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Ionization distances of multiply charged Rydberg ions approaching solid surfaces
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The ionization distances Rﬁ as well as the ionization rates and eigenenergies of one-electron multiply
charged Rydberg ions (core charge Z> 1, principal quantum number n>>1) approaching solid surfaces are
calculated. Within the framework of a nonperturbative étalon equation method (EEM), these quantities are
obtained simultaneously. The complex energy eigenvalue problem for the decaying eigenstates is solved within
the critical region R%RC%R{, of the ion-surface distances R. This region is characterized by the energy terms
localized in the vicinity of the top of an effective potential barrier, created between the ion and polarized solid.
We take into account that the parabolic symmetry is preserved for R=R_. and that the parabolic quantum
numbers can be taken as approximate but sufficiently good quantum numbers. The parabolic rates, energies,
and corresponding ionization distances are presented in relatively simple analytical forms. The ionization
distances are compared with the results of a classical overbarrier model. Comparison of the obtained energies
and rates with the available theoretical predictions of the coupled angular mode method shows good agree-
ment. The use of the EEM for an estimation of the upper limit of the first neutralization distance in the
subsequent neutralization cascade is briefly discussed.
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I. INTRODUCTION

Thus far, a number of papers studying the interaction of
multiply charged ions with solid surfaces were focused on
experimental and theoretical studies of the neutralization dy-
namics of ions slowly approaching the surfaces; for a review
see Ref. [1]. A series of results concerning the formation of
“hollow atoms,” followed by Auger electron emission and
radiative deexcitation, has been obtained. Within the frame-
work of multielectron exchange models, scenarios for step-
wise neutralization of empty electronic states of the projec-
tiles have been proposed in order to encompass the
experimental findings on the detected spectra of emitted
electrons and x radiation.

Physically important conclusions are possible, however,
when multiply charged ions (core charge Z>1), with one
active electron occupying a certain Rydberg state (principal
quantum number n3 1), approach the conducting solid sur-
face. The filled electronic states are subjected to an intense
distortion caused by the image force response of the conduct-
ing target. Even at very large ion-surface distances R, their
destruction is possible through a resonant ionization mecha-
nism. The problem of ionization of these multiply charged
Rydberg ions can be treated independently of the neutraliza-
tion problem; namely, for any given Z> 1, there are such
Rydberg states, with sufficiently high » values, where the
resonant ionization ends before the neutralization cascade
has begun. In this sense the study of such a decaying system
also serves for estimating the first neutralization distance for
the considered ions.

In the last two decades several theoretical methods were
developed, which can be principally used for an investigation
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of the ionization of one-electron multiply charged Rydberg
ions. The proposed methods are very heterogeneous in na-
ture; here we mention the classical overbarrier (COB)
method [1,2] and its extended dynamic version [3,4], the
perturbation method [5], the coupled angular mode (CAM)
method [6,7], the complex scaling method (CSM) [8—11], the
stabilization method [12,13], the time-dependent close-
coupling technique [14,15], and the two-state vector model
[16,17] in combination with the étalon equation method
(EEM) [18-20].

Despite the variety of these theoretical methods, the prob-
lem of estimating the ionization distances Rﬁ of multiply
charged Rydberg ions still remains open. Most frequently,
two physically very different definitions of Ri are used. Ac-
cording to the classical overbarrier model [1,2] the ionization
distance is considered as a critical distance R at which the
energy term ‘“touches” the saddle point of the ion-surface
potential barrier. On the other hand, in quantum models
[11,16-20], particular Rydberg states ionize over a relatively
narrow range of ion-surface distances R around R’, where R’
is the position of the total ionization rate maximum.

In line with the correspondence principle, it is reasonable
to expect that R is comparable to R““**. Moreover, a quan-
tum definition of the critical distances R,, instead of Ril””,
would be worthwhile. Among other things, the R, distances
are introduced to separate the classically allowed overbarrier
from purely subbarrier (tunneling) transitions of an active
electron in the ion-surface system. The critical region
(RchxRi) of the ion-surface distance R yields the basic
information about the ionization mechanism. In this sense, a
quantum model must be focused on that region from the very
beginning.

In practice, determining Ré is closely related to a search
for “sufficiently good” quantum numbers in the critical re-
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gion RchzRﬁ. The lack of spherical symmetry in the ion-
surface system means that the spherical quantum numbers
(n,l,m) cannot be used, and that the spherical functions are
not the appropriate wave functions. Instead, one can use an
approach which applies the superposition of these functions,
characteristic of the CAM method and CSM. Actually, a
classification of the states by a set of parabolic quantum
numbers w=(n,n,,m) serves very well, at least formally,
for some ion-surface distances. That is, for R~R,~R! the
parabolic symmetry is preserved and the parabolic quantum
numbers can be taken as approximate but sufficiently good
quantum numbers.

In the present paper, we shall apply the above cited étalon
equation method, which offers the possibility of linking the
R, problem and the problem of sufficiently good quantum
numbers. This method represents a nonperturbative
asymptotic method [21,22] for solving the one-dimensional
effective eigenvalue problems (with large parameters), re-
sulting after separation of variables at sufficiently large ion-
surface distances R=R,. The corresponding original differ-
ential equations are associated with appropriate “étalon
equations” whose solutions are well known and which have
the same configuration of transition points (poles and turning
points) as the original ones. In particular, the EEM [23] en-
ables us to consider the ionization as a resonant electron
tunneling or as an overbarrier transition in the very vicinity
of the effective potential barrier top (R=R,). The complex

energy eigenvalue problem of the Hamiltonian H(R) of an
active electron can be solved by imposing the outgoing wave
condition inside the solid and by using scaled parabolic co-
ordinates. The parabolic ionization rates I’ ,u(R) and the cor-
responding energy terms Re E ,(R) are obtained by means of
complex eigenenergies. The critical distances R, are obtained
simultaneously. Two different adaptations of the EEM
[18,20] have previously been used for the analysis of the
ionization problem in the vicinity of the effective potential
barrier top; here we shall present an extension of the EEM
from the Z=1 case of Ref. [20] to multiply charged Rydberg
ions.

The total ionization probability P, (R) satisfies an appro-
priate system of semiclassical rate equations, at least for
lower ionic perpendicular velocities v, [24]. For sufficiently
large R, Z, and n, the ionization channel can be considered as
a dominant one, i.e., we obtain a simple rate equation for
P,(R) with the rate I',(R). Besides, according to a simple
estimation [1], for not extremely small velocities, we can
retain the classical law v, =v | (R) of the ionic motion (with
the initial condition v | =v (), which includes the image ac-
celeration of the multiply charged projectile. Under these
conditions, the nonlinear screening effects of the multiply
charged ion do not affect the ionic motion significantly, and
the linear response of the polarized solid is reduced to the
classical image forces. Using the v-dependent total ioniza-
tion probability P,(R) we define the ionization distance R. as
a v-dependent quantity, R'=R'(v,,), in contrast to the
velocity-independent critical distances R..

