
Theory of double resonance magnetometers based on atomic alignment

Antoine Weis* and Georg Bison
Physics Department, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland

Anatoly S. Pazgalev
Physics Department, University of Fribourg, Chemin du Musée 3, 1700 Fribourg, Switzerland

and Ioffe Physical Technical Institute, Russian Academy of Science, St. Petersburg, 194021, Russia
�Received 26 May 2006; revised manuscript received 14 June 2006; published 5 September 2006�

We present a theoretical study of the spectra produced by optical–radio-frequency double resonance devices,
in which resonant linearly polarized light is used in the optical pumping and detection processes. We extend
previous work by presenting algebraic results which are valid for atomic states with arbitrary angular momenta,
arbitrary rf intensities, and arbitrary geometries. The only restriction made is the assumption of low light
intensity. The results are discussed in view of their use in optical magnetometers.
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I. INTRODUCTION

Since the 1950s the combination of resonant optical exci-
tation and magnetic resonance has been an extremely valu-
able tool for atomic spectroscopy. This double resonance
technique �1� has not only proven useful for investigating
atomic structure, for measuring properties of atoms, their
constituents, and their interactions, but has also led to impor-
tant applications in atom cooling, optically pumped fre-
quency standards, and optical magnetometers.

Magnetometers based on double resonance in atomic
samples measure the modulus of an externally applied mag-
netic field B0 via the Larmor precession frequency of the
sample’s magnetization in that field �2,3�. The sample is typi-
cally a vapor of paramagnetic atoms �or diamagnetic atoms
excited to a metastable state with an orbital angular momen-
tum� sealed in a glass cell. A macroscopic magnetization is
created in the vapor by optical pumping with polarized reso-
nance radiation. The magnetization precesses in the magnetic
field B0 to be measured �referred to as the offset field� and
that precession is driven by a �much weaker� magnetic field
B1�t� �referred to as the rf field�, corotating with the magne-
tization around the offset field.

Since the optical properties of the medium, characterized
by its complex index of refraction, depend on its spin polar-
ization, the driven magnetization will induce periodic modu-
lations of those properties �4,5�, which are then detected. In
most applications, the same light beam used to polarize the
medium is also used to monitor the oscillations by measuring
either the power or the polarization state of the transmitted
beam. The frequency of the induced oscillations coincides
with the oscillation frequency � of the rf field, and their
amplitude depends in a resonant way on the detuning be-
tween � and the Larmor frequency �0=�FB0 associated with
the offset field. The Landé factor �F=gF�B /� is characteris-
tic for the pumped atomic state with total angular momentum
F.

Most practical double resonance devices rely on atomic

orientation prepared by optical pumping with circularly po-
larized light. In this paper we present a theoretical study of
the resonance signals obtained in double resonance spectros-
copy using linearly polarized light. As shown first by Bell
and Bloom �6� magnetic resonance in aligned media leads to
signal modulations at the fundamental and at the second har-
monic of the rf frequency. We derive algebraic expressions
for the spectral line shapes of the in-phase and quadrature
components of both signals and their orientation dependence.
Previous theoretical treatments of such signals �7,8� were
restricted to specific angular momentum states �J=1� or to
low rf powers. The results presented here are more general in
the sense that they apply to arbitrary spin systems and that
they are valid for arbitrary rf power levels and for arbitrary
orientations of B0 with respect to the light polarization.

