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The density-matrix theory, based on Dirac’s relativistic equation, is applied for studying the entanglement
between the photoelectron and residual ion in the course of the photoionization of atoms and ions. In particular,
emphasis is placed on deriving the final-state density matrix of the overall system “photoion+electron,”
including interelectronic effects and the higher multipoles of the radiation field. This final-state density matrix
enables one immediately to analyze the change of entanglement as a function of the energy, angle and the
polarization of the incoming light. Detailed computations have been carried out for the 5s photoionization of
neutral strontium, leading to a photoion in a 5s 2S Jf =1/2 level. It is found that the photoion-electron en-
tanglement decreases significantly near the ionization threshold and that, in general, it depends on both the
photon energy and angle. The possibility to extract photoion-electron pairs with a well-defined degree of
entanglement may have far-reaching consequences for quantum information and elsewhere.
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I. INTRODUCTION

Since the early days of quantum mechanics, the—often
counterintuitive—implications of this theory have been the
subject of many controversial discussions. For instance, in
the famous gedanken experiment by Einstein, Podolsky, and
Rosen �1� it was shown that quantum mechanics allows for
nonlocal correlations between the outcomes of two �or more�
measurements of spatially separated quantum systems. In-
deed, these strange quantum mechanical correlations violate
the principle of locality and led Einstein to his belief that
quantum mechanics is an incomplete theory. In contrast,
Schrödinger identified these correlations as one of the key
features of quantum mechanics and introduced the name
quantum entanglement for this phenomenon �2�.

Today, the entanglement in composite quantum systems
plays an important role in quite different areas of physics,
from the basic research up to the first successful devices in
the new field of quantum engineering. In quantum informa-
tion �3�, in particular, several applications of quantum en-
tanglement have been developed such as superdense coding
�4�, quantum cryptography �5�, and efficient quantum algo-
rithms �6,7�. However, despite the remarkable progress in the
last decade, the experimental implementation of quantum in-
formation protocols is still a challenge owing to the fragile
nature of quantum entanglement. In many experimental and
theoretical studies, therefore, much attention has been paid
recently to those �quantum� processes which can be utilized
in order to observe and manipulate the entanglement in quan-
tum systems.

One such process which allows for the creation and ma-
nipulation of entanglement is the photoionization of atoms
and ions as suggested recently by Kim and co-workers �8�.

For the case of two hydrogenlike and heliumlike ions, these
authors considered the question how the spin entanglement
between the photoelectron and the remaining photoion is af-
fected in the course of the ionization process. Applying the
independent particle model �IPM� and the dipole approxima-
tion for the electron-photon interaction it was shown, for
example, that the entanglement of an initial triplet state
�nsms 3S� of two bound electrons can be modified signifi-
cantly during the photoionization with circularly polarized
light. These studies by Kim et al. have been extended by us
in Ref. �9�, where we applied the density-matrix theory in
order to analyze the influence of the geometry as well as the
relativistic and nondipole effects in the electron-photon in-
teraction. No attempt, however, was made so far to explore
the role of the electron-electron interaction in the change and
control of entanglement in atomic photoionization processes.
This interaction, which is inherent to all many-electron at-
oms and ions may play an important role in nowadays ex-
periments with trapped many-electron ions and may signifi-
cantly change the spin properties of the emitted
photoelectrons and the residual ions.

In this contribution, we apply the density matrix theory
for studying the change in the entanglement between the
photoelectron and residual ion in the course of the photoion-
ization. To this end, we generalized the formalism from Ref.
�9� for many-electron atoms, including the effects of the
electron-electron interaction and the higher multipoles of the
radiation field. For the sake of simplicity, however, we re-
stricted our considerations to the direct photoionization of an
ns valence electron, leaving the photoion in a well-defined
2S1/2 spin state which can be interpreted as a single qubit.
This restriction excludes all known resonance phenomena in
the photoionization of atoms and ions as well as the question
of how to deal with the residual ion in those cases, where the
final states have a total angular momentum J�1/2.

The paper is organized as follows. In Sec. II, we explain
the main steps in deriving the final-state density matrix for
the system photoelectron+ion, starting from a well-defined
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geometry and initial setup of the photoionization process.
This final-state density matrix describes the spin states of
both, the emitted photoelectron and the residual ion. It is
shown, in particular, how this matrix can be traced back to
the �reduced� photoionization amplitudes which couple the
bound-state density of the initial atom �ion� to many-electron
scattering states with one electron in the continuum. Indeed,
the derived final-state density matrix can be utilized to cal-
culate all observable properties in the atomic photoionization
process such as total cross sections, the alignment of the ions
or the spin polarization of the photoelectrons. In Sec. II D,
this is shown for the angular distribution of the photoelec-
trons which requires the knowledge of the bound-free tran-
sition amplitudes. In Sec. II E, we later recall the definition
of the concurrence as a useful measure for the entanglement
of any system which consists of two distinguishable qubits,
while the computations of the transition amplitudes are
briefly described in Sec. II F.