The proposed EEM enables us to obtain the values of R,
and R{., as well as the parabolic rates I" #(R) and energies
Re E,(R), in sufficiently accurate analytic forms. In the
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present paper we restrict ourselves to the high-eccentricity
Rydberg states of one-electron ions. More precisely, our
analysis will be focused on those electronic states character-
ized by lower values of the parabolic quantum number 7,
and m=0. Within the EEM, it is possible to establish a criti-
cal quantum number #,, such that the condition n=n, prac-
tically ensures the one-channel character of the ionization of
multiply charged Rydberg ions. The case n<n,, relevant for
the study of neutralization dynamics, represents a comple-
ment of the case n=n,.

This paper is organized as follows. In Sec. II we shall
present the theoretical basis of the ionization of multiply
charged ionic projectiles in the Rydberg states, slowly ap-
proaching conducting solid surfaces. In Sec. III we shall ex-
pose explicit results of the proposed decay model of ioniza-
tion; the results will be compared with the available
predictions for energy and rates of the CAM method [7], as
well as with the R“* of the COB model [1,2]. Also, we shall
briefly observe the results obtained within our previous
EEM, Ref. [18], concerning the reionization of the outgoing
ionic projectile in the beam-foil geometry, by extrapolating
the present model to the limiting case of intermediate veloci-
ties (v,o=~1 a.u.). Some concluding remarks are given in
Sec. IV.

Atomic units (e?=f=m,=1) will be used throughout the
paper unless indicated otherwise.

II. FORMULATION OF THE PROBLEM
A. Ionization in the decay model

We consider a multiply charged Rydberg ion (pointlike
core charge Z, mass M) with one active electron, approach-
ing a solid surface with perpendicular velocity v, =v | (R).
We restrict ourselves to the critical region R=R.>1 a.u. of
ion-surface distances R. The geometry of the ion-surface sys-
tem is explicated in Ref. [20]. Also, the choice of potentials
relevant to the EEM are extensively discussed in Sec. II A of
Ref. [20].

The one-electron Hamiltonian is given by

FI(R):—%V2+UA+UM+UAM. (2.1)
In the moving coordinate system, located at the ionic core,
with the z, axis oriented from the surface toward the
vacuum, the Coulomb potential of the ionic core is given by
U,=-Z/r,. The term Uy+Uy,, in Eq. (2.1) is the surface
potential of the polarized solid. For the active electron out-
side the solid and the ionic projectile at distance R= R, us-
ing the parabolic coordinates E=ry+z4, T=ry—24,
p=arctan(y/x), we have [20]

e = (- a0l B
M=\ "y k=) T2r—a2)| TR |

(2.2)

In the quasistationary (adiabatic) approximation the elec-
tron wave function can be considered as an eigenfunction ¥,

of the Hamiltonian H(R),
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HR)W ,(R) = E,(R)¥ ,(R), (2.3a)

with decaying boundary condition [20]. The complex
eigenenergies are given by

E,(R)=Re E,(R) - éFM(R), (2.3b)

where I',, are the corresponding ionization rates. By u
=(n;,ny,m), where n,+n,+|m|+1=n, we denote the set of
approximately good parabolic quantum numbers. That is,
with the expression (2.2), and under the condition ¢<<7,
separating the variables in Eq. (2.3a) is possible in parabolic
coordinates [20]. The proposed condition £< 7 is well satis-
fied for high-eccentricity Rydberg states, i.e., the states with
lower values for parabolic quantum number n; and with m
=0, giving the main contribution to the ionization.

In the present paper we use the scaled parabolic coordi-
nates £=£/(2Ra) and 7%=7/(2Ra), where a is a scaling pa-
rameter defined by

-2E,R

- , 24
T 714 2:4)

Moreover, instead of 7 we introduce the “effective” electron
coordinate u=\e’7~;, which is technically a more convenient
variable in the study of resonant electron transitions near the
peak of the potential barrier [23]. Note that the u axis, like
the 7 and # axes, indicates the “direction” of most dominant
electron transitions (see, for example, Fig. 2 in Ref. [20]).
That is, along the u axis we have an infinite electron motion
toward the surface; this property does not exist along the E
axis (where the electron motion is finite).

Accordingly, taking V,=X M(E) Y (wexp(ime)/ (V'Eu),
from Eq. (2.3a) we obtain the following differential equa-
tions with respect to the variables E and u:

d’X -
——#+ P(b )\ a;9X, =0, (2.5a)
d&
&y,
—+ 0%(b,6,a;u)Y ,=0.

— (2.5b)

For P2 and Q* we have P>=—b%/4+b\;/ E+(1-m?)/(4&%)
and Q?=b’h(u,d)-bd/(4d)+(1-4m?)/(4u?). The function
h(u,d) is given by
1 W - i?)
h=—"——-u"+ 2 29’
4d (1-au”)(1 - au’/2)
where u=(Z-1/2)/[(Z-1/4)a]. The quantity d, introduced
to equate the minimum and zero of the function A(u,d), fol-

lows from the relations h(u,d)=0 and &' (uy,d)=0.
The quantity b, defined by

u2

(2.6)

2

b=2(-2E,)"* (2.7)

Z-1/14"

represents the large parameter for R=~R.> 1. The quantities
A¢ and & represent spectral parameters of Eqs. (2.5a) and
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(2.5b). Definition of the quantity & is adapted to the vicinity
of the effective potential barrier top in the u direction, i.e.,
we have

6=b-16\d, (2.8a)
where A, is related to A, by the following equation:
(\g+\,)(=2E,)"*=Z. (2.8b)

B. The critical region of ionization, R=R,

The details of solving the effective energy eigenvalue
problems given by Egs. (2.5a) and (2.5b), within the frame-
work of the étalon equation method adapted to the critical
region R=R,, are given in Ref. [20]. Here we present the
main features of the EEM in the case of highly charged ions
zZ>1.

The basic idea underlying the EEM is in the fact that both
Egs. (2.5a) and (2.5b) represent equations of the form y”(x)
+p?(b,\;x)y(x)=0, with a large parameter b and a spectral
parameter \. The solution y(x) and the values A depend not
only on the imposed boundary conditions, but also on the
distribution of transition points (x;) along the x axis, deter-
mined by p?(b,\;x). For any configuration of the x; points,
a set of (partly overlapped) regions A;, A,,.... can be de-
fined, so that transition points of neighboring regions are
well separated. In the simplest cases it might be sufficient to
use only one A region, containing all relevant transition
points.

Determining the “local” solution y;(x), in the A; region,
by using the EEM, consists of choosing the appropriate éta-
lon equation §/(s;)+72(b, \;35)7:(s) =0, where s,=s,(x) and
)t,- are the new étalon variable and étalon spectral parameter,
respectively. As mentioned in the Introduction, the étalon
solution y;(s;) must be exactly known, while the configura-
tion of the étalon transition points s, must be compatible
with that of the original equation in the .A; region, s;r
=s;(x;7). To relate y(s;) with y;(x) we set yi(x)=)7,»(si)/v/3,
which leads us to a nonlinear differential equation for s;
=5;(x), i.e., we have p*(b,\;x)—s/*p*(b,N;35;)—{s:,x}/2=0,
where {s;,x}=s""/s5,~3s/%/(2s])? denotes the Schwartz de-
rivative. The solution of this third-order equation follows
from the expansion of s;(x) and \ into appropriate inverse
power series with respect to b; as a consequence we get y;(x)

and A=\(X,) in the 4; region. Finally, we obtain the solution
y(x) and the spectral parameter A by smooth matching of the
asymptotic forms of y;(x) and by using relevant boundary
conditions.