II. POLARIZED ATOMIC MEDIA

A. Atomic multipole moments

The density matrix � of an ensemble of polarized atoms
with angular momentum F can be expressed in terms of
atomic multipole moments mk,q according to �9�

� = �
k=0

2F

�
q=−k

k

mk,qTq
�k�, �1�

where the Tq
�k� are standard irreducible tensor operators

Tq
�k��F� = �

M=−F

F

�
M�=−F

F

�− 1�F−M�

� �F,M,F,− M��k,q��F,M��F,M�� �2�

constructed from the angular momentum states �F ,M�, and
where the multipole moments mkq are defined by

mk,q = �Tq
�k�†� = Tr��Tq

�k�†� . �3�

The three multipole moments mk=1,q=−1,0,+1 represent the ori-
entation of the medium, while the five components
mk=2,q=−2,. . .,+2 represent its alignment. The multipole mo-
ments mk,q=0 are called longitudinal multipole moments and*Electronic address: antoine.weis@unifr.ch
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their value depends only on sublevel populations. The mul-
tipole moments mk,q�0 represent sublevel coherences and are
called transverse moments. The representation of the atomic
polarization in terms of multipole moments has a significant
advantage over a representation in terms of sublevel popula-
tions and coherences. In principle, both representations re-
quire the same number of parameters for the complete de-
scription of the atomic ensemble. However, because electric
dipole radiation couples only �10� to orientation �k=1� and
alignment �k=2� it is sufficient to specify the corresponding
3+5=8 multipole moments for the complete description of
the system’s optical properties. Moreover, specific light po-
larizations couple only to specific subsets of these eight mul-
tipole moments, so that the use of the tensor formalism in
systems with large angular momenta leads to a significant
simplification of the mathematical treatment. In the case dis-
cussed here only the �real� multipole moment m2,0 will be
relevant. This approach therefore allows one to derive results
valid for systems with arbitrary angular momenta.

A resonant circularly polarized laser beam interacting
with an unpolarized atomic sample will create orientation
�k=1, vector polarization� and alignment �k=2, tensor polar-
ization� in the sample by optical pumping. The lowest order
multipole that a linearly polarized light field can create is an
atomic alignment. While only atomic states with J�1/2 can
be oriented, the condition J�1 has to be fulfilled for the
creation of an aligned state. Note that an alignment along the
direction of light propagation can also be produced by pump-
ing with unpolarized light �6,11�. The ground state of alkali-
metal atoms has an electronic angular momentum J=1/2,
which cannot be aligned. However, the hyperfine interaction
with the nuclear spin splits the ground state into two hyper-
fine levels with total angular momenta F±= I±J, which can
be aligned provided F�1. An alignment can therefore be
prepared and/or detected only if the light source has a suffi-
cient spectral resolution to excite a single hyperfine transi-
tion. In general the Doppler �and pressure� broadened spectra
of discharge lamps, used in conventional optically pumped
magnetometers �OPMs�, cannot be used to address indi-
vidual hyperfine lines and hence do not allow one to create
nor to detect a ground state alignment. However, radiation
from a narrowband laser can resolve the hyperfine structure
and it is well known that a linearly polarized laser beam can
create an atomic alignment.

B. DROMs and DRAMs

We will refer to an OPM based on atomic orientation as
DROM �double resonance orientation magnetometer�, while
we will speak of DRAM �double resonance alignment mag-
netometer� when the magnetization has the symmetry of an
atomic alignment. Most of the past research work on double
resonance spectroscopy dealt with oriented vapors, although
alignment induced by �unpolarized� lamp pumping in J=1
metastable states of 4He was already reported in 1960 and
1961 �6,11�. In alkali-metal atoms, alignment produced by
lamp pumping can be observed using line splitting by the
quadratic Zeeman effect �12� or isotope filtering �5,12�. The
latter technique is, however, restricted to Rb and cannot be

applied to other alkali metals. As mentioned above, linearly
polarized laser radiation is an efficient means for producing
alignment and a discussion of linearly polarized laser pump-
ing in metastable 4He can be found in Refs. �7,13�. These
authors have investigated several magnetometry techniques
using both orientation and alignment signals and they ob-
served magnetic resonances involving alignment using rf
fields, light intensity modulation, polarization modulation,
and frequency modulation. A variant of the latter
technique—in which the transmitted lights’ polarization, in-
stead of intensity, was measured—was realized with 87Rb
�14,15�.

