Atom–field interaction

We now examine the interaction of the cesium atom with
the evanescent light field outside the fiber. We consider the
hyperfine-structure �hfs� magnetic substates 
FM�
	
LSJIFM� and 
F�M��	
L�SJ�IF�M�� of a lower state

LJ� and an upper state 
L�J��, respectively. Here L, S, J, I, F,
and M are the quantum numbers for the orbital electronic
angular momentum, electronic spin, total electronic angular
momentum, nuclear spin, total atomic angular momentum,
and magnetic momentum, respectively. The electronic and
nuclear spins of atomic cesium are S=1/2 and I=7/2. We
study the D2 line, which occurs at the wavelength �0
=852 nm and corresponds to the transition from the ground
state 6S1/2 �with L=0 and J=1/2� to the excited state 6P3/2
�with L�=1 and J�=3/2�. We assume that the cesium atom is
initially prepared in the hfs level F=4 of the ground state
6S1/2 and that the field is tuned close to resonance with the
hfs level F�=5 of the excited state 6P3/2 �see the lower part
of Fig. 1�. Among the hfs components of the D2 line, the
transition 6S1/2F=4↔6P3/2F�=5 has the strongest oscillator
strength. Because of the selection rule 	F=0, ±1, spontane-
ous emission from the excited hfs level 6P3/2F�=5 to the
ground state is always to the ground-state hfs level 6S1/2F
=4, not to the other ground-state hfs level 6S1/2F=3. There-
fore, the magnetic sublevels of the hfs levels 6S1/2F=4 and
6P3/2F�=5 form a closed set, which is used for laser cooling
in magneto-optical traps �12�.

We introduce the notation e=eM�=F�M� and g=gM
=FM for the magnetic sublevels of the hfs levels F� and F,
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FIG. 1. �Color online� Upper part: Components of the light-
induced force on an atom outside a nanofiber. Lower part: Sche-
matic of the 6P3/2F�=5 and 6S1/2F=4 hyperfine-structure �hfs� lev-
els of a cesium atom.
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FIG. 2. Axial component Sz �solid line� and azimuthal compo-
nent S� �dashed line� of the Poynting vector, normalized to the
saturation intensity Is=1.1 mW/cm2. The fiber radius is a
=100 nm, the refractive indices of the fiber and the vacuum clad are
n1=1.45 and n2=1, respectively, the light wavelength is �
=852 nm, the light polarization is counterclockwise rotating, and
the light propagation power is Pz=10 nW.
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respectively. The interaction of the multilevel atom with the
classical coherent field is characterized by the Rabi frequen-
cies 
eg

�I�= �deg ·E� / � =�l=0,±1�−1�ldeg
�l�E−l /�. Here, deg

�l� with l
=0, ±1 is the l spherical tensor component of the dipole
moment for the transition between the magnetic sublevels e
and g �13,14�. Note that deg

�l� is nonzero only if l=Me−Mg

=0, ±1. Therefore, 
eg
�I� is nonzero only if Me−Mg=0, ±1.

Hence, we have 
eg
�I�= �−1�ldeg

�l�E−l /�, where l=Me−Mg

=0, ±1. In terms of the Rabi frequencies 
eg
�I�, the Hamil-

tonian for the atom–field interaction can be written as

Hint = −
�

2 �
eg

�
eg
�I��eg

�I� + H.c.� , �2�

where �eg
�I�= 
e�
g
. This Hamiltonian will be used to derive

the basic equations for the atom in Sec. III.

III. EQUATIONS OF MOTION FOR THE ATOM

The interaction between the atom and the evanescent field
affects not only the internal state but also the position and
velocity of the atom. In this section, we present the basic
equations of motion for the internal state and center of mass
of the atom.