Although the main emphasis of this work concerns the
setup of a proper formalism to consider the change of en-
tanglement in atomic photoionization, which appears here as
additional resource to the measurement of cross sections and
angular distributions, Sec. III shows a few selected compu-
tations for the 5s valence-shell photoionization of neutral
strontium near the ionization threshold. These calculations
for the entanglement between the photoion and the emitted
electron are based on amplitudes which are obtained in the
framework of the multiconfiguration Dirac-Fock method.
These results demonstrate that the entanglement is altered
substantially, especially for photon energies near the ioniza-
tion threshold, in dependence of the photon energy and
angle. Finally, a brief summary is given in Sec. IV.

II. THEORY

A. Geometric setup

In order to describe the photoionization process, we shall
first define proper coordinates to describe the photoionization
of atoms and ions in full detail. In Fig. 1, a simplified geo-
metrical setup is shown for the ionization of a single electron
with well-defined asymptotic momentum p. For the sake of
convenience �which will become clear later�, here we choose
the quantization axis parallel to the electron momentum p, in
contrast to many previous investigations where the propaga-
tion direction of the incoming light was taken for the �spin-�
quantization of the system. In the relativistic theory, in fact,
the projection of the electron spin may have a sharp value
only along the axis of the �electron� momentum. For this

choice of the quantization axis, the direction k̂ of the incom-
ing photon is characterized completely by the polar angle �
with respect to the outgoing electron.

B. Density-matrix formalism

Since the introduction of the density matrix by von Neu-
mann and Landau in 1927, this formalism has been found to
be a useful and elegant tool in many fields of modern phys-
ics. In atomic physics, for instance, the density matrix ap-
proach has been applied for studying the capture and emis-

sion of particles as well as the interaction of atoms with the
radiation field and other processes �10–14�.

Instead of the explicit use of the density matrix, the state
of a given system is often described in terms of the so-called
statistical or density operator. This operator can be consid-
ered to represent an ensemble of identical physical systems
which are altogether either in a pure state or in a statistical
mixture of different �pure� states. The time-independent den-
sity matrix formalism is especially appropriate in order to
describe the evolution of an initial system in passing through
several interaction processes until the final state is attained.
From the density matrix of this final state, then all the ob-
servable properties can be derived by using proper projec-
tions �traces�.

In the following, we apply the density matrix theory to the
photoionization of atoms and ions in a weak radiation field,
i.e., if the absorption of a single photon leads to the emission
of a photoelectron with well-defined momentum. The initial
state of the overall system atom+radiation field therefore
consists of the initial state of the atom as well as the repre-
sentation of the incident photon. If both subsystems are ini-
tially uncorrelated �as always in usual photoionization ex-
periments�, then the initial-state density operator is given by
the direct product of the density operators of the subsystems,

�̂i = �̂atom � �̂photon = �̂0 � �̂�. �1�

In addition, we assume below that the atom �ion� is de-
scribed uniquely by a set �0 of inner coordinates �quantum
numbers� and the total angular momentum J0 so that the
initial state of the atom can be written as a general mixed
state with respect to the spin projection M0,

�̂0 = �
M0M0�

cM0M0�
��0J0M0���0J0M0�� . �2�

Similarly, we may specify also the spin state of the inci-
dent photon �beam� by the photon density matrix

FIG. 1. �Color online� Geometry of the ionization process in
which one valence shell electron of a trapped atom �or ion� is pho-
toionized by a �circularly polarized� photon of energy ��. Since the
quantization axis is chosen parallel to the emitted electron, the in-
coming photon can be characterized by means of the �polar� angle �
with respect to this axis.
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�̂� = �
���

c����k���k��� �3�

in the helicity representation, where � is the spin projection

of the photon onto the direction of its momentum k̂. Since
for the photon �with intrinsic spin S=1� the helicity may take
the values �= ±1, only three independent parameters are re-
quired to describe the spin state of the photon by its 2	2
density matrix �3�; they are closely related to the well-known
Stokes parameters of light �11,12�

�c���� = �k���̂��k��� =
1

2
	 1 + P3 P1 − iP2

P1 + iP2 1 − P3

 �4�

which, in optics and atomic physics, are often utilized to
characterize the degree of the polarization of the light. While
P3 reflects the degree of circular polarization, the parameters
P1 and P2 together denote the degree and direction of the
linear polarization of the light in the plane perpendicular to
the photon momentum k.