III. MODEL CALCULATIONS

A. DRAM geometry

We will restrict the discussion to geometries in which the
rf field B1 is perpendicular to the offset field B0. Because the

signals are independent of the orientation k̂, the geometry of

the problem is fully determined by B̂0, B̂1, and 	̂ so that one
can consider the parametrization shown in Fig. 1, in which �
denotes the angle between the offset field and the light po-
larization �8�. The orientation dependence of the signal am-
plitudes is determine by �, while the polar angle 
 will lead
to a phase shift in the time dependence of the oscillating
signals �Sec. IV B�.

In Fig. 1 we have applied the rotating wave approxima-
tion by decomposing the rf field into two counter-rotating
fields, from which we have retained only the component
corotating with the alignment. This component is shown in
its position at time t=0, thereby defining the time origin of
the phases of the oscillating signal components. The magne-
tometer signals are calculated following the three-step �pre-
pare, evolve, probe� approach introduced in Refs. �16,17�
and discussed in detail in Ref. �18�. In the first step of this
model �preparation� one assumes the existence of a given
alignment in the atomic medium, without specifying how
this alignment was created. Details of the preparation process
�optical pumping, collisions with electrons or ions, spin ex-
change, etc.� thus do not need to be known. In the second
step �magnetic resonance� the initial alignment is allowed to
evolve towards a steady state value determined by the inter-
action with the external fields and relaxation. Finally one
considers in the third step �probing� how the steady state
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z

yx
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z||
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x

lab frame

ω
ω

FIG. 1. Parametrization of the DRAM geometry, in which B1 is
perpendicular to B0. The rotating wave �rw� frame and the rotating
magnetic field B1 are shown for one particular moment in time �t
=0�.
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alignment affects a linearly polarized light beam traversing
the medium. Strictly speaking this approach is only valid for
pump-probe experiments, in which the atoms interact with
spatially or temporally separated light fields and where the
equilibrium of step 2 is reached “in the dark.” However, as
shown previously �16,17� for level crossing signals the re-
sults obtained from the three-step approach give an excellent
description of experimental findings if the light intensity is
sufficiently weak. Limitations of the model will be addressed
in Sec. III E.

B. Step 1: Alignment creation

We describe the alignment created by the preparation pro-
cess in a coordinate frame where the quantization axis lies
along the light polarization �lab frame in Fig. 1�. In that
frame the only nonvanishing alignment component created
by optical pumping with linearly polarized light is the lon-
gitudinal multipole moment m2,0

ini which can be expressed in
terms of the sublevel populations pM as

m2,0
ini = N2�F� �

M=−F

F

pM�3M2 − F�F + 1�� ,

where N2�F� is a normalization constant �9�. In the presence
of an offset field B0 the alignment components perpendicular
to B0 will relax to zero yielding a steady state value of

m2,0
eq = m2,0

ini 3 cos2 � − 1

2
�4�

for the alignment along the magnetic field, given by the pro-
jection of m2,0

ini on the field direction. Note that this steady
state is reached only when the Larmor frequency is much
larger than the transverse relaxation rates. This condition is

well fulfilled for high-Q magnetic resonances while it is not
met by zero-field level-crossing resonances �ground state
Hanle effect, nonlinear Faraday effect �18��.

C. Step 2: Magnetic resonance

This step describes the magnetic resonance process, i.e.,
the evolution of the alignment under the combined actions of
the magnetic fields B0, B1, and relaxation processes. It is
described in a coordinate frame, which is related to the lab
frame by a static rotation of −� around the y axis and then by
a dynamic rotation, at the frequency �, around the new z
axis. In this frame, which we call the rotating wave frame
�rw frame�, the offset field B0 is along z, while the rf field B1
appears to be static and oriented at an angle 
 with respect to
the x direction �see Fig. 1�. This is the usual field configura-
tion for describing magnetic resonance processes. Note that
m2,0

eq is not affected by the transformation to the rw frame.
Due to the rotation of the coordinate frame, a fictitious mag-
netic field B f =−�ẑ /�F appears in the rw frame, and the at-
oms see a total field Btot=B1 cos 
 x̂+B1 sin 
 ŷ+ �B0