A. Equations for the internal-state density matrix

We first consider the internal state of the atom. We call

�I� the density operator of the atomic internal state in the
interaction picture. The evolution of the matrix elements of

�I� is governed by the generalized Bloch equations given in
Ref. �8�. When we use the transformation


ee� = 
ee�
�I� ei�Me−Me���,


gg� = 
gg�
�I� ei�Mg−Mg���,


ge = 
ge
�I�ei�zei�Mg−Me+1��, �3�

we find from the Hamiltonian �2� the equations


̇ekel
=

i

2�
j

�
ekgj

gjel

− 
gjel

ekgj

� −
1

2�
j

��ekej

ejel

+ �ejel

ekej

� + i�Mk − Ml��̇
ekel
, �4a�


̇gkgl
= −

i

2�
j

�
ejgl

gkej

− 
gkej

ejgl

� + �
i,j

�ejeiglgk

eiej

+ i�Mk − Ml��̇
gkgl
, �4b�


̇gkel
= −

i

2�
j


gjel

gkgj

+
i

2�
j


gkej

ejel

−
1

2�
j

�ejel

gkej

− i�� − �ż − �Mk − Ml + 1��̇�
gkel
. �4c�

Here, Mj is a short notation for the magnetic quantum num-
bers Mej

and Mgj
, �=�−�0 is the detuning of the field fre-

quency � from the atomic transition frequency �0=�e−�g,

and �ee�gg� and �ee� are the characteristics of spontan-
eous emission. The coefficients �ee�gg� and �ee� depend on r
but not on z and �. They are defined as �ee�gg�
=�ee�gg�e

i�Me−Me���e−i�Mg−Mg��� and �ee�=�ee�e
i�Me−Me���,

where the decay parameters �ee�gg� and �ee� are given in Ref.
�14�. In deriving Eqs. �4�, we have introduced the phase-
shifted field amplitudes El=Ele

−i�ze−i�l+1�� and the phase-
shifted Rabi frequencies 
eg=
eg

�I�e−i�ze−i�Mg−Me+1��

=�l=0,±1�−1�ldeg
�l�E−l /�. The explicit expressions for El are

E−1=�2iN�1−s�K0�qr�, E0=N�2q /��K1�qr�, and E1=

−�2iN�1+s�K2�qr�. Since the transformed field amplitudes
El are independent of z and �, so are the transformed Rabi
frequencies 
eg.

The expression in the last line of Eq. �4c� contains the
conventional axial Doppler shift

�axial = �ż �5�

and the azimuthal Doppler shift

�azimuth
gkel = �Mk − Ml + 1��̇ . �6�

Meanwhile, Eqs. �4a� and �4b� show that the azimuthal mo-
tion of the atom leads the relative frequency shifts

�azimuth
ekel = �azimuth

gkgl = �Mk − Ml��̇ �7�

for the upper-sublevel pair �ek ,el� and the lower-sublevel
pair �gk ,gl�.

The axial Doppler shift �5� is a frequency shift that would
arise from a plane wave traveling with the propagation con-
stant � along the z axis. The azimuthal Doppler shifts �6� and
�7� are directly proportional to the quantum numbers Mk
−Ml+1 and Mk−Ml, respectively, which characterize the
change in angular momentum of the atomic internal state.
Such shifts are due to the rotational motion of the atom that
generates an inertial field in a rotating frame in which the
atom is at rest �15�. This inertial field acts like a fictitious
magnetic field parallel to the rotation axis z. It splits the
magnetic sublevels of the ground and excited states of the
atom when the latter is rotating around the fiber �15�.