Along the £ axis, Eq. (2.5a) has two transition points for

m=0; one pole (E: 0) and one turning point. For this simple
case, it is sufficient to define only one region A encompass-
ing these points, and use only one étalon equation of the
Whittaker type. Following the standard EEM procedure [17]
in the ion-surface interaction problem, we obtain the corre-
sponding eigenfunction and effective energy, with spectral
parameter A; given by
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(2.9)

Concerning Eq. (2.5b), the confluent turning points con-
figuration, found on the u axis for RQRZ., compels us to use
the EEM proposed in Ref. [20]. We consider two different
regions along the u axis and use two appropriate étalon equa-
tions. In the vicinity of u=0, region A, the étalon equation
is a Bessel-type differential equation. The solution Y, is ex-
pressed via the Bessel function J,,(w), where w=w(u). In the
region A, that contains turning points u;=~u,, defined by
Q*(u;,)=0, an appropriate étalon equation is the Weber dif-
ferential equation

2

d[2]+(s eU=0, (2.10)
where s=s(u) is the étalon variable and € is the étalon spec-
tral parameter for that region. Note that the parameter € also
represents a measure of the distance between turning points
s,=—Ve and s,=1e of Eq. (2.10). The confluence of these
turning points corresponds to the eé=0 condition.

For that reason, € is a suitable parameter for the derivation
of the critical distance R, [20]. That is, by comparing the
original equation (2.5b) with the étalon equation (2.10), we
get s;=s(u;) and s,=s(u,), so that the equality u;=u, is
equivalent to s;=s,, i.e., the relation e=0 holds. Taking into
account that the confluence of the turning points u; and u,
occurs at critical distance R, we get the condition

Re €(R,) =0. (2.11)

The general solution U(s) of Eq. (2.10) is a linear combi-
nation of the parabolic cylinder functions. The solution Y, of
Eq. (2. 5b) in the considered region is given by Y,
=U(s)/\s', where s'=ds/du. By using the étalon equation
method we obtain the function s=s(u) in the form of appro-
priate asymptotic series. This approach requires that the con-
dition 6=ke, where k=2+2h"(uy)d, is satisfied. The propor-
tionality of parameters & and € indicates that Re 8(R,)=0.

The quantity e(R)=s%(u,) is positive for R>R,. and nega-
tive for R<R,. Therefore, in the region R> R, we have the
real turning points s, ,=+ Ve, i.e., the corresponding elec-
tron transitions are of the subbarrier type. On the other hand,
for R<R, we have €<<0 so that the turning points s, are
complex (sl )= +1\|e|) the corresponding electron transi-
tions are overbarrier in character.

This is a key technical detail of the EEM, not available in
other existing nonperturbative methods. In other words, for
R> R we have the subbarrier transitions while for R <R, the
electron transitions are overbarrier. This “overbarrier-
subbarrier rule” will be useful for interpreting relevant
graphs in Sec. III. We point out that the electron transitions
(from the ionic region toward the solid) are energetically
possible only for R <Rj, where Fermi distance Ry is defined
by

Re E,(Ry) = - . (2.12)

By ¢ we denote the solid work function.
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The functions Y,(u) and Y,(u) must be smoothly matched
in the region .4, N A,. By using the asymptotic forms of the
solutions Y; and Y,, and taking into account the outgoing
wave behavior of Y,(u) for u> u,, from the matching condi-
tion Y,/Y|{=Y,/Y}, we obtain the following system of alge-
braic equations for the quantities I',(R), Re E,(R), and
Re €(R) [Egs. (3.10a)—(3.10¢) in Ref. [20]):

flReb+27T(2n2+m+1)[ (1)}
1+0| - ||,
fz—ln(Reb)

Re e=

(2.13a)

_—2ReE

k7 Reb
In[1 + exp(— 7 Re €)]
[ln(Re b) - f,1(a; + a»/Re b) + f5+ O(In b/b?)’

(2.13b)
z Re b 1) |7
ReE#=_E )\§+m—a3Ree+0 ﬁ .
(2.13¢)

The quantities Re b and \; figuring in Eqs. (2.13a), (2.13b),
and (2.13¢c) are given by Egs. (2.7) and (2.9), respectively.
The analytic expressions of a;, a,, and a5 introduced in Egs.
(2.13b) and (2.13c¢), as well as the functions f|, f,, and f5, are
given explicitly in the Appendix of Ref. [20], taking into

account that in the present case F=0.

The system of equations (2.13a), (2.13b), and (2.13¢) for
Re €, I, and Re E,, may seem complicated due to additional
interrelated R-dependent quantities, but has a relatively
simple structure: Re e=F,(Re E,), I',=F,(Re €,Re E ), and
Re E,=F3(F(Re E,),Re E,)), where F|, F,, and F5 repre-
sent known nonlinear functions of the variables indicated.
Accordingly, the numerical treatment of the system is
straightforward; for details see Ref. [20], Sec. III B. Due to
the structure of Egs. (2.13a), (2.13b), and (2.13¢) the quan-
tities Re €(R), I',(R), and Re E,(R) must be determined si-
multaneously; this is characteristic for the EEM when solv-
ing the quasistationary eigenvalue problem for R=R,.

From the analysis presented we see that the critical dis-
tance R,, Eq. (2.11), plays a role somewhat similar to that of
the distance Rgl"” used in the COB model [1]. Indeed, both
quantities describe a situation when the energy level is at the
top of a potential barrier, regardless of the direction of elec-
tronic transitions inside the ion-surface system. Nevertheless,
the concept of R, differs from R7“*, at least for the following
reasons. We recall that the R‘l‘m follows from identifying the
value of the potential barrler top U(z,,,R) on the z axis with
a simple expression for the energy level E,(R); consequently,
R depends exclusively on the quantum number 7 and the
ionic core charge Z. On the other hand, the distance R, pro-
posed by the EEM is essentially associated with the effective
potential barrier along the u direction and the effective en-
ergy, Eq. (2.5b). Therefore, the R, values follow from a full
quantum treatment of the complex energy eigenvalue prob-
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lem in the parabolic coordinates, i.e., from the system of
coupled equations (2.13a), (2.13b), and (2.13¢c), so that R,
=R.(n,,n,,m;Z).

The overbarrier-subbarrier rule of the ionization dynamics
was introduced above on rather formal grounds, i.e., we ana-
lyzed the R dependence of the quasimomentum Q? of Eq.

(2.5b) and the corresponding étalon quasimomentum éz
=s>—€ of Eq. (2.10). The behavior of these quasimomenta
can also be expressed in terms of the effective potential and
effective energy of Eq. (2.5b). In that sense, the overbarrier-
subbarrier rule reflects the following physically more trans-
parent fact: during the ionic motion toward the surface, the
effective energy level lifts (simultaneously with the decreas-
ing of the effective barrier), so that below a certain value of
the distance R, the overbarrier transitions become possible.

