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Spherical and parabolic partial cross sections and asymmetry parameters, defined in the ejected electron
frame, are presented for photoionization excitation of the helium atom at 0.1 eV above its double ionization
threshold. A quantitative law giving the dominant spherical partial wave ldom for each excitation level n is
obtained. The parabolic partial cross sections are shown to satisfy the same approximate selection rules as the
related Rydberg series of doubly excited states �K ,T�n

A. The analysis of radial and angular correlations reveals
the close relationship between double excitation, ionization excitation, and double ionization. Opposite to a
widespread belief, the observed value of the asymmetry parameter is shown to result from the interplay of
radial correlations and symmetry constraints, irrespective of angular correlations. Finally, the measurement of
parabolic partial cross sections is proposed as a challenge to experimentalists.
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I. INTRODUCTION

It is widely acknowledged that one-photon double ioniza-
tion of He would not occur in the absence of electronic cor-
relations. The same holds for one-photon single ionization
with excitation of the residual He+ ion. Accordingly, the
study of this one-photon two-electron process is expected to
provide information on angular and radial correlations,
complementary to that obtained from double ionization stud-
ies. This information is hidden in the integrated cross sec-
tions �n and asymmetry parameters �n relevant to ionization
with excitation to the level n of the residual hydrogenic ion.
To extract it, one has to rewrite these quantities in terms of
the contributions of the different partial waves of the bound
electron. Here, we consider both spherical �nlm� and para-
bolic �n1n2m� partial waves defined with respect to the direc-
tion of the ejected electron.

Many authors indeed have been concerned with determin-
ing the relative weight of each spherical partial wave contri-
bution �nl to a given cross section �n—be it a photon-impact
ionization-excitation cross section or an electron-impact ex-
citation cross section. Following the analysis of low-energy
electron correlations by Wannier �1�, Fano �2� was the first to
emphasize that electron-impact on an atom close to its ion-
ization threshold could populate high n and l Rydberg states.
He conjectured that the highest l that could be populated
significantly should vary as �n. Later on Drukarev �3� and
Rau �4� predicted the angular momentum that dominates this
process to be ldom

D ��n /2 and ldom
R ��n /2, respectively.

These results were rederived later on �5�, the additive factor
−1/2 that had been discarded in the original papers being

retained, leading to the introduction of l̃dom
D ��n /2−1/2 and

l̃dom
R ��n /2−1/2. Some experimental evidence of the pre-

dicted laws has been obtained from threshold photoelectron
spectra in the rare gases �5�. For hydrogenic systems, the
Coulomb degeneracy of the l sublevels of a given n multiplet
precludes the direct measurement of �nl by photoelectron
spectroscopy. Estimates of �2s and �2p �6–8� as well as of
�3s, �3p, and �3d in helium �7�, roughly consistent with the
theoretical predictions, have been obtained by analyzing the
fluorescence decay of the excited ionic states. On the whole,
the measurements are not accurate enough nor numerous
enough to assess the validity of the predicted laws quantita-
tively. In this paper, we show that numerical simulations
based on the method of the hyperspherical R-matrix method
with semiclassical outgoing waves �HRM-SOW� offer a way
out of the impasse.

Parabolic partial waves, on the other side, have been in-
troduced historically in the study of the Stark effect in H �see
Refs. �9,10�, for instance�. Later on, the group-theoretical
analysis of doubly excited states by Herrick and co-workers
made the new quantum numbers �K ,T� emerge �11–15�.
Their relation to the parabolic quantum numbers of the inner
electron with respect to the outer electron’s direction, which
reads K=n2−n1 and T= �m�, was recognized afterwards �16�.
In between however, Drukarev �3� and Rau �4� had evaluated
ldom using the parabolic approach and the group-theoretical
approach, respectively. The quasi-identity of their results was
a first evidence of the close relationship between the quan-
tum numbers introduced in these two approaches. In parallel,
the adiabatic hyperspherical approach had led Lin �17,18� to
introduce an additional quantum number A to characterize
the behavior of doubly excited states in the exchange of the
radial coordinates of the two electrons: A= +1 for symmetric
states, A=−1 for antisymmetric ones, and A=0 in all other
cases. As a result, the notation n�

�KT�n
A has established itself

to name the successive members n� of Rydberg series of
doubly excited states converging to the nth excitation thresh-
old. Surprisingly, this classification scheme has never been
applied to the continuum states to which these series con-
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verge as n�→�. In this paper, we fill this gap by analyzing
ionization-excitation cross sections in terms of parabolic par-
tial waves, thus demonstrating the continuity between double
excitation and ionization excitation.