−� /��ẑ.
The evolution of the system’s density matrix is described

by the Liouville equation

d

dt
� =

1

�i
�H,�� − �relax, �5�

with H=−� ·Btot, and where �relax describes the relaxation
processes. Inserting the multipole decomposition �1� into Eq.
�5� yields the following equations of motion for the multi-
pole moments m2,q

d

dt
m2,q = �

q�

Oqq�
�2� m2,q� − m2,q

relax, q = − 2,− 1, . . . ,2, �6�

where O
qq�
�2� is given by

Oqq�
�2� =	

− 2i� i�1p− 0 0 0

i�1p+ − i� i
3

2
�1p− 0 0

0 i
3

2
�1p+ 0 i
3

2
�1p− 0

0 0 i
3

2
�1p+ i� i�1p−

0 0 0 i�1p+ 2i�

� ,

in which �1=�FB1 is the Rabi frequency of the rf field, p±=exp�±i
� are phase factors that describe the orientation of �1 in
the xy plane, and �=�−�0 is the detuning of the radio frequency � with respect to the Larmor frequency �0. The relaxation
terms are given by
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m2,2

relax

m2,1
relax

m2,0
relax

m2,−1
relax

m2,−2
relax
� =	

�2m2,2

�1m2,1

�0�m2,0 − m2,0
eq �

�1m2,−1

�2m2,−2

� , �7�

where we assume that the multipole moments m2,q relax at
rates ��q�. The transverse alignment components m2,q�0 relax
towards a zero value, while the longitudinal component m2,0
relaxes towards m2,0

eq , introduced in step 1. Below, we present
very general results for the case when all three relaxation
rates are different, although it is well known that there are
specific relations between those rates when the relaxation
mechanism has specific rotational symmetries �19�. Equa-
tions �6� are a generalization of the well known Bloch equa-
tions

d

dt
m1q = �

q�

Oqq�
�1� m1q� − m1,q

relax, q = − 1,0,1, �8�

describing the evolution of the three orientation components
m1,q.

We have used a computer algebra software to determine
algebraic expressions for the steady state �d /dtm2,q=0� solu-
tions m2,q of Eq. �6�. These solutions are then transformed
back to the lab frame, by first applying a dynamic rotation at
the rate −� around the z axis, and then a static rotation by �
around the y axis of the rw frame. In this way one can derive
algebraic expressions for the time dependent multipole mo-
ments m2,q�t� in the lab frame.

D. Step 3: Alignment detection

In the third and final step, we calculate the effect the time
dependent multipole moments have on the optical absorption
coefficient of the medium. One can show that the absorption
coefficient of a medium described by mk,q for linearly polar-
ized light is proportional to

 �
A0


3
m0,0 −
2

3
A2m2,0, �9�

where the �analyzing power� Ak depends only on the states
�ng ,Lg ,Jg ,Fg� and �ne ,Le ,Je ,Fe� coupled by the light. The
multipole moments in Eq. �9� are defined with respect to a
quantization axis oriented along the incident light polariza-
tion, which is the case in the lab frame, i.e., the frame in
which the results of step 2 are expressed. The monopole
moment m0,0 describes the total population of the hyperfine
ground state �ng ,Lg ,Jg ,Fg�. We assume the optical transition
to be closed and the light intensity to be so weak that excited
state populations remain negligible, so that the monopole
moment does not depend on time. The only time dependent
�oscillating� component of the absorption coefficient is there-
fore proportional to m2,0�t�. We define the time dependent
DRAM signal, normalized to the longitudinal alignment ini-
tially produced by the optical pumping, as