C. Rate equation and the ionization distance R’

The results exposed in Secs. I A and II B, corresponding
to relatively detailed summaries of Secs. II and III of Ref.
[20], represent a basis for identifying the critical region of
ionization R= R, of a multiply charged ionic projectile. We
recall that in Ref. [20] we considered the ionization distances
R{, of hyperthermal neutral atoms (Z=1) approaching the sur-
face with constant velocity v | . For the purpose of the present
paper, however, we need an additional analysis which will
take into account the acceleration of the projectile Z> 1 un-
der the influence of a polarized metal surface. Our main task
is to elaborate on the concept of the ionization distance R’
for these projectiles.

In order to define the ionization distance Ré(n) of moving
ions with Z> 1, it is necessary to obtain the ionization prob-
ability P,(R). We consider the quantity P,(R) in the adia-
batic approximation of decaying states (see Sec. Il A) by
using an approximate rate equation approach and the suppo-
sition of the classical law of ionic motion.

Generally, the problem of ionization of one-electron mul-
tiply charged Rydberg ions approaching solid surfaces would
require a multichannel model, which includes both resonant
ionizations and neutralizations, as well as Auger and radia-
tive processes. Also, in the energy-term crossing region, the
transitions between different adiabatic decaying states WV,
could be relevant. In this form, the accurate solution of the
problem is not yet known. However, by using some physi-
cally plausible approximations, for the Ré problem treated in
the present paper, it is possible to estimate the contribution of
these additional channels, opened simultaneously with the
ionization one.

Our analysis is based on the concept of critical value of
principal quantum number 7., defined as an integer solution
of the equation

R.(n.) = Rp(n,). (2.14)

It turns out that, during the ionic motion toward the surface
from R=% to R =R£(n), the resonant ionization of the occu-
pied Rydberg state n=n. is a dominant process. The reso-
nant neutralizations of empty Rydberg states of the same
traveling ion are practically negligible. These conclusions
follow from an analysis of relevant graphs for the energy
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terms and corresponding rates, which will be explicated in
Sec. III A. Also, the behavior of the energy terms and ion-
ization rates of two neighboring energy manifolds indicates
that the electron transitions between adiabatic decaying
states W, can be neglected for lower values of the first para-
bolic quantum number n; and for m=0.

The contribution of radiative deexcitation of the Z>1 ion,
with the occupied one-electron state n=n,, can be neglected
during the ionic motion toward the solid surface, because the
radiative processes are significantly slower than the ioniza-
tion process. The Auger processes can also be neglected in
the considered ionization; namely, as two-electron nonreso-
nant processes, the Auger neutralization or ionization require
an internal energy conversion, meaning that they are local-
ized closer to the surface in comparison to the distance Rf,(n)
[25].

Therefore, for n=n, the system of coupled rate equations
is reduced to a simple rate equation if the n; values are not
too high, m=0, and R<Rg(n). The ionization probability
P ,(R) of the occupied electronic state u=(n;,n,,m) is given
by

dP,(R)

v (R)——===T,(1-P,R)),

T (2.15)

where v | (R)=—dR/drt represents the perpendicular ionic ve-
locity at the ion-surface distance R. Note that Eq. (2.15) is
not adequate for the empty states n<<n,, where the multi-
channel processes determine the stepwise neutralization dy-
namics. We also assume that the ionic projectile with core
charge Z>1 and mass M approaches the solid surface ac-
cording to the classical energy conservation law:

1L o 1 5

EMULO=5MUL(R)+W(R,UL), (2.16)
where v | g=v () is the initial perpendicular ionic velocity.
The quantity W in Eq. (2.16) is the potential energy of the
ion at a distance R from the surface.

As in the case of stepwise neutralization dynamics [26],
the “true” potential energy W of multiply charged ion im-
pinging on the solid surface depends on the solid response.
Since the ionization distances R’ are larger than those char-

acteristic for the nonlinear effects, the response is mainly
linear. Accordingly, in Eq. (2.16) we take

W(R’vi) = Wcl(R)f(R’UL)’ (2173)

where W,,=-Z7%/(4R) is the classical potential energy of in-
teraction of the charge Z with its image. Using the dielectric
response theory and surface plasmon pole approximation,
see Ref. [1] and references therein, the factor f is given by
the following expression:

f(Rv.) f [
b = x’
oL o 1+g/Rv,)

where g=g,x/R+g,(g;+v*)(x/R)>. By estimating the nu-
merical values of parameters g, g,, and g3, we conclude that
for Z>1, n=n, and for R=R_, v=<1 a.u., the contribution
of the function g in the integral (2.17b) is negligible, so that

(2.17b)
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f=1. Therefore, the dynamical response of the surface re-
duces to the classical image forces: W= W, i.e., we have the
classical image acceleration of the ion.

According to Eq. (2.16), for the velocity v, =v | (R), we
get

2

V2 (R) =02+ (2.18)

Z
2MR’
We point out that the simple estimation of the condition of
validity of Eq. (2.18) can be expressed as R>R,., where
Ry .=vp/wy is the screening length, whereas vy is the Fermi
velocity and w= \52wp is the surface plasmon frequency.

Under the conditions mentioned, from Eq. (2.15) together

with the condition P ,(Rr)=0, for R<Rj we get

Re1 (R)
; ;l("—R)dR). (2.19)

We define the ionization distance R'(u,Z,v,,) as a
maximum of the total ionization rate

[ (R)=dP,/dt=—v | (R)dP,(R)/dR, i.., we have

P,R)=1~- exp(—

dr
( —E) =0. (2.20a)
dR ] g

A simple argument supports the existence of the peak of

l:,L(R) at some R=R’, despite the fact that the ionization rate
I" ,(R) will be a strongly decreasing function of increasing R;
see, for example, Figs. 1(a), 2(a), and 3(a). That is, from Eq.
(2.15) we see that fM(R) represents a product of I',(R) and
an increasing survival probability 1-P,(R); see Figs. 4(a),
5(a), and 6(a). This produces a strongly peaked total ioniza-
tion rate I:M(R) in the critical region R=R,.

Using Egs. (2.15) and (2.19), the definition (2.20a) can be
rewritten in a more practical form,

dr 1
) e s
dR R! UL(RC) K

From Eq. (2.20b) we see that the distance Rﬁ_, in contrast to
the R, distance, represents a velocity-dependent quantity. In
our subsequent considerations (Sec. III C), by direct numeri-
cal treatment we shall expose that Rﬁ: f(v,0)R,, and that Ré
is close to R.; in other words, the resonant ionization takes
place in the very vicinity of the effective potential barrier top
along the u direction.

(2.20b)

III. IONIZATION OF THE MULTIPLY CHARGED
RYDBERG IONS

A. The eigenenergies and rates Re E,(R) and I',(R)

Using the expressions (2.13a), (2.13b), and (2.13¢c), we
calculate the ionization rates and energies, characteristic for
the ionization dynamics in the critical region R=R,.