In particular, the azimuthal Doppler shift is �azimuth
gkel =0, �̇,

and 2�̇ for Mk−Ml=−1, 0, and 1, respectively. This shift is
very similar to the azimuthal Doppler shift of a two-level
atom interacting with a Laguerre-Gaussian beam �16�. The
difference is that the former depends on the quantum num-
bers of the atomic energy sublevels, whereas the latter de-
pends on the orbital quantum number of the light beam. The
reason for this difference is the following: The azimuthal
Doppler shift of a transition is proportional the azimuthal-
phase factor of the field component that causes the transition
�16�. In the case considered here, the azimuthal-phase factor
takes the different values 0, 1, and 2 for the field components
E−1, E0, and E1, respectively �see Eqs. �1��. Meanwhile, the
angular momentum of each atomic energy sublevel is speci-
fied by its quantum numbers F and M. These features, com-
bined with the angular-momentum conservation law and the
transition-selection rules, lead to the factor Mk−Ml+1 in ex-
pression �6�. In the case of a Laguerre-Gaussian beam �16�,
the azimuthal-phase factor coincides with the orbital angular
number. This factor is the same for all the three spherical
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tensor components of the field. Hence, the azimuthal Dop-
pler shift of an arbitrary transition in the case of a Laguerre-
Gaussian beam just depends on the orbital angular number. It
does not depend on the quantum numbers of the atomic lev-
els at all �16�.

B. Equations for the center-of-mass motion

We now consider the center-of-mass motion of the atom.
We perform a semiclassical treatment for this motion. In
such a treatment, the center-of-mass motion is governed by
the force that is calculated from the quantum internal state of
the atom. The force of the light field on the atom is defined
by the formula

F = − 
�Hint� . �8�

Inserting Eq. �2� into Eq. �8� gives

F =
�

2 �
eg

���
eg
�I��
ge

�I� + c.c. � . �9�

The axial component Fz of the force is a light pressure force
and is given by

Fz =
i � �

2 �
eg

�
eg
�I�
ge

�I� − c.c. � . �10�

The radial component Fr of the force is a gradient force and
is given by

Fr =
�

2 �
eg
� �
eg

�I�

�r

ge

�I� + c.c. � . �11�

The azimuthal component F� of the force is a light pressure
force and is given by

F� =
i�

2r��eg

�
eg
�I�
ge

�I� + 2�
eg

�
eg
�I�
ge

�I� − c.c. � . �12�

Here the notation �eg� and �eg� mean the summations under
the conditions Me−Mg=0 and Me−Mg=−1, respectively.

According to Eq. �10�, all the three types of transitions,
with Me−Mg=−1, 0, or 1, can contribute to the axial pres-
sure force Fz. This force is related to the recoil of photons
with the axial wave vector �ẑ. Indeed, in a particular case
where the atom is at rest and the internal state 
�I� of the
atom is stationary, we have i�g�
eg

�I�
ge
�I�−c.c. �=�e���ee�
e�e

�I�

+c.c. �. Then, Eq. �10� yields Fz= ���sc, where �sc

=�ee��ee�
e�e
�I� is the scattering rate of the atom.

According to Eq. �12�, the transitions with Me−Mg=0
and Me−Mg=−1 contribute to the azimuthal pressure force
F� with the weight factors 1 and 2, respectively. Meanwhile,
the transitions with Me−Mg=1 do not contribute to F� at all.
The weight factors 0, 1, and 2 originate from the azimuthal-
phase factors of the field spherical tensor components E−1,
E0, and E1, which enable the transitions with Me−Mg=1, 0,
and −1, respectively �see Eqs. �1��.

Unlike the forces Fz and F�, the force Fr is determined by
the gradient of the field. It is related to the dynamical Stark
shift of atomic energy levels. In a particular case where the

field detuning � is large compared to the Rabi frequencies
and the effect of the fiber on the decay rates is negligible, we
get Fr=−�Uopt /�r, where Uopt= ���eg 

eg
2 / �4�2F+1���2

+�0
2 /4�� is the optical potential with �0 being the natural

linewidth. It is clear that Uopt is attractive or repulsive when
the detuning � is negative or positive, respectively.