S�t� =
m2,0�t�

m2,0
ini . �10�

E. Validity of the three step approach

The three step approach is only valid if steady state con-
ditions are reached in steps 1 and 2. This is fulfilled when the
pump rate �p, at which alignment components are modified
by the interaction with the light is negligible compared to the
relaxation rates ��q�. This condition can be realized experi-
mentally at low light powers, however, at the cost of a de-
creased signal to noise ratio. OPMs are known to perform
best when �p is comparable to ��q�. The lowest order correc-
tion, taking the depolarization of light interactions into ac-
count, can be described by

��q� → ��q� + �p = ��q� + �PL, �11�

where PL is the laser power.
It is well known that substitution �11� is valid to all orders

in PL for a DROM in a spin 1/2 system �20�, in which
orientation is the only multipole moment that can be created.
It is reasonable to assume that the same statement can be
made for a DRAM in a spin 1 system in which alignment is
the only multipole moment created and detected by the lin-
early polarized light. For angular momenta F�1 the creation
of higher order �k�2� multipole moments and their transfer
back to �detectable� k=2 moments limits the validity of sub-
stitution �11� to low light powers.

IV. RESULTS

The calculation outlined above yields signals S��t� and
S2��t� which are modulated at the rf frequency � and at its
second harmonic 2�, and which can be written as

S��t� = h�����D� cos��t − 
� − A� sin��t − 
�� ,

�12a�

S2��t� = h2�����− A2� cos�2�t − 2
� − D2� sin�2�t − 2
�� ,

�12b�

where the angular dependence of the signals h���� and
h2���� �Fig. 2� is given by

h���� =
3

2
sin � cos ��3 cos2 � − 1� , �13a�

h2���� =
3

4
sin2 ��1 − 3 cos2 �� . �13b�

As stated earlier the orientation angle 
 of the rf field
appears as a phase shift. The in-phase and quadrature com-
ponents of the signal have both absorptive �A� ,A2�� and dis-
persive �D� ,D2�� line shapes given by

D� =
�0�1��2

2 + 4�2 − 2�1
2��

Z
, �14a�
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A� =
�0�1���2

2 + 4�2��1 + �2�1
2�

Z
, �14b�

D2� =
�0�1

2�2�1 + �2��
Z

, �14c�

A2� =
�0�1

2��1�2 − 2�2 + �1
2�

Z
, �14d�

with

Z = �0��1
2 + �2���2

2 + 4�2� + ��1�2�2�0 + 3�2�

− 4�2��0 − 3�1���1
2 + ��0 + 3�2��1

4. �15�

Equations �14� and �15� can be simplified substantially if
we assume an isotropic relaxation by setting �0=�1=�2
��. We will stick to this assumption in the following dis-
cussion since it does not change the general properties of the
spectra. We further simplify the notation by introducing a
dimensionless rf saturation parameter Srf= ��1 /��2 and a nor-
malized detuning x=� /�. With these assumptions and defi-
nitions we obtain

D��x,Srf� =
x�1 − 2Srf + 4x2�
Srf

�1 + Srf + x2��1 + 4Srf + 4x2�
, �16a�

A��x,Srf� =
�1 + Srf + 4x2�
Srf

�1 + Srf + x2��1 + 4Srf + 4x2�
, �16b�

D2��x,Srf� =
3xSrf

�1 + Srf + x2��1 + 4Srf + 4x2�
, �16c�

A2��x,Srf� =
�1 + Srf − 2x2�Srf

�1 + Srf + x2��1 + 4Srf + 4x2�
. �16d�

In the following we will discuss in detail the different prop-
erties of the signals �12� with line shapes �16�.

A. Line shapes

For low rf intensities, i.e., for Srf→0, the line shapes �16�
reduce to

D��x,Srf → 0� =
x

1 + x2

Srf, �17a�

A��x,Srf → 0� =
1

1 + x2

Srf �17b�

and

D2��x,Srf → 0� =
3x

�1 + x2��1 + 4x2�
Srf, �18a�

A2��x,Srf → 0� =
1 − 2x2

�1 + x2��1 + 4x2�
Srf. �18b�

Expressions �13� and �17�, correspond to results obtained in
earlier work �7,8�.