As mentioned above, the density operator �1� describes
the system atom+incoming photon in the initial state, i.e.,
before the photoionization has happened. In order to make
use of this operator for the further analysis of the photoion-
ization process, it is often more convenient to rewrite it in
the matrix form

��0J0M0,k���̂i��0J0M0�,k��� = cM0M0�
c���, �5�

where we made use of the explicit representations �2� and
�3�. We can utilize this initial-state density matrix �5� to ana-
lyze the spin properties of the final system photoion
+electron, following the photoinduced emission of an elec-
tron. These spin properties can be obtained from the final-
state density operator �̂ f which, in turn, is related to �̂i by the
standard expression

�̂ f = R̂�̂iR̂†. �6�

In this relation, R̂�k�=�i�i ·u�,ie
ik·ri is the transition op-

erator which can be written as a sum of one-particle opera-
tors where each one-particle operator describes, within the
framework of the relativistic Dirac theory, the interaction of
the electron with the radiation field of the photon. Here, �i
= ��x,i ,�y,i ,�z,i� denotes the �vector of the� Dirac matrices
and the unit vector u�,i specifies the circular polarization of
the photon.

After the absorption of the photon, we have a free electron
with asymptotic linear momentum p and spin projection ms,
while the photoion is left in a fine-structure state with total
angular momentum Jf. Using a basis with well-defined �an-
gular� momenta J0 and Jf of the initial and the residual ion,
the final-state density operator can be written as

�� fJfMf,pms��̂ f�� fJfMf�,pms�� = �
M0M0����

�� fJfMf,pms�R̂��0J0M0,k��

	��0J0M0,k���̂i��0J0M0�,k�����0J0M0�,k���R̂†�� fJfMf�,pms��

= �
M0M0����

cM0M0�
c����� fJfMf,pms��

i

�iu�,ie
ik·ri��0J0M0

	�� fJfMf�,pms���
i

�iu��,ie
ik·ri��0J0M0�*

, �7�

where �� fJfMf ,pms��i�i ·u�,ie
ik·ri��0J0M0� represents the

�photoionization� matrix element for the transition from a
many-electron bound state of the atom to a scattering state
with just one free electron in the continuum.

1. Partial wave and multipole expansion

For the computation and analysis of the final-state density
matrix �7�, further simplification of the transition amplitude
�� fJfMf ,pms��i�i ·u�,ie

ik·ri��0J0M0� is required. In order to
achieve such a simplification we first must decompose the
continuum wave function �pms� of the emitted electron into
partial waves. As discussed previously, special care must be
taken in choosing the quantization axis since this influences
the explicit form of the decomposition. For instance, using
the electron momentum p as the quantization axis �cf. Fig.

1�, the full expansion of the continuum wave function is
given by �15�

�pms� = �

=−�

�
�0�

+�

ilei�
�4�2l + 1�	l0
1

2
ms�jms
��
jms� , �8�

where the summation runs over all values of Dirac’s angular
momentum quantum number


 � 
�j,l� = ± �j + 1/2� for l = j ± 1/2,

and � denotes the kinetic energy of the ejected electron and j
and �−1�l the total angular momentum and parity of the par-
tial waves ��
jms�. Moreover, the additional phase shift �


in Eq. �8� arises from the potential of the nucleus and the
remaining electrons of the photoion.
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Apart from the continuum wave function of the outgoing
electron, we shall rewrite in a second and independent ex-
pansion also the one-particle operators of the transition op-

erator R̂�k̂� in terms of spherical tensors, i.e., in terms of
electric and magnetic multipole fields. Given the wave vector
k of the ionizing photon, the multipole decomposition of the
photon wave is defined by

u�eik·r = �2�
L=1

�

�
M=−L

+L

iL�2L + 1ALM
��� DM�

L �n̂� , �9�

where

ALM
��� = ALM

�m� + i�ALM
�e� = �

p=0,1
�i��pALM

�p� �10�

represent the magnetic �p=0� and electric �p=1� multipole
fields and DM�

L �n̂�=DM�
L �k→ez� is the Wigner D-function or

Wigner rotation matrix of rank L. This matrix takes into ac-
count the fact that we have chosen the direction of the elec-
tron momentum p as the quantization instead of the photon
momentum k.

2. Derivation of the final-state matrix elements

Inserting the partial wave expansion Eq. �8� for the con-
tinuum wave of the free electron and the multipole expansion
Eqs. �9� and �10� of the photon field into Eq. �7�, the final-
state spin density matrix can be written �up to some normal-
ization constant� as

�� fJfMf,pms��̂ f�� fJfMf�,pms�� = �
M0M0����pp�

LL�MM�

�

cM0M0�
c���i

−l+l�+L−L��i��p�i���p�

	 ei��
−�
���l,l�,L,L��1/2	l0
1

2
ms�jms
	l�0

1

2
ms��j�ms�
�� fJfMf ;�
jms��

i

�iALM,i
�p� ��0J0M0

	�� fJfMf�;�
�j�ms���
i

�iAL�M�,i
�p�� ��0J0M0�*

DM�
L �n̂�DM���

L�*
�n̂� , �11�

where we used the notation �l , l� , . . . �= �2l+1��2l�+1�. . . .
Indeed, Eq. �11� represents the most general form of the

final-state density which describes the spin states of both the
emitted photoelectron �pms� and the residual ion �� fJfMf�. In
this form, all wave functions and operators �in the transition
matrix elements� are now expressed in a spherical represen-
tation and can thus be evaluated by using the techniques of
Racah’s algebra �16�. To construct the many-electron scatter-
ing states of well-defined symmetry, we may use the standard
procedure for the coupling of the angular momenta J f and j
of the residual ion and the ejected electron