For convenience, we rewrite expressions �10�–�12� for the
components of the force of light using the density matrix
elements �3�. The results are

Fz =
i � �

2 �
eg

�
eg
ge − c.c. � ,

Fr =
�

2 �
eg
� �
eg

�r

ge + c.c. � ,

F� =
i�

2r
�
eg

��Mg − Me + 1�
eg
ge − c.c. � . �13�

In addition to the force of light, the van der Waals force
from the fiber also acts on the atom when the latter is in a
close vicinity of the fiber surface. This material-induced
force is aligned along the radial direction and is given as
FvdW=−�UvdW/�r, where UvdW is the van der Waals potential
of the atom outside the fiber. Note that UvdW depends on the
internal state of the atom. When we neglect the interference
between the atomic bare states, we have UvdW=UvdW

�g� �g
gg

+UvdW
�e� �e
ee, where UvdW

�g� and UvdW
�e� are the van der Waals

potentials for ground- and excited-state atoms, respectively.
According to Ref. �18�, in the case of a cesium atom near a
flat surface, the van der Waals coefficient C3

�e� for the excited
state 6P3/2 is larger than the coefficient C3

�g� for the ground
state 6S1/2 by a factor �=C3

�e� /C3
�g�=1.98. We can generalize

this result to the case of a cylindrical surface by assuming
that UvdW

�e� and UvdW
�g� have the same shape. Then we have

UvdW
�e� =�UvdW

�g� , where �=1.98. The van der Waals potential

UvdW
�g� for a ground-state cesium atom outside a fiber has been

calculated �5,6,17�. Using the result for UvdW
�g� , we can easily

calculate UvdW. Note that the van der Waals interaction can
influence not only the center-of-mass motion but also the
transition frequency of the atom. Therefore, when the atom is
in a close vicinity of the fiber surface, a surface-induced
frequency shift �vdW=UvdW

�e� −UvdW
�g� = ��−1�UvdW

�g� must be
added to the atomic transition frequency �0.

Driven by the force from the guided light and the van der
Waals force from the fiber, the classical motion of the center
of mass of the atom is described by the equations

mz̈ = Fz, �14a�

mr̈ = mr�̇2 + Fr + FvdW, �14b�

mr�̈ = − 2mṙ�̇ + F�. �14c�

Here m is the mass of the atom.
Equation �14a� indicates that, due to the pressure force Fz,

the axial motion of the atom will be either accelerated or
decelerated. Equation �14b� shows that the radial motion of

LE KIEN, BALYKIN, AND HAKUTA PHYSICAL REVIEW A 74, 033412 �2006�

033412-4



the atom is determined by the combined action of the gradi-
ent force Fr, the van der Waals force FvdW, and the centrifu-
gal force Fcf=mr�̇2=Lz

2 /mr3. Here Lz=mr2�̇ is the z compo-
nent of the orbital angular momentum of the atom with
respect to the fiber axis. In terms of Lz, Eq. �14c� can be

rewritten as L̇z=Tz, where Tz=rF� is the torque. This torque
is produced by the azimuthal component F� of the force of
light on the atom. It makes Lz vary in time. Manipulating the
torque Tz, we can produce and control the rotational motion
of the center of mass of the atom around the fiber. In particu-
lar, when we want keep the rotation somewhat stable, we
need to minimize Tz.

IV. NUMERICAL RESULTS

In this section, we perform numerical calculations for the
internal state and center-of-mass motion of the cesium atom
driven by the evanescent wave of a near-resonant light field
in a counterclockwise rotating fundamental guided mode of
the nanofiber. The wavelength � of the guided light is tuned
to the cesium D2 line wavelength �0=852 nm. The refractive
indices of the fiber and the vacuum clad are n1=1.45 and
n2=1, respectively. For calculations, we choose the fiber ra-
dius a=100 nm, which is small enough that the field can
penetrate to a distance of several times of a outside the fiber
�see Fig. 2�. The chosen values of � and a satisfy very well
the condition a /��0.283, which is required for trapping of
atoms by the single-color technique �5�.