The corresponding spectra can be seen in the left-most
columns of Figs. 3 and 4. These figures also show how the
line shapes of the absorptive and dispersive signals A�, D�,
A2�, and D2� change with increasing rf intensity. A narrow
additional spectral feature appears in the first harmonic sig-
nal for Srf�0.5. The origin of this structure can be explained
as follows: the basic interaction of the rf field with the an-

FIG. 2. Angular dependence of
the first �h�, left� and second
�h2�, right� harmonic signals on
the angle � between the light po-
larization 	 and the magnetic off-
set field B0.
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FIG. 3. �Color online� Top
line: Line shapes of the absorptive
�A�� and dispersive �D�� compo-
nents of the first harmonic signal
for different values of the rf satu-
ration parameter Srf. Bottom line:
Shape of the phase signal �� for
the same values of Srf. x= ��
−�0� /� is the normalized detun-
ing of the rf frequency � with re-
spect to the Larmor frequency �0.
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gular momentum is the coupling of adjacent Zeeman sublev-
els. The corresponding �M = ±1 coherences oscillate at the
rf frequency � and their detection by the light field consti-
tutes the first harmonic signal. With increasing rf power, a
further interaction of a �M =1 coherence with the rf field B1
becomes possible and leads to the creation of a �M =2 co-
herence, whose oscillation produces the second harmonic
signal. An additional interaction of the �M =2 coherence
with the rf field produces both �M =3 and �M =1 coher-
ences. While the former cannot be detected optically since
linearly polarized light couples at most to �M =2 coher-
ences, the latter directly contributes to the first harmonic sig-
nal. In this sense, the additional features can be understood
as resulting from the creation of a �M =2 coherence by a
second order interaction with the rf field, the evolution of
that coherence in the offset field, and back transfer to a
�M =1 coherence by an additional interaction with the rf
field followed by detection of that coherence at the first har-
monic frequency �.

The additional narrow feature in the absorptive signal that
appears at large rf intensities was already observed in the
pioneering work by Colegrove and Franken on optically in-
duced alignment �11�. Based on the results presented above
the feature can be explained in terms of line superpositions.
In fact, the expression for the absorptive first harmonic sig-
nal A� �Eq. �16b�� can be rewritten as

A� =
1 + Srf

1 + Srf + x2

Srf −

4Srf

1 + 4Srf + 4x2

Srf, �19�

i.e., as a superposition of two absorptive Lorentzian line
shapes whose widths, for Srf→0, differ by a factor of 2,
while they become equal for large values of Srf. The appear-
ance of the central dip is a consequence of the different rates
at which the contributions saturate with increasing Srf. At low
rf powers, the amplitudes of the two contributions to the first
harmonic signals �19� grow as Srf

1/2��1 and Srf
3/2��1

3, respec-
tively, which reflects that these resonances correspond to first
and third order processes as discussed above. The second
harmonic signals �Eqs. �18a� and �18b��, on the other hand,
grow as �1

2, which reflects their second order nature.
The dependence of the line widths, i.e., the frequency

separation ��FW of the maxima and minima of the disper-
sive signals D� and D2� on Srf can be inferred from the
derivatives of Eqs. �16a� and �16c�. The dispersive line shape

of the second harmonic signal D2� is thus 2.6 times narrower
than the corresponding first harmonic signal.

B. The phase of the signals

We define the phases �� ��2�� of the first and second
harmonic signals as the phase difference between S��t�
�S2��t�� and oscillations that are proportional to cos �t
�cos 2�t�, respectively. This definition is motivated by the
fact that the rf field in the lab frame is proportional to cos �t.
As an alternative to the parametrization of the signals in
terms of in-phase and quadrature components �Eq. �12�� one
can write S��t� and S2��t� in terms of moduli R�, R2� and
phases ��, �2� according to