In Fig. 1 we present the ionization rates I',(R) and energy
terms Re E,(R) for Z=8 and n=9,10, ..., 14, for n;=0 and
m=0, relevant for comparison with the CAM method [7]. In
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FIG. 1. Ionization of multiply charged O”* (Z=8) ions in the
Rydberg states n=9,10,...,14, n;=0, and m=0: (a) ionization
rates I',,(R) and (b) energies Re E,(R). The dashed curves are the
CAM method results [7] for n=9. Circles indicate the positions of
critical distances R.. By Er we denote the Fermi level of the Al
solid with work function ¢=4.29 eV=0.16 a.u. Intersections of the
curves presented in Fig. 1(b) with E indicate the Fermi distances
Rp.

order to illustrate the overbarrier-subbarrier rule (see Sec.
II B), the R, symbols (°) are connected by appropriate thin
lines. The numerical values of the critical distance R, are
obtained on the basis of Eq. (2.11).

From Fig. 1 we recognize some features of the ionization
process in the critical regions; namely, the EEM ionization
rates in Fig. 1(a) are characterized by the vertical asymptotes
in the overbarrier region (R<<R,.) with exponentially de-
creasing behavior in the vicinity of R=R,.. The curves cor-
responding to higher n are positioned at larger ion-surface
distances R. The energy terms presented in Fig. 1(b) show
monotonically increasing behavior with the decrease of R.
For n=9 the rate and energy term follow the available results
of the CAM method [7], the dashed curves in Fig. 1. Taking
into account that RC%Rﬁ, for sufficiently slow ions (see Sec.
III C), we conclude that those occupied states with n<<n,
=9 cannot be resonantly ionized, Re E,(R,) <—-¢. The ion-
ization of the Z=8 ion is possible exclusively for the states
with n=9.

Using the information in Figs. 1(a) and 1(b) it is possible
to estimate the contribution of neutralization channels, which
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overbarrier

n

ionization rate I’ (a.u.)
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FIG. 2. (a) Tonization rates I' ,(R) of multiply charged ions with
core charge Z=8 in the Rydberg states n=9, n;=0-4, and m=0
(full curves), and (b) the corresponding energy manifold. The
dashed curves are the CAM method results [7] for n=9. Circles
indicate the positions of critical distances R.. By Er we denote the
Fermi level of the Al solid.

might be open simultaneously with the ionization channel.
That is, when the one-electron Rydberg ion Z=8 approaches
a solid surface, together with a given occupied state n=n,
there also travels a set of empty states [which could be popu-
lated with some rate Fﬁ(R) by a resonant neutralization
mechanism]. Determining the corresponding rates FZ(R) isa
separate problem [16,17,19] not discussed in the present
EEM decay model, because the evolution of the state ¥V u is
not a time-reversal process. However, the resonant ionization
and neutralization processes are interrelated by an asymptoti-
cally accurate “detailed balance principle” [27]. Accordingly,
the rates Ffj(R) can be estimated using the EEM rates I",,(R)
for Re £ M(R) <Ep,i.e., we can “read” the values of the elec-
tron capture rates directly from Fig. 1(a).

To clarify, we choose the n=12 occupied electronic state
and classify the empty states of the same ion into three
groups: n' >12, 9<n"<12, and n”<9. In principle, the
states n’ >12 can be populated by a resonant neutralization
process for Re £, <Ep; however, this process would be ei-
ther energetically impossible, or possible at very large ion-
surface distances R with a practically negligible probability.
The lower empty states 9 <<n" <12 of the same ion can be
resonantly populated at smaller ion-surface distances, but
likewise with a vanishing probability [for example, for n
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FIG. 3. Tonization of Ar’* and subsequent neutralization of Ar®*
multiply charged (Z=6) ions in the Rydberg states n=6, 7, 8, and 9,
n;=0, and m=0: (a) ionization rates I',(R) and (b) energies
Re E M(R). Circles indicate the positions of critical distances R.. By
Er we denote the Fermi level of the Al solid.

=10 from Fig. 1(a) we see that the rate I',, is smaller than
10~* a.u.]. Finally, the empty states n” <9 can be neutral-
ized, but only after the ionization of the considered Rydberg
state n=12 is almost completed; for that reason, these neu-
tralization channels can also be neglected. Accordingly,
when the ion Z=8 with filled electronic state n=12=n.=9
approaches the Al surface, the contribution of all neutraliza-
tion channels is practically negligible. A similar analysis can
also be performed for occupied electronic states n# 12 in
Fig. 1.

In Fig. 2 we expose the ionization rates and energies for
Z=8, n=9, m=0, and for the first parabolic quantum number
n;=0, 1, 2, 3, and 4. A general agreement with the CAM
method results (dashed curves) is obtained for all considered
values of n;, especially for the rates I', around the critical
distances R, [see Fig. 2(a)]. This is a significant fact because
the presented EEM and CAM approaches are very different
nonperturbative methods. Since the EEM rates correspond to
the high-eccentricity (“low-n;”) Rydberg states, a full agree-
ment with the rates (and energies) obtained by the CAM
method [7] is not possible (see Sec. IV). The difference be-
tween the EEM and CAM method energy curves, evident in
Fig. 2(b) for higher n; values, suggests that the higher-/
terms in the CAM model [7] scattering wave function begin
to be relevant.
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FIG. 4. The n dependence of (a) the ionization probability
P,(R) and (b) the quantity |dP,,/dR| for Rydberg states n=10, 12,
and 14, n,=0, and m=0 of O’ (Z=8,M=2ZM,) ion. The initial
perpendicular ionic velocity is v | j=0.01 a.u. Dots and circles indi-
cate the positions of ionization distances R!, and critical distances
R,, respectively.

Graphs similar to those for the manifold n=9 in Fig. 2 can
also be presented for higher n manifolds (n=10,11,12,...).
It turns out that some energy terms of two neighboring mani-
folds intersect. By analyzing energy terms and rates as in the
analysis presented above, we can estimate the contribution of
the “crossing region” to resonant ionization of a given occu-
pied electronic state. To do this, we define the ionic position
R=R" where an occupied electronic term Re E u, intersects a
neighboring empty term Re E e This estimation is based on
the fact that these terms have rather different ionization dis-
tances Rﬁ’I and Rﬁ’z.

Our analysis shows that the lower-n; term Re E sy (for
example, the term with n=11 and n,;=0), being previously
occupied, intersects the larger-n; empty term Re £, (with
n=12 and n,=4) at R=R* (where R*~52 a.u. in the ex-
ample considered). For R<<R* the subsequent time evolution
of the occupied electronic state ¥V u, Can continue either
along the energy term Re E u, OF along the previously empty
term Re E 1 continuing its evolution in the state ¥ o Both
of these states decay, so that the alternative state evolutions
end with resonant ionizations, but at different ionization dis-
tances Ri,1 >R£’2; namely, R£’1:35.1 au. and Ré,z
=22.8 a.u. Therefore, the ionization of the larger-n; state

PHYSICAL REVIEW A 74, 032901 (2006)

(a)

N
o
|

=6 Z=4

=)
©
I
N
I
©

overbarrier

subbarrier

probability Pu
o o o o
o N »H »
T I T I T I T
%—//IO/——.—.