�� fJfMf ;�
jms� = Â�
JtMt

�JfMf jms�JtMt���� fJf,
�:JtMt� ,

�12�

where the operator Â is used to ensure the proper antisym-
metrization of the emitted photoelectron with respect to the
bound-state wave function. Inserting the expression �12� into
Eq. �11�, the final-state density matrix can be rewritten as

�� fJfMf,pms��̂ f�� fJfMf�,pms�� = �
M0M0����pp�

LL�MM�

�

�
JtMt

Jt�Mt�

cM0M0�
c����i��p�i���p�i−l+l�+L−L�

	 ei��
−�
���l,l�,L,L��1/2�l01/2ms�jms��l�01/2ms��j�ms���JfMf jms�JtMt��JfMf�j�ms��Jt�Mt��

	��� fJf,
�:JtMt��
i

�iALM,i
�p� ��0J0M0

	��� fJf,
��:Jt�Mt���
i

�iAL�M�,i
�p�� ��0J0M0�*

DM�
L �n̂�DM���

L�* �n̂� , �13�
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where Mt=Mf +ms and Mt�=Mf�+ms�.
We are now prepared to make a last step in evaluating the

final-state density matrix and bring it into the form which is
most convenient for computations. By making use of the
Wigner-Eckart theorem

��� fJf,
�:JtMt��
i

�iALM,i
�p� ��0J0M0

=
1

�2Jt + 1
�J0M0LM�JtMt�

	��� fJf,�
j�,Jt��
i

�iAL,i
�p���0J0 �14�

and introducing the short-hand notation

��� fJf,�
j�,Jt�HLp��0J0�

= i−lei�
��� fJf,�
j�,Jt��
i

�iAL,i
�p���0J0 , �15�

we are able to trace back the final-state density matrix ele-
ments to the reduced matrix elements of the multipole fields.
These reduced matrix elements form the fundamental build-
ing blocks for the evaluation of a large number of properties
related to the atomic photoionization process and have been
discussed in detail in Ref. �13�. Inserting Eqs. �14� and �15�
into �13� we finally obtain a rather general expression for the
final-state density matrix which describes the overall system
photoion+electron following the photoionization process:

�� fJfMf,pms��̂ f�� fJfMf�,pms�� = �
M0M0����pp�

LL�MM�

�

�
JtMt

Jt�Mt�

cM0M0�
c���i

L−L� �l,l�,L,L��1/2

�Jt,Jt��
1/2

	 �l01/2ms�jms��l�01/2ms��j�ms���JfMf jms�JtMt��JfMf�j�ms��Jt�Mt���J0M0LM�JtMt�

	�J0M0�L�M��Jt�Mt����� fJf,�
j�,Jt�HLp��0J0���� fJf,�
�j��,Jt��HL�p���0J0�*DM�
L �n̂�DM���

L�* �n̂� .

�16�

The theory developed so far is general and not restricted
to any shell structure of the initial atom or the photoioniza-
tion of an electron from a particular shell. Formula �16� ap-
plies even for the case that the photoinduced emission of an
electron is accompanied by the excitation or shake-up of
other bound-state electrons, leading to some satellite lines in
the photoelectron spectrum. However, in order to interpret
the spin states of the residual photoion and the ejected elec-
tron as two distinguishable quantum bits �qubits�, i.e., as
two-state systems in both cases, it is useful to restrict the
further analysis to the photoionization of a �closed-shell�
atom in a ns2 1S0 ground state. Such a configuration applies,
for instance, for all alkaline-earth metal atoms and their iso-
electronic sequences. For any 1S0 initial state, we may sup-
pose the atom to be maximally entangled as a consequence
of the Pauli principle. Note, however, that the concurrence
�cf. Sec. II E� cannot be used for measuring the entanglement
of the system, as this measure assumes two distinguishable
subsystems. If, moreover, we consider the direct photoion-
ization of one of the ns electrons, the photoion is left in a
stable ns 2S1/2 ground state �Jf =1/2� of the singly ionized
atom. Obviously, this restriction allows for an immediate in-
terpretation of the total system photoion+electron as a two-
qubit system whose entanglement can be characterized by

means of the concurrence measure. Other quantum measures
might be used to characterize and analyze the entanglement
also for photoionization processes which result in final states
of the photoion with Jf �1/2, i.e., in arbitrary d1	d2 quan-
tum systems �17,18�. A further interesting scenario for study-
ing the entanglement transfer in the course of atomic photo-
ionization occurs if inner-shell hole states are created which
decay by photon or electron emission. In this case, the treat-
ment of the photoionization must be extended considerably
to incorporate the intermediate resonance states �of the pho-
toion� in the setup and computations of the final-state density
matrix.