In order to get insight into the specifics of the guided light
field outside the fiber, we first illustrate in Fig. 2 the spatial
variations of the axial component Sz �solid line� and the azi-
muthal component S� �dashed line� of the Poynting vector.
The figure shows that S� is smaller than but comparable to Sz
in the close vicinity of the fiber surface. In addition, we
observe that S� decreases in space faster than Sz does. In
other words, Sz penetrates into outside the fiber deeper than
S� does. We note from the figure that, although the propaga-
tion power is as small as 10 nW, the magnitudes of the Poyn-
ting vector components Sz and S� in the close vicinity of the
fiber surface are much larger than the saturation intensity Is
=2�2�c�0 /3�0

3=1.1 mW/cm2 for the cesium D2 line �12�.
Thus, a very small power can still produce a substantial in-
tensity in the close vicinity of the fiber surface. This is be-
cause the light field is confined in the fundamental mode of
the fiber.

We now calculate the force F of the guided light on the
cesium atom in the case where the atom is in its steady
internal state. We take into account the effect of the fiber on
the spontaneous decay characteristics of the atom �14�. How-
ever, for simplicity, we temporarily neglect the effect of the
van der Waals interaction on the atomic transition frequency.

We begin with the case where the atom is at rest. We
derive the force by calculating the steady-state solution for
Eqs. �4� and inserting the result into Eqs. �13�.

We illustrate in Fig. 3 the spatial dependences of the axial,
azimuthal, and radial components of the force of light on the
atom. The detuning of the field from the D2 line of the atom
is � /2�=−50 MHz. Figures 3�a� and 3�b� show that F� is
smaller than but comparable to Fz in the close vicinity of the

fiber surface and that F� decreases in space faster than Fz
does. Such behavior is reminiscent of the behavior of Sz and
S�. Figure 3�c� shows that the radial component Fr, produced
by a negative detuning, is an attractive force.

We illustrate in Fig. 4 the frequency dependences of the
axial, azimuthal, and radial components of the force of light
on the cesium atom. The position of the atom is r /a=4.
Figures 4�a� and 4�b� show that F� and Fz are symmetric
functions of �, with peaks at �=0. Figure 4�c� shows that Fr
is an antisymmetric function of � and is attractive, zero, or
repulsive for negative, zero, or positive detuning �, respec-
tively.

Because of the Doppler effect and the radial variations of
the field, the force F of the guided light depends on the
velocity v= �vr ,v� ,vz� of the atom. We study the velocity
dependence of the force. For simplicity, we limit ourselves to
the case where the atom is in its local steady internal state. It
is easy to calculate the dependences of F on vz and v� since
these velocity components appear explicitly in Eqs. �4�.
However, the dependence of F on vr is hidden by the radial
dependences of the Rabi frequencies and decay characteris-
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tics. To calculate the effect of a small velocity vr on the
force, we perform a simple linearization procedure �12�. In
this procedure, we insert the formula 
̇=�
 /�t+vr�
 /�r into
Eqs. �4�, drop the time partial derivative �
 /�t in the steady-
state regime, replace the operator 
 in the spatial partial de-
rivative �
 /�r by the steady-state solution 
0 for an atom at
rest, and solve the resulting equations for the density matrix

 of a moving atom �12�. We note that the linearization with
respect to vr is valid when 
vr 
	t /	r�1, where 	t is the
characteristic evolution time of the atom and 	r is the char-
acteristic distance for the variations of the field in the radial
direction. It is reasonable to take 	t=�0

−1 and 	r=q−1. Then,
the condition for the validity of the linearization procedure is

vr 
 ��0 /q. For a fiber with radius a=100 nm and a guided
light field with wavelength �=852 nm, the evanescent-wave
decay parameter is q�967 cm−1. In addition, we have
�0 /2�=5.25 MHz. Hence, the upper limit of vr for the lin-
earization procedure is �0 /q�341 m/s. Such a limiting
value is rather large compared to the corresponding limiting
value �0 /k�4.5 m/s for the linearization in the case of an
atom moving in the direction of a plane-wave light field �12�.
This is because the evanescent-wave decay parameter q is
small compared to the light-field wave number k
�74 000 cm−1.