40 60 80 100
ion-surface distance R (a.u.)
0.25
| z=38 z=4,6,8 ()
n=12
0.20 |- n,=m=0
v,=0.01au
_ I Z=6 .
5 015
&
x i -
% 010} Z=4
S L
0.05 —
0.00 L | | |
40 60 80 100

ion-surface distance R (a.u.)

FIG. 5. The Z dependence of (a) the ionization probability
P,(R) of the Rydberg state n=12, n;=m=0, for Z=4, 6, and 8
(M=2ZM,) with v,(=0.01 a.u., and (b) the quantity |dP,/dR|.
Dots and circles indicate the positions of ionization distances R{,
and critical distances R, respectively.

yzs
lower-n; state ‘I’Ml is practically finished. Accordingly, the

electron transition W Ml—ﬂl’ u, does not play a decisive role
in the resonant ionization of the low-n; occupied states. Ex-
tending these conclusions to the ionization of large-n; Ryd-
berg states is not possible within the framework of EEM
approach presented in this paper (see Sec. IV).

In Fig. 3 we present the case of ion Z=6, relevant for
comparing the EEM predictions to the classical overbarrier
model results [28]. The ionization rates and energies of one-
electron Rydberg states with n=6, 7, 8, and 9 and n;=m=0
are presented. For the critical values of n. one obtains n,
=8, corresponding to R.(8)=25.2 a.u., whereas for n=7
<n, we get R.(7)=19.3 a.u. Note that the energy level po-
sitions at these ion-surface distances are above and below the
Fermi level E; of the Al target, respectively [Fig. 3(b)]. Ac-
cordingly, the occupied level n=8 is the lowest one that can
be resonantly ionized. On the other hand, if the level n=7
should be empty it would be the highest one that can be
resonantly populated, meaning that R.(7) corresponds to the
first neutralization distance: RIIV (n)=R.(7).

These conclusions are compatible with the estimation for
the first neutralization distance (RllV ~?22 a.u.) obtained
within the framework of the COB model [28] for Ar®* slowly

v . could take place at the time when the ionization of the
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FIG. 6. The v, dependence of (a) the ionization probability
P,(R) and (b) the quantity |dP,/dR| for the Rydberg state n=12,
n,;=0, and m=0 of O7* (Z=8,M=2ZM,,) ion. The initial ionic ve-
locities v | are v;=0.00001 a.u., v,=0.01 a.u,, v3=0.1 a.u., and
vy4=1 a.u. Dots and circles indicate the positions of ionization dis-
tances R{. and critical distances R, respectively.

approaching the Al surface; namely, in the charge state evo-
lution, the ionization of the initial ion Ar’*, directed toward
the Al surface, precedes the first neutralization of the formed
ion Ar®*. In that sense, the ionization problem of the ion Art
is a complement of the first neutralization distance problem
of the Ar* ion (discussed within the analysis [28] of image
acceleration effect during the stepwise neutralization cas-
cade). In other words, the change of direction of the electron
current in the considered ion-surface system takes place in
the narrow region AR=35 a.u. of the R distance around the
value R=R)=~22 au.

B. The ionization probability P,(R) and total rate r u(R)

The intermediate stages of the ionization process are char-
acterized by the ionization probability P ,(R), Eq. (2.19), and

the total ionization rate ['(R)=dP ,/dt=v |dP ,/dR|.

In Fig. 4(a) we present the n dependence of ionization
probabilities P, (R) for the O”* ion with core charge Z=8 and
mass M= 16M1,, where M,= 1836 is the mass of the nucleon,
approaching the Al solid surface. For the initial perpendicu-
lar ionic velocity we take v, ,=0.01 a.u. We consider the
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Rydberg states n=10, 12, and 14, n;=m=0, satisfying the
condition n=n.=9. In Fig. 4(b) we present the quantity
|dP,/dR|. The Fermi distances Ry, figuring in Eq. (2.19) for
P,(R), are given by R.(10)=33.5, R(12)=87.0, and
Rp(14)=364.0 (in atomic units).

From Fig. 4(a) we see that the considered Rydberg states
will be completely ionized [P ,(R) — 1] at a finite ion-surface
distance R. The quantity |dP,(R)/dR| presented in Fig. 4(b)
exhibits maxima which determine the ionization distances R’
(dots in Fig. 4). The corresponding ionization distances Ri
increase with the increase of n; this trend is followed by a
mild increase of |R.~R.|. According to Fig. 4(a) we can es-
timate the contributions of the overbarrier and subbarrier
electron transitions. We see that the contribution of the over-
barrier transitions increases with the increasing of n.

In Fig. 5(a) we expose the Z dependence of the ionization
probability P,(R) for Z=4, 6, and 8 and M=2ZM, for n
=12 and n;=m=0, considering the case v ,=0.01 a.u. The
critical distances R, and ionization distances R’ are marked
by circles and dots, respectively. The sequence of the corre-
sponding |dP,/dR| curves is presented in Fig. 5(b). The
Fermi distance for Z=8 is Rr=87.0 a.u.; the Ry values for
Z=4 and 6 are very large, Rp>500 a.u. From Fig. 5(a) we
see that the considered Rydberg states will also be com-
pletely ionized at a finite ion-surface distance R. The ioniza-
tion distances, as well as the critical distances, decrease with
the increasing of Z. The quantity |R£—Rc| decreases slightly
with the increasing of Z.

In Fig. 6(a) we present the velocity dependence of the
ionization probabilities P,(R) for the O™ jon (Z=8) in the
Rydberg state n=12, n;=m=0. The curves correspond to
four different initial ionic velocities (values are given in the
figure caption). The Fermi distance for the considered case is
R;=870 a.u. In Fig. 6(b) we present the quantity |dP,,/dR|.

From Fig. 6 we see that the ionization distances R’ de-
crease with the increasing of v . The relative positions of
the ionization distances R’ and critical distances R, also de-
pend on the ionic velocity v 4. For v,(=v;=0.000 01 a.u.
we have R£>RC, whereas for v, ;=0.01 a.u. we have RZ,
<R.. In the first case the ionization mechanism is mainly a
tunneling one (80% tunneling, 20% overbarrier); the case
U 0=v,=0.01 a.u. corresponds to an equal contribution of
these two aspects of the electron exchange mechanism. In the
case v g=v3=0.1 a.u. the tunneling contribution is negli-
gible (5%) and the case v, (=v,=1 a.u. corresponds to a
completely overbarrier electron transition.

Also, from Fig. 6 we see that the considered Rydberg
states will be ionized with different dynamics for different
v, o: namely, the quantities |dP,(R)/dR| for v ,=<0.01 a.u.
represent bell-shaped curves with widths dR=5 a.u.; these
curves become very sharp (6R—0) for the ionic velocities
v, o=~1 au. Consequently, the “ionization mean time” ot
=6R/v | (R") of the traveling ion becomes very short in the
limiting intermediate-velocity region.