C. Photoionization with unpolarized or circularly polarized
light

Formula �16� for the final-state density matrix can be fur-
ther simplified if, other than unpolarized atoms in their initial
state, we consider the photoionization by unpolarized or cir-
cularly polarized light. In this case, the density operators of
the atom and photon �cf. Eqs. �2� and �3�� become

�̂0 =
1

2J0 + 1�
M0

��0J0M0���0J0M0� �17�
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and

�̂� = �
�

c���k���k�� , �18�

where c��=1/2 applies for the case of unpolarized light
while c��=��,±1 describes the left ��=−1� and the right ��
= +1� circularly polarized light. The combined initial-state
matrix elements �5� thus simplify to

��0J0M0,k���̂i��0J0M0�,k��� = �����M0M0�
c��

2J0 + 1
. �19�

Inserting Eq. �19� into expression �16� and by making use of
Racah’s algebra, the final-state density matrix for unpolar-
ized or circularly polarized light becomes

�� fJfMf,pms��̂ f�� fJfMf�,pms�� = �
��LL�

�

�

�
JtMt

Jt�Mt�

c��D�0
� �0,�,0�iL−L� �l,l�,L,L�,��1/2

�Jt�1/2

	 �− 1�J0+Jt�+1�l01/2ms�jms��l�01/2ms��j�ms��

	 �JfMf jms�JtMt��JfMf�j�ms��Jt�Mt�����Jt�Mt��JtMt��L�L� − ���0��L� L �

Jt Jt� J0
�

	��� fJf,�
j�,Jt�HL��0J0���� fJf,�
�j��,Jt��HL���0J0�*, �20�

where �¯� denotes the Wigner 6j symbol and where the
summation over � is restricted by �= �L−L�� , . . . ,L+L�. In
Eq. �20�, moreover, we used the fact that for unpolarized or
circularly polarized light, the rotation k→ez of the photon
wave is completely characterized by a single angle � so that
D�0

� �n̂�=D�0
� �0,� ,0�.

D. Angular distribution of the photoelectrons

The final-state density matrix �20� contains the complete
information about the system photoion+electron and, hence,
can be utilized to derive all observables for both particles. In

the density matrix theory, a �so-called� detector operator P̂
can be assigned to each observable which projects out the
�subspace of� final states leading to a click at the detectors in
the present setup of the experiment. This detector operator
also determines the probability W of registering an event at
the detector simply by taking the trace of its product with the

final-state density matrix W=Tr�P̂�̂ f�.
For instance, to measure the angular distribution of the

emitted photoelectrons, one usually applies a detector which
is not sensitive to neither the spin of the photoelectron nor to
the spin state of the residual ion,

P̂ = �
Mfms

�� fJfMf,pms��� fJfMf,pms� , �21�

as seen from the sum over the spin projections ms of the
electron and the magnetic quantum numbers Mf of the pho-
toion. From this operator, we immediately obtain also the
well-known angular distribution of the photoelectrons

W��� = Tr��̂ f� = �
Mfms

�� fJfMf,pms��̂ f�� fJfMf,pms� ,

�22�

which is just the normal trace of the final-state density ma-
trix.

E. Final-state entanglement

From the final-state density matrix �20� for the photoion-
ization of an atom by unpolarized or �purely� circular polar-
ized light, we can derive not only the individual properties of
the outgoing electron or the residual ion but also those prop-
erties which are associated with the combined system
photoion+electron. Apart from the outcome of various coin-
cidence measurements, we may consider, for example, the
quantum mechanical correlation of the �spins of the� two
particles, i.e., their spin entanglement. Of course, in order to
quantify this entanglement and to introduce a proper measure
for it, information is first required about the possible spin
states of each subsystem. Following the �direct� photoioniza-
tion of a single electron, the electron and photoion are dis-
tinguishable eventually and can be treated as a two-qubit
system with the four-dimensional product basis
��↑↑�,�↑↓�,�↓↑�,�↓↓��, iff the residual ion has total angular mo-
mentum J=1/2 with MJ= ±1/2. This requirement is ful-
filled, for instance, for the photoionization of a ns valence
electron of alkaline-earth atoms, by starting from the �closed-
shell� ns2 1S0 ground state of the atoms �or isoelectronic
ions� and leading to a photoion in a ns 2S1/2 ground level.