We find that the velocity dependence of the force of the
guided light on the atom is very complicated. It has different
specifics in different ranges of detuning, atomic position, and
propagation power. As an example, we plot in Fig. 5 the
components of F as functions of vz �left column�, v�=r�̇
�central column�, and vr �right column� for the parameters
� /2�=−50 MHz, r /a=4, and Pz=10 nW.

The left column of Fig. 5 �parts �a�, �d�, and �g�� shows
that, when plotted as functions of the axial velocity vz, the
force components Fz and F� have a resonant structure and

the component Fr has a dispersive behavior. Such features
are observed in the vicinity of the point vz=−12 100vrecoil,
where the axial Doppler shift compensates the field detuning,
that is, where �vz=�. The resonant behavior of Fz and F� is
typical for pressure forces, while the dispersive behavior of
Fr is typical for gradient forces �12�.

Figures 5�b�, 5�e�, and 5�h� show that the dependence of
the force F on the azimuthal velocity v� possesses several
resonances. The reason is that, unlike the axial Doppler ef-
fect, the azimuthal Doppler effect produces various fre-
quency shifts in Eqs. �4a�–�4c�. The strongest resonance, ob-
served in the vicinity of v�=−38 000vrecoil, is due to the
compensation of the field detuning � by the azimuthal Dop-
pler shift �azimuth

gkel = �̇=v� /r for the transitions with Ml=Mk.
The weakest resonance, observed in the vicinity of v�=
−19 000vrecoil, is due to the compensation of the field detun-
ing � by the azimuthal Doppler shift �azimuth

gkel =2�̇=2v� /r for
the transitions with Ml=Mk−1. The sharp resonance ob-
served in the vicinity of v�=−240vrecoil is related to effect of
the azimuthal Doppler shift on two-photon processes. Since
the effective two-photon Rabi frequency is of the form

ge
eg� /�, the position of the sharp resonance in Figs. 5�b�,
5�e�, and 5�h� is directly proportional to the field intensity
and inversely proportional to the field detuning. Thus, the
influence of v� on the force of the guided light is more com-
plicated than the influence of vz.

The linearity of the curves for the components of the force
F in Figs. 5�c�, 5�f�, and 5�i� is a result of the linearization
procedure with respect to the radial velocity vr �12�. Such a
procedure allows us to calculate F only up to first order in vr.

When the field detuning is large enough, the motion of the
atom along the radial direction r can be described by an
effective potential Urad=Uopt+Ucf+UvdW, which is com-
prised of the optical potential Uopt, the centrifugal potential
Ucf=Lz

2 /2mr2, and the van der Waals potential UvdW �5,6,17�.
We plot in Fig. 6 the potential Urad for the parameters
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FIG. 5. Velocity dependences
of the components of the force of
light on a cesium atom outside a
nanofiber. In the left column ��a�,
�d�, �g��, vz is varied, but v� and
vr are set to zero. In the central
column ��b�, �e�, �h��, v� is varied,
but vz and vr are set to zero. In the
right column ��c�, �f�, �i��, vr is
varied, but vz and v� are set to
zero. The velocities are given in
units of the recoil velocity vrecoil

= �k /m=3.52 mm/s. The detun-
ing of the field from the D2 line of
the atom is � /2�=−50 MHz. The
position of the atom is r /a=4.
The internal state of the atom is
the local steady state. Other pa-
rameters are as in Fig. 2.
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� /2�=−50 MHz and Lz=43�. As seen from Fig. 6, Urad has
a deep minimum point at the distance rm=5.47a=547 nm
from the fiber axis, not only well outside the fiber but also
outside the range of substantial action of the van der Waals
force. We note that, in the region of r�a, the shape of Urad

is similar to that of the van der Waals potential UvdW. How-
ever, in the region of r�3a, UvdW is weak and, therefore,
Urad practically coincides with the sum of Uopt and Ucf. The
minimum of Urad is formed at a point where the centrifugal
force Fcf compensates the gradient force Fr.