An additional specific feature of the ionization of multiply
charged ions can be recognized from Fig. 6; namely, in the
low-velocity case the ionization is governed by a total bell-

shaped ionization rate fﬂ(R) On the other hand, the ioniza-
tion at intermediate velocities (v, y=v4=~1 a.u.) can be de-
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TABLE 1. The critical distances R,, Fermi distances Ry, and ionization distances R'(v ) (in a.u.). The
relevant cases of Rydberg states (n,1n;=0,m=0) of multiply charged ions (core charges Z, M=2ZM,) ap-
proaching an Al solid surface are presented. For the initial ionic velocities v |, we take v;=0.000 01 a.u.,
v,=0.01 a.u., v3=0.1 a.u., and v4=1 a.u. The velocity-independent EEM values of R{,, taken from Ref. [18],
as well as COB values R7“* according to Ref. [1], are also presented.

n
10 11 12 13 14
Z=6 R, 39.6 483 57.7 68.1 79.2
Ry 318.4 4333
R'(v)) 40.6 49.2 59.5 68.7 79.9
R(vy) 39.4 47.0 56.1 66.0 76.9
Rl (v3) 35.8 42.8 51.9 61.1 71.0
Rl (vy) 34.2 415 49.6 58.4 67.8
[18] R 34.5 41.9 49.7 58.3 67.7
[1] RElass 34.5 41.8 49.7 58.3 67.7
z=17 R. 334 40.7 48.7 57.4 66.8
Rr 54.0 129.9 346.52
Rl(v)) 34.4 41.5 49.5 58.3 67.6
Rl(vy) 32.8 39.9 475 56.0 65.2
R (v3) 30.5 37.0 44.2 58.0 60.4
Rl(vy) 29.3 35.6 42.6 50.1 58.2
[18] R 29.6 359 42.6 50.0 58.0
[1] Rlass 28.5 34.5 41.1 482 55.9
Z=8 R, 28.8 35.1 42.0 49.5 57.7
R 335 51.0 87.0 199.7 364.0
R(v)) 29.6 35.8 427 50.2 583
Rl(vy) 28.7 34.7 413 48.5 56.6
Rl(v3) 26.6 32.2 384 45.2 526
Rl(vy) 25.7 31.2 373 439 51.0
[18] R! 25.9 314 373 437 50.7
[1] Rlass 242 29.3 34.9 40.9 475

scribed by the rates I',(R), representing a monotonically
increasing function with decreasing R (with a vertical as-
ymptote); see Fig. 6(b). This fact has been used in our pre-
vious analysis of the population-reionization process of mul-
tiply charged ions escaping solid surface with intermediate
velocities [18].

C. The critical and ionization distances R, and Rﬁ

The most important output of our calculations concerns
the ionization distances R’ which provide us with basic
physical information about the ionization process. In the
EEM presented, the ionization distances depend on the para-
bolic quantum numbers n;, n,, and m. In addition, the values
of Rﬁ depend on the ionic core charge Z and mass M, as well
as the ionic perpendicular velocity v | .

In Table I we present the R, Ry, and Rf, numerical values
(in atomic units), calculated by Egs. (2.11), (2.12), and
(2.20b), respectively, for n=10,...,14, n;=0, and m=0,
with core charges Z=6, 7, and 8 (and masses M =2ZM 1,), for

ions approaching the Al solid surface. The initial perpendicu-
lar ionic velocities v | 5 are given in the table caption. The R
values not indicated in Table I are very large. In the same
table we present the EEM ionization distances taken from
Ref. [18], which are independent of projectile velocities.
Also, we present the COB values R“** according to Ref. [1].

The R’ trends we see in Table I can be summarized as
follows. For fixed Z and v |, the distance Ri increases with
increase of the principal quantum number 7, scaled as n%. In
addition, the values R’ decrease with the increase of Z,
scaled as 1/Z. Also, the Rﬁ values decrease with the increase
of ionic velocities v | . The influence of parabolic quantum
number n; (not presented in Table I) can be recognized from
the example presented in Fig. 2. In principle, the ionization
distances corresponding to a given n decrease with the in-
crease of the first parabolic quantum number n;. The influ-
ence of the quantum number m is similar, but less
pronounced.

Accordingly, for the ionization distances R’(v,,) pre-
sented in Table I, the following estimation can be used:
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2
R =f(v,)R.. R.= 2.38%, 3.1)
where f(v)=0.13 exp(-v (/0.475)+0.88. The same kind
of proportionality between R, and Ri has been obtained in
the case of slow hydrogen atoms (Z=1, v ,(,=0.000 01 a.u.)
approaching the surface in the presence of a weak external
electric field F, discussed within the framework of the EEM
in Ref. [20] and, within the framework of the CSM in Ref.
[29].

In Fig. 7 we illustrate ionization distances Ré (full curves)
versus n, Z, and v |, Figs. 7(a)-7(c), respectively. In the same
figure we also present critical distances R, (dashed curves).
The Fermi distances R are presented in Fig. 7(a) by a dot-
dashed curve. For comparison with the classical overbarrier
model, in Figs. 7(a) and 7(b) we indicate the critical dis-
tances R7“" (dotted curves). We recall that R
=22/Z[1+(Z-1/2)/\8Z]n* [1]. Note that the curves R,
and RY“" are almost equidistant (AR,=R,—R““ = const),
and that the R** curves are positioned inside the overbarrier
area of Figs. 7(a) and 7(b). To prevent possible confusion, we
point out that in the case of electron transfer resonant to
Fermi level, a combination of the above expression for Rﬁl‘”s
and the condition E,,=—¢ leads to a formula for the critical
distance used previously for estimating the neutralization
distance of a particular Rydberg level n=n,; see Eq. (22) in
Ref. [2] and Eq. (5.11) in Ref. [1].

From Fig. 7 we see that for all considered Rydberg states
two different situations appear: R£>RC and R£<RC, depend-
ing on the value of v, The Ri curves for hyperthermal
velocity v, presented in Figs. 7(a) and 7(b), are above the R,
curves, i.e., they are positioned in the area of subbarrier tran-
sitions. On the other hand, other Ri curves in these figures
are below the R, curves and correspond to the overbarrier
electron transitions. The intersection of the Rf. (full) curves
and R, (dashed) curves in Fig. 7(c) implies that for certain
values n, Z, and v |, ionization distances coincide with the
critical distances.

We point out that for v, ;=0.01 a.u. the image accelera-
tion effect is significant. For example, the Ri curves for
v o=v,=107 a.u., presented in Fig. 7(a), would be lifted by
approximately 5 a.u. if the acceleration was neglected. Also,
if we were to neglect this effect, instead of Rf.ZRC in the
subbarrier area of Fig. 7(c) we would have the increase of Rﬁ
with the decrease of v . These conclusions follow from
direct numerical calculations based on Eq. (2.19) where the
R dependence of the velocity v is neglected. On the other
hand, the same test shows that, in the limiting case of inter-
mediate ionic velocities (v | o=v,=1 a.u.), the image charge
acceleration effect is negligible.