In general, the quantification of entanglement is still an
unsolved problem for multipartite quantum systems if they
are in a mixed state. For such systems, the possible entangle-
ment measures are often defined as variational expressions
which usually involve an optimization over all possible pure-
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state decompositions �=�ipi��i���i� of a mixed state �. For
bipartite systems, such as described above for the photoin-
duced emission of a single electron, in contrast, several com-
putable entanglement measures have been proposed during
the last years �see, e.g., Ref. �19� for a recent introduction
and review�. For two-qubit systems, the so-called concur-
rence is certainly the most widely used measure �20,21�. For
an arbitrary two-qubit state, either pure or mixed, described
by the density operator �̂, the concurrence is defined as

C��̂� = max�0,��1 − ��2 − ��3 − ��4� , �23�

where ��i are the square roots of the eigenvalues �i.e., the

singular values� of the matrix �̃̂�̂ in descending order and

where �̃̂ denotes the so-called spin-flipped matrix,

�̃̂ � ��̂y
�1�

� �̂y
�2���̂*��̂y

�1�
� �̂y

�2�� . �24�

In the definition �24� of the spin-flipped matrix, �̂* refers to
the complex conjugate of �̂, and �̂y

�1� and �̂y
�2� are the standard

Pauli matrices acting on the first and the second qubit, re-
spectively.

Using the formulas �23� and �24�, we are able to deter-
mine the degree of entanglement from the final-state density
matrix �16� or �20� if it represents a proper two-qubit system.
All that is needed is to ensure that the two subsystems
photoion+electron can be treated as distinguishable two-
state systems on which �projetive� measurements can be car-
ried out. In Sec. III, these formulas are applied for studying
the concurrence between the photoion and the ejected elec-
tron following the 5s photoionization of neutral strontium.
The computations of the final-state concurrence have been
performed using the FEYNMAN program which has been de-
veloped in our group for the simulation and �entanglement�
analysis of quantum registers �22�.

F. Computations

Our discussion above shows how the computation of the
density matrix and, hence, of most properties in the photo-
ionization of atoms and ions can be traced back to the re-
duced matrix elements �15� which describe the interaction of
an electronic bound state with the radiation field. Since these
reduced matrix elements occur very frequently in the calcu-
lation of atomic data, such as transition probabilities and
ionization cross sections, here we do not need to discuss their
evaluation in detail. In the computations below, we applied
the �relativistic� multiconfiguration Dirac-Fock method to
approximate proper bound-state wave functions and for
evaluating all the required matrix elements. The calculations
were carried out by means of the RATIP program of our group
�23,24� which now provides also the �reduced� photoioniza-
tion amplitudes �15� for atoms and ions in rather arbitrary
configurations �25,26�.

The MCDF method has been found useful in many atomic
calculations, especially for medium and heavy elements or if
�several� open shells are involved. Not much needs to be said
here about this method �23,27�, in which an atomic state is
approximated by a linear combination of �so-called� configu-
ration state functions �CSFs� of the same symmetry

���PJM� = �
r=1

nc

cr�����rPJM� . �25�

In this ansatz for an atomic state, nc is the number of CSF
and �cr���� denotes its representation in this basis. In most
computations, moreover, the CSF are constructed as antisym-
metrized products of a common set of orthonormal orbitals
and are optimized on the basis of the Dirac-Coulomb Hamil-
tonian. Further relativistic contributions to the representation
�cr���� of the atomic states are then added, owing to the
given requirements, by diagonalizing the Dirac-Coulomb-
Breit Hamiltonian matrix in first-order perturbation theory.

Besides the reduced matrix elements

��� fJf,�
j�,Jt�HLp��0J0�

as the key ingredients for calculating the final-state density
matrix, Eq. �16� also displays the angular part of the density
matrix which consists of the six Clebsch-Gordan coefficients
and some phase factors. Owing to the 16-fold summation in
Eq. �16�, special care must be taken to achieve an efficient
evaluation of these coefficients. Below, we made use of the
RACAH �28� and DIRAC �29� programs which have been de-
veloped in our group in Kassel for dealing with the atomic
shell model.

III. RESULTS AND DISCUSSION

Section II describes how the density matrix theory can be
utilized in order to discuss and analyze the change �and con-
trol� of entanglement in the photoionization of many-electron
atoms and ions. Equations �16� and �20� for the final-state
density matrix of the system photoion+electron, in particu-
lar, are the main result of this work which can be applied
immediately for studying various ionization processes; they
show how atomic photoionization can provide an alternative
path in creating entanglement �of given degree� in atomic
systems. As a first example, let us consider here the photo-
ionization of neutral strontium �Z=38�, starting from its sin-
glet ground state �= �Kr�5s2 1S0. Owing to Pauli’s principle,
this state can be considered as completely spin-entangled al-
though this property is not required for analyzing the en-
tanglement between the photoion and the outgoing electron
after the photoionization has occurred. Therefore, we shall
not discuss whether and how this initial entanglement of the
�bound electrons of an� atom could be specified quantita-
tively by means of a mathematically sound measure; as in
Ref. �8�, we simply define C��̂0�=1.

After the emission of one of the 5s valence electrons ow-
ing to the absorption of either right-circular ��= +1� or un-
polarized light:

Sr + h� → Sr+�5s2S1/2� + e−,

the spin entanglement between the singly ionized Sr+ ion in
its �Kr� 5s 2S1/2 ground state and the ejected photoelectron is
determined by the final-state density matrix �20�. Apart from
the internal structure of the strontium atom, this density ma-
trix depends also on the energy E� as well as the direction �
and the polarization of the incident light �cf. Fig. 1�. In the
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following, we calculate the concurrence of this two-qubit
system above and investigate how it depends on these pa-
rameters. Having once understood this dependence, of
course, we may reverse our argumentation above and use the
photoionization process in order to extract photoion-electron
pairs with a given degree of entanglement.