When the detuning of the field is not too large and the
distance from the atom to the fiber is not too far, the atom
undergoes not only the gradient force but also the axial and
azimuthal pressure forces of light. The axial force Fz and the
azimuthal force F� can accelerate or decelerate the axial and
azimuthal motions, respectively. They can also affect the in-
ternal state through the axial and azimuthal Doppler shifts,
respectively. The torque Tz, produced by the azimuthal force
F�, leads to an increase or decrease of the angular momen-
tum of the atom. When we control the torque Tz appropri-
ately, we can manipulate the rotational motion of the atom.

When Tz is large, the angular momentum of the atom and,
consequently, the centrifugal force increase quickly. The re-
sulting imbalance between the centrifugal and gradient
forces will quickly accelerate the atom in the radial direction.
Then, the atom will quickly go away from the fiber. There-
fore, in order to produce a long-lived rotational motion of the
atom around the fiber, we need to balance the centrifugal
force by a gradient force from one hand and to minimize the
torque from the other hand.

We plot in Fig. 7 the trajectory of a rotational motion of
the atom around the fiber. The parameters for the fiber and
the light field are as in Fig. 6. The atom is initially positioned
at a point near to the minimum point of the potential Urad in
Fig. 6. The initial velocity of the atom is in the range of
thermal velocities at 5 �K. The transverse component of the
initial velocity corresponds to the angular momentum Lz
=43�, which is necessary for producing the centrifugal com-
ponent of the trapping potential in Fig. 6. In these calcula-

tions, we include the time evolution of the internal state of
the atom, which is initially prepared in the ground-state hfs
level 6S1/2F=4, with a flat �incoherent� distribution with re-
spect to the magnetic sublevels. We also take into account
the effects of the van der Waals interaction on the center-of-
mass motion and transition frequency of the atom. To get a
good resolution for the three-dimensional trajectory and tra-
jectory mapping, the evolution time is limited to 300 �s. The
figure shows that the atom is kept around the fiber in a rota-
tional motion.

Figure 8 extends the duration of the atomic center-of-
mass motion of Fig. 7 for a longer time, namely, 2 ms. As
seen, the atom can rotate many times around the fiber. The
time during which the atom is kept in the rotational motion
around the fiber is a macroscopic time ��2 ms�. The orbit of
each loop is quasi-elliptical. With increasing time, the orien-
tation of the loop rotates slowly and the size of the orbit
becomes broader. The increase of the size of the orbit is
mainly due to the increase of the orbital angular momentum
of the atom.

We plot in Fig. 9 the axial angular momentum Lz of the
atom as a function of time. Figure 9 shows that the angular
momentum of the atom increases slowly with time. Such
increase of Lz is due to the action of the azimuthal force F�

or, equivalently, the torque Tz. To prolong the bounding of
the atom to the fiber, we need to minimize Tz. When Tz is
large, Lz increases quickly and, consequently, the atom
quickly goes away from the fiber.
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cesium atom. The detuning of the field from the D2 line of the atom
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Lz=43�. Other parameters are as in Fig. 2.
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FIG. 7. �Color online� Three-dimensional trajectory �a� and tra-
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V. SUMMARY

In conclusion, we have studied the action of the light-
induced force and torque on a cesium atom outside a nanofi-
ber. We have derived a set of coupled equations for the in-
ternal state and center-of-mass motion of the atom. In
addition to the axial Doppler effect, the azimuthal Doppler
effect has been revealed. We have calculated the pressure and
gradient forces as functions of various parameters, such as

the distance between the atom and the fiber, the detuning of
the field, and the velocity of the atom. We have demonstrated
that the evanescent light field in a circular fundamental
guided mode can force the atom to rotate around the nanofi-
ber for a macroscopic time. The enhancement of the sponta-
neous decay rates and the effect of the van der Waals poten-
tial have been taken into account in our calculations. We
have found that, due to the action of the torque, the angular
momentum of the atom increases with increasing time. Our
work shows that nanofibers can be used to produce, manipu-
late, and control the rotational motion of atoms.
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