The Ri curves obtained in the present paper (full curves)
for v, ,=1 a.u. coincide with EEM values from Ref. [18]
[symbols V in Figs. 7(a)-7(c)]. Accordingly, in the
intermediate-velocity case it is sufficient to use the adapta-
tion of the EEM to the critical region via a two-large-
parameter asymptotic [18], which correlates with available
beam-foil experimental results. For v | y<<1 a.u., however, it
is necessary to use a more accurate EEM procedure, devel-
oped in the present paper.

PHYSICAL REVIEW A 74, 032901 (2006)

T
Z=8,n,=m=0 i (a)
60 |— % j
v,=10"au. ! vy
-2 " . , V.
T rv,=10%au. ! subbarrier v
7 ! z, 3
< 50l v=10"au,; R vy
x’ v,=1au. /!
C
S 40— .
% overbarrier
= L
S
= :
g 30 — // Rcc/ass
5 | /'// .
A
ool | | | | |

9 10 1 12 13 14
principal quantum number n

ionization distances R (a.u.)

ionization distances R (a.u.)

1
overbarrier
20 | | | | | |

10° 10* 10° 10% 10" 1
ionic velocity v, (a.u.)

FIG. 7. Ionization distances Ri(n,Z ,v ) (full curves) expressed
via (a) principal quantum number n, (b) ionic core charge Z, and (c)
initial ionic velocity v | . Dashed curves correspond to the critical
distances R.(n,Z). Dot-dashed curves correspond the Fermi dis-
tances Rp(n,Z) for ¢p=4.2 eV. The vy, vy, v3, and vy values are the
same as in Table 1. Dotted curves in (a) and (b) are the COB values
Ril“”[l]‘ Symbols V in Figs. (a), (b), and (c) represent the ioniza-
tion distances taken from Ref. [18].

Let us note, finally, that the set of graphs exposed in Fig.
7 has a more general geometrical interpretation; namely, in
the space of parameters n, Z, and v |, a surface can be de-
termined which separates the regions of subbarrier and over-
barrier electron transitions. All points of that surface, defined
by
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Ri(n,Z,v o) =R.(n,2), (3.2)

represent a situation where the ionization takes place just “at
the top of the effective potential barrier” of the ion-surface
system. Accordingly, in the (n,Z,v | ) space we can identify
a region where electron transitions are mainly of the classi-
cally allowed type, as well as a complementary region that is
mainly quantum tunneling in character.

IV. CONCLUDING REMARKS

In this paper we calculated the ionization distances Ri of
one-electron multiply charged Rydberg ions approaching
conducting solid surfaces. The Rf, distances, as well as
eigenenergies and rates, are obtained for high-eccentricity
states of an active electron, under the condition of image
charge acceleration of the ionic projectile Z> 1, and in the
region of low ionic velocities (including the limiting case
v, o=1 au.). The nonperturbative étalon equation method
has been applied, which enabled us to identify the contribu-
tions of both overbarrier and subbarrier electron transitions
near the top of the effective potential barrier of the ion-
surface system, around the large critical distance R,. In the
region R chzRf,, the parabolic quantum numbers w can be
used as approximate ones, but sufficiently good for a com-
plete classification of decaying states W ,. This approach rep-
resents an extension of the method previously developed for
hyperthermal high-eccentricity Rydberg atoms [20]; it is
worth noting that the EEM predictions for Z=1 are in very
good agreement with the results of the complex scaling
method [10], as well as with the corresponding experimental
data [29,30].

The results for Z>1 obtained in the present paper were
compared with the available results of the CAM method [7].
This method, however, left unsolved both the Ri problem for
multiply charged ions and the question of subbarrier and
overbarrier contributions. We found that the EEM predic-
tions of the present paper concerning energy terms and rates
for Z=8 and n= 10 are a complement to the available results
of the CAM method; the results of these two methods are in
good agreement for n=n.=9 (see Fig. 1). From the EEM
presented we can also deduce some conclusions concerning
the COB method [1,2,28]; namely, the ionization distances
R¢'*S estimated within the framework of the COB model fall
in the overbarrier region [see, for example, Fig. 7(a)], recog-
nized by the EEM. We consider this finding to be nontrivial,
because the quantity R,, determined by Eq. (2.11), and the
quantity R have different physical connotations (see Sec.
11 B).

A few additional concluding comments may be relevant
for further investigations of the Ré problem of multiply
charged ions.

First, the ionization distances RZ_ for parabolic quantum
numbers n;=n—1 and m#0 were not discussed in the
present paper. These Rydberg states of multiply charged ions,
characterized by low eccentricities, are outside our assump-
tion £<7, Eq. (2.2), and cannot be consistently treated
within the EEM presented. In the large-n; case, it can be
expected that a wide space region around the projectile tra-
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jectory can contribute to the electron exchange process [19];
in addition, electron transitions between adiabatic decaying
states must be taken into account. For these reasons, the rel-
evance of various members of the parabolic manifold would
require an additional investigation concerning the Rﬁ dis-
tances of multiply charged ions Z> 1. We point out that in
the Z=1 case some experimental data [31] indicate that the
Ri, values of high-lying Xe(n) Stark manifolds are similar for
ny=0 and n;=n-1, for m=0. A theoretical analysis of this
fact, based on the model of avoided crossings, is available
[31,32] only for Z=1, but not for multiply charged ions Z
>1.

Second, in the quasistationary model used in the present
paper, as well as within the framework of the CSM [10] and
CAM method [7], the complete quantum dynamics of the
electronic wave function ¥ was not explicitly discussed. Of
course, the time evolution of the function W depends on the
experimentally imposed initial condition at the time 7=t;,.
Accordingly, if the initial electronic state is not determined
by parabolic quantum numbers w (but, for example, by
spherical ones v), the question remains open as to how the
state W enters the quasistationary regime of the parabolic
type. Under somewhat restrictive conditions, this problem
can be treated within the framework of the coupled-channel
model, based on the formal expansion of W with respect to
an overcomplete solid-ion basis [33].

Third, a “direct observation” of ionization distances Ri of
multiply charged Rydberg ions approaching solid surfaces
would be worthwhile. Up to now, direct observation of Ri,
was experimentally performed only for neutral Rydberg at-
oms (Z=1) [29,30] and H, molecules [34] slowly approach-
ing solid surfaces. These experimental methods are based on
the fact that a neutral projectile, after undergoing the ioniza-
tion process, can be decelerated and stopped along the path
toward the surface by a weak external electric field, and sent
back into a detector. In contrast to such an observation of Ri
for initially neutral systems, the situation with Z>1 is some-
what different because the projectiles are charged from the
very beginning and because of relatively strong image accel-
erations toward the surface.

Finally, bearing in mind the above mentioned (both theo-
retical and experimental) perplexities, it is a challenging task
to consider the Rﬂ_ problem by taking into account that the Rf_
values depend on both initial and final states of an active
electron. This can be done within the framework of two-state
vector formalism, without using the overcomplete basis ex-
pansion; for the structure of this method, in the context of the
ion-surface interaction, see Refs. [16—19]. In this approach,
the active electron is simultaneously described by two wave
functions ‘I’E}l) and ‘I’f) at any instant of time 7. Conse-
quently, we have Ri:Rﬁ(,u, v) so that a somewhat different
insight into the Ré problem is possible.
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