For the 5s photoionization of atomic strontium, Fig. 2
�upper panel� displays the concurrence of the final Sr+ ion-
electron pair as a function of the photon angle �. Results are
shown for right-circular light in length and velocity gauge
and for the three photon energies E�=10 eV, 20 eV, and
30 eV, respectively. When compared to the initial concur-
rence of C��̂0�=1, a strong decrease occurs in forward and
backward direction of the incoming photons as well as if one
approaches the photoionization threshold at Ethr=5.69 eV.
The rather large changes in the degree of entanglement be-
tween the photoion and the outgoing electron reflects the
electron-electron and spin-orbit interaction in the ground
state of strontium and will be discussed below.

Of course, in order to measure the concurrence of a
photoion-electron pair for a given angle � of the incident
photon beam, we would need enough intensity for the emis-
sion of an electron under these circumstances. In the lower
panel of Fig. 2, therefore, we also display the angular distri-
bution for right-circularly polarized light and at the same
photon energies as above. As seen from this figure, the an-
gular distribution is mainly proportional to �sin ��2 which is
well known from the emission pattern of the s-shell photo-
ionization in the nonrelativistic regime. In particular, it can
be seen that the electron emission occurs mainly perpendicu-
lar to the direction of the incoming light ��=90° � while the
forward and backward emission is strongly suppressed.

Note however that near to the ionization threshold, i.e.,
for E��10 eV, the photoionization amplitudes occur to be
very sensitive to correlation effects. This is seen, for in-

stance, from the rather large deviations in the angular distri-
butions if they are calculated in the two different couplings
of the radiation field to the bound state density, namely in
length and velocity gauge. These deviations between the two
gauges arise partially from the fact that rather restricted
wave-function expansions �25� have been used for both ini-
tial and final ionic states. A better agreement between the
gauges might be expected if the number of correlation state
functions is increased. This would lead, however, also to a
significant increase in the computational requirements which
does not seem to be necessary for the qualitative discussion
in the present work.

In contrast to the angular distribution, the concurrence
�i.e., the degree of entanglement� between the photoion and
the electron appears less sensitive with regard to the gauge
form for the coupling of the radiation field. As seen from the
upper panel of Fig. 2, the discrepancy between length and
velocity gauge is for �=90° about 20% at E�=20 eV and
decreases to 3% for E��30 eV �including those energies
which are not shown in this figure�. Apart from low photon
energies, the concurrence follows the symmetry of the angu-
lar distributions of the photoelectrons; in particular, it ap-
pears symmetric with respect to a forward ���90° � and
backward emission ���90° � of the ejected electron. As dis-
cussed above, this symmetry might occur even for low pho-
ton energies E�=10 eV, for which, however, the accuracy in
calculating the reduced photoionization amplitudes �15� is
not high enough to interpret the different shapes of the con-
currence in the two gauges from above.

While the shape of the concurrence, considered as a func-
tion of the photon angle, is quite independent of the energy
of the incoming light, the absolute values C��̂ f� for E�

=10 eV decreases to a maximum value C��̂ f��0.2 which
shows that most of the initial entanglement C��̂0�=1 is lost in
the course of the photoabsorption and simultaneous electron

FIG. 2. �Upper panel� Final-state concurrence value as a function of the photon incidence angle �. Results are shown for the case of
right-circularly polarized light and for different photon energies E1=10 eV, E2=20 eV, E3=30 eV as well as for length gauge �—� and
velocity gauge �-·-�. �Lower panel� Angular distribution of the photoelectrons using length gauge �—� and velocity gauge �-·-�.
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emission. This strong decrease of the entanglement near the
photoionization threshold must be attributed to many-particle
and spin-orbit effects, which are dominant in the low-energy
regime �30�. For higher photon energies, in contrast, these
effects become less important leading to a concurrence
C��̂ f��1 over a wide range of angles. This conservation of
the concurrence, when compared to C��̂0�=1, also follows
from the properties of the electron-photon interaction: The

transition operator R̂�k�=�i�i ·u�,ie
ik·ri itself is independent

of the spin coordinates, at least within the nonrelativistic
limit, and hence cannot directly affect the spin of the elec-
trons. For the photon energies E�=20 and 30 eV, the angular
distribution of the concurrence C��̂ f� approaches the shape
which was obtained before within the IPM where the initial
entanglement is fully preserved for all angles except for �
→0° and �→180° �8,9�.