S� = h����R��x,Srf�cos��t + ���x,Srf�� , �20a�

S2� = h2����R2��x,Srf�cos�2�t + �2��x,Srf�� , �20b�

with

�� = arctan A��x,Srf�
D��x,Srf�

� − 
 , �21�

�2� = arctan−
D2��x,Srf�
A2��x,Srf�

� − 2
 . �22�

A dual-phase lock-in amplifier can be used to extract the
�’s from the signal. Such amplifiers usually allow one to
apply an offset phase �os to the signal which then adds to 
.
For stabilization purposes, it is practical to choose that offset
phase such that the total phase vanishes at the center of the
resonance ���x=0�=�2��x=0�=0. This choice avoids phase
discontinuities and provides a signal ��x��x �for x�1� that
is proportional to magnetic field changes near the center of
the resonance. In the parametrization defined above this can
be realized simultaneously for both signals when 
+�os
=� /2. In that case the phase signals take the form

�� = − arctanx
1 − 2Srf + 4x2

1 + Srf + 4x2 � , �23a�

�2� = − arctan 3x

1 + Srf − 2x2� . �23b�

Examples of ���x� and �2��x� for different values of Srf are
shown in Figs. 3 and 4, respectively.
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FIG. 4. �Color online� Top
line: Line shapes of the absorptive
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ponents of the second harmonic
signal for different values of the rf
saturation parameter Srf. Bottom
line: Shape of the phase signal
�2� for the same values of Srf.
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The phase of the first harmonic signal �� �Eq. �23a�� for
low rf power �Srf�1/2� is identical to the phase of an ori-
entation based magnetic resonance signal. Conversely to that
DROM phase, which does not depend on Srf, the DRAM
phases �� and �2� depend on Srf, and �� even changes the
sign of its slope at Srf=1 /2. Note that �2� makes a total
phase swing of 2� across the resonance, while �� swings
only by �.

V. MAGNETOMETRY CONSIDERATIONS

There are two modes of OPM operation, the self-
oscillating mode and the free running mode, which differ in
the way the magnetic field value is extracted from the signals
described above. Self-oscillating �or phase stabilized� mag-
netometers use feedback to keep the driving frequency �
equal to �0, and in such magnetometers, � is measured with
a frequency counter �21�. We will not discuss the self-
oscillating mode in detail since the feedback is difficult to
describe analytically. Instead, we discuss the free-running
mode which yields an identical magnetic field sensitivity.
The goal of the following discussion is not the derivation of
absolute field sensitivities, but rather a comparison of the
relative magnetometric sensitivities that one can expect from
the first and second harmonic signals.

As a free-running magnetometer application we consider
the recording of signal changes induced by variations of the
offset field B0 while the rf frequency � is kept constant.
Either the dispersive signals D� and D2� �Eqs. �16a�, �16c��
or the phase signals �� and �2� �Eqs. �23a�, �23b�� can be
used as discriminating signals as they both feature a linear
dependence on B0 changes near the center of the resonance
�x=0�.

The resolution with which field changes can be detected is
limited by noise processes such as photon shotnoise, electron
shotnoise �in a photodiode�, and spin projection noise, all of
which have a white noise spectrum. We specify the magne-
tometric sensitivity in terms of the noise equivalent magnetic
field �NEM� �22,23�, which is the amplitude �BNEM of field
fluctuations which induce fluctuations of the �dispersive� sig-
nal S�B0� that are equal to the signal noise �S:

�BNEM = �S��dS/dB0�x=0�−1.

One can show that for a given noise level of the modulated
signal one obtains the same NEM either from the demodu-
lated signal S=D��D2�� or from the demodulated signal S
=����2��. The minimal value of �BNEM is thus obtained
under conditions which maximize h�s� and h2�s2�, where

the �on resonance� slopes s� and s2� are given by

s� = �dD�

dx
�

x=0
=

�1 − 2Srf�
Srf

�1 + Srf��1 + 4Srf�
, �24a�

s2� = �dD2�

dx
�

x=0
=

3Srf

�1 + Srf��1 + 4Srf�
. �24b�

Figure 5 shows their dependence on the rf intensity. The zero
crossing of the slope of the first harmonic signal at Srf=0.5
marks the emergence of the narrow central feature in Fig. 4.