Until now we have discussed the angular distribution of
the final-state concurrence for fixed energies of the incoming
photon. Figure 3 displays in addition the energy dependence
of the concurrence for the three photon angles �=30°, 60°,
and 90°. These angles of the incident photons have been
chosen since the electron emission is predominant in the
angle range of 30° ���90° �cf. bottom panel of Fig. 2�.
Again, the concurrence C��̂ f� is shown in length and velocity
gauge to document the sensitivity of this measure with re-
spect to the way we treat the coupling of the radiation field to
the bound-state electron density in the many-electron com-
putations. As seen from the upper panel in Fig. 3, both
gauges yield qualitatively similar results. For all three photon
angles, a significantly reduced entanglement of C=0.3–0.6 is
found near the ionization threshold Ethr=5.69 eV. An even
smaller degree of entanglement can be found around the two
well-pronounced minima at E��11 eV �8 eV� and E�

�16 eV �10 eV� for length �velocity� gauge. The positions

of these two minima are largely independent of the photon
angle. Finally, for E��17 eV, the concurrence rapidly ap-
proaches unity as it should be expected since the independent
particle model becomes a good approximation again when
the photon energy is �much� larger than the interelectronic
and spin-orbit interactions.

Although the energy dependence of the final-state concur-
rence is quite similar for the three angles of the incoming
light, the absolute values of C��̂ f� do depend on the particular
choice of �. For instance, the value of the concurrence maxi-
mum near E�=14 eV strongly depends on the photon angle
and increases from C�0.15 at �=30° up to C�0.97 at �
=90° �length gauge�.

Up to the present, all results for the angular and energy
dependence of the concurrence between the spins of the pho-
toelectron and the residual Sr+ �5s 2S1/2� ion were shown for
the case of right-circularly polarized light. In order to explore
the dependence of the final-state concurrence on the polar-
ization of the incoming light, calculations have been per-
formed also for the photoionization of neutral strontium by
unpolarized light. As seen from the lower panel of Fig. 3, the
concurrence is hardly affected by the �circular� polarization
of the incoming light. A stronger effect may be expected for
the case of linearly polarized light which is however not
included in the formalism presented above. Compared to the
special-case simplifications in Sec. II C, the investigation of
linear polarization effects would require a more complicated
geometry including the introduction of an additional angle
for describing the polarization plane’s orientation.

IV. SUMMARY AND OUTLOOK

The density matrix theory has been applied for studying
the entanglement between the photoelectron and residual ion

FIG. 3. Final-state concurrence as a function of the photon energy for fixed photon angles �=30°, �=60°, and �=90° as well as for
right-circularly polarized light �upper panel� and unpolarized light �lower panel�. Results are shown for length gauge �—� and velocity gauge
�-·-�.

DENSITY-MATRIX FORMALISM FOR THE PHOTOION-… PHYSICAL REVIEW A 74, 032709 �2006�

032709-9



in the course of the photoionization of atoms and ions. This
generalizes our previous work in Ref. �9� for many-electron
atoms, by including interelectronic effects and the higher
multipoles of the radiation field. Emphasis has been placed
on deriving the final-state density matrix of the photoelectron
and the residual ion which enables one to analyze the change
of entanglement �concurrence� as a function of the energy,
angle and the polarization of the incoming light.

In a first application of this theory, we calculated the
photoion-electron entanglement for the 5s photoionization of
neutral strontium with a 5s2 1S0 ground state, leading to a
photoion in a 5s 2S1/2 state, i.e., in a Jf =1/2 level. After the
emission of the electron, therefore, the final system
photoion+electron can be considered as a �distinguishable�
two-qubit system for which the concurrence provides a mea-
sure for the degree of entanglement. The concurrence of this
system has been calculated as function of the angle and en-
ergy of the photons as well as for right-circularly polarized
and unpolarized light. From these calculations, it is found
that the initial-state entanglement �which is assumed to be
C��̂0�=1 for the 1S0 ground state of strontium� decreases sig-
nificantly near the photoionization threshold and, in general,
depends on both, the photon energy and angle. On the other
hand, our results do not show any notable influence of the
final-state entanglement on the photon polarization. For pho-
ton energies E��20 eV, the initial-state entanglement is al-

most fully preserved which agrees with results obtained
within the independent particle model �8,9�. Note, however,
that for these energies the 4p photoelectron emission starts to
dominate the photoionization of neutral strontium, leading to
resonance phenomena in the cross sections �25,31� and the
emission of �additional� Auger electrons.

Knowledge about the entanglement between the photo-
electron and the residual ion provides an alternative view on
the fundamental process of atomic photoionization which
comes in addition to the study of �photoionization� cross
sections, angular distributions, or the spin-polarization of the
outgoing electron. While the latter three properties are asso-
ciated with either the photoion or the electron, the entangle-
ment between these particle is a property of both. Moreover,
a detailed understanding of the �change of� entanglement in
the course of the photoionization, taken as functions of the
various parameters of the incoming light, will enable one to
extract photoion-electron pairs with a well-defined degree of
entanglement. Such a control of the creation of entangled
pairs may have far-reaching consequences not only in quan-
tum information but also at several places elsewhere.
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