The maximal sensitivity �minimal �B�,2�
NEM� is achieved by

choosing a geometry which maximizes h� and h2� and an rf
intensity, which maximizes s� and s2�. For the first harmonic
signal one finds max�h�s��=0.141 for �=25.5° and Srf

=0.079, while for the second harmonic signal one has
max�h2�s2��=0.25 for �=90° and Srf=0.5. Under optimized
geometrical and rf power conditions and for a given noise
level the second harmonic signal is thus expected to yield a
1.8 times higher sensitivity to magnetic field changes than
the first harmonic signal.

VI. SUMMARY AND CONCLUSION

We have presented a general theoretical framework for
the calculation of optical rf double resonance signals that can
be easily applied to oriented or aligned atomic media. The
theory yields analytical results with a broad range of validity,
and is only limited by the assumption of low light power.

DRAMs, i.e., magnetometers that use linearly polarized
light, present several potential advantages over the well
known DROM scheme.

Linewidths. The line shapes of the second harmonic
DRAM signal have significantly narrower linewidths than
the DROM signal under identical conditions. Narrow line-
widths potentially increase the magnetometric sensitivity and
suppress systematic errors in optical magnetometers due to
long term baseline drifts �24�.

Light shift. In DROM devices the interaction of the atoms
with the circularly polarized laser light leads to M dependent
energy shifts �vector light shift� of the sublevels �F ,M� when
the laser frequency is not centered on the optical resonance
line. In that case, power and frequency fluctuations of the
laser mimic magnetic field fluctuations, thereby limiting the
magnetometric performance. In the DRAM device the lin-
early polarized light produces a tensor light shift �25� de-
pending on M2, which does not have the characteristics of
the Zeeman interaction and will therefore not affect the mag-
netometric performance.
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the rf saturation parameter for two
different ranges of Srf.
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Geometry. The DROM scheme achieves a maximal sen-
sitivity for �=� /4. The 45° angle that the laser beam has to
make with the magnetic field seriously limits applications
which call for a compact arrangement of multiple sensors. In
multi-channel devices, as required, e.g., for cardiomagnetic
measurements �26�, the use of the DRAM signals offers the
advantage that the laser beam can be oriented either parallel
or perpendicular to the offset field.

Vector magnetometry. Both the DROM and the DRAM
devices are scalar magnetometers and their resonance fre-
quency measures �B0�. However, the DRAM signals can be
used to realize a vector magnetometer, since the ratio of
R2� /R� is proportional to tan �, for all values of Srf. The

knowledge of �B0� and � locates B̂0 on a cone and the varia-
tion of the signal with �, obtained by rotating the polarizer,

will determine the polar angle of B̂0 on the cone. In this way
the DRAM scheme can be used to infer all three vector com-
ponents of the field.

Relaxation. We are in the process of performing extensive
experimental studies of the DRAM properties in paraffine
coated cesium cells �27�. First results indicate that a descrip-
tion of the signals using three independent relaxation rates
�Eqs. �14�� is required to describe the experimental line
shapes in detail. The DRAM signals thus seem to offer a

convenient way for studying spin relaxation processes in
aligned media.

Signal noise. Diode lasers are convenient light sources for
double resonance experiments. However, they often feature a
1/ f �flicker� intensity noise at low frequencies that turns into
the white shot noise level at higher frequencies. The detec-
tion of D2� and A2� at twice the Larmor frequency makes it
easier to operate in a region where the laser noise is less
affected by flicker noise.

Cs OPMs in the DROM geometry have a shot noise lim-
ited sensitivity of 10 fT/Hz1/2 �23�. A direct experimental
comparison of DRAM and DROM magnetometers is cur-
rently underway in our laboratory. This study will show if
the potential advantages can be realized in practice.
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