II. PARTIAL WAVE ANALYSIS

In a previous paper �19�, we have presented cross sections
�n and asymmetry parameters �n for photoionization of He
with excitation of the residual ion up to n=50. These data
were obtained at only 0.1 eV above the double ionization
threshold using the HRM-SOW method complemented by a
fixed hyper-radius projection technique. Having this very
complete set of data at our disposal gives us the opportunity
to push the analysis in spherical partial waves one step fur-
ther as well as to initiate an analysis in terms of parabolic
partial waves.

A. Body-fixed expression of the photoabsorption wave function

A helium atom in its 1Se ground state, absorbing a single
linearly polarized 79.1 eV photon, is promoted into a 1Po

double continuum state. The latter is described by a two-
electron wave function ��r�1 ,r�2�, called the photoabsorption
wave function, which is represented in our approach by the
solution of a stationary inhomogeneous Schrödinger equa-
tion �25�. Using the hyper-radius R=�r1

2+r2
2, the hyperangle

�=arctan r2 /r1, and the collective notation � for the four
spherical angles that specify the directions of the two elec-
trons, this wave function reads

��R;�,�� = �
l

	f l
+�R,��+Yll+1

10 ��� + f l
−�R,��−Yll+1

10 ���
 ,

�1�

where the ±Yll+1
10 are symmetrized ��� and antisymmetrized

��� normalized bipolar harmonics corresponding to a total
angular momentum L=1 having a projection M =0 on the z
axis of the laboratory frame �LF�, the latter being taken along
the polarization vector of the incident photon beam.

At the energy considered, photoabsorption promotes at
least one electron into the continuum. Accordingly, we may
define a body-fixed frame �BF� having its Z axis along the
direction of an outgoing photoelectron, located by its spheri-
cal angles �	 ,
� in the LF. The X axis is chosen so that the
direction of the other electron, which may be either bound or
free, lies in the X�0 half of the XZ plane. This electron is
located by the spherical angles �	12,0� in the BF, where 	12

is the angle between the directions of the two electrons. The
rotation that takes the LF into the BF is then characterized by
the Euler angles �
 ,	 ,��. The angle �, which depends on
the arbitrary orientation of the x axis of the LF, does not
carry any relevant physical information and accordingly, it
does not appear in the forthcoming expressions of the physi-
cal quantities. The first stage of our analysis consists in ex-
pressing the photoabsorption wave function ��R ;� ,�� in
the BF. Applying the rotation R�
 ,	 ,�� on Eq. �1� and rear-
ranging the resulting expression yields

��R;�,�� = �
lm

�− 1�lY1m�	,��� f l
+�R,�� + f l

−�R,��
�2

�l − m1m�l + 10Ylm�	12,0�

−
f l

+�R,�� − f l
−�R,��

�2

�l + 1 − m1m�l0Yl+1m�	12,0�� , �2�

where the �l1m1l2m2 �LM are Clebsh Gordan coefficients
and the Ylm�	 ,�� spherical harmonics.

This expression shows a remarkable simplicity. Indeed,
due to the 1Po symmetry of the wave function and to the
definition of the BF, the rotation matrix element involved
reduces to the plain spherical harmonic Y1m�	 ,��. It is then
readily apparent that the projection of one electron’s angular
momentum on the photo electron’s direction can only take
three values, namely, m=0, ±1. Moreover, if this projection
is m=0, the angular distribution of the photoelectron is pro-
portional to cos2 	, the associated asymmetry parameter tak-
ing its maximum value �= +2, meaning that this electron
travels preferentially along the direction of the electric field.
Conversely, if this projection is m= ±1, the angular distribu-
tion of the photoelectron is proportional to sin2 	, the asso-
ciated asymmetry parameter taking its minimum value �=
−1, meaning that this electron travels preferentially perpen-
dicular to the direction of the electric field. Note that this
one-to-one correspondence between the asymmetry param-
eter and T= �m� has already been emphasized by Greene �20�.

B. Body-fixed expression of the ionization-excitation wave
functions

The second stage of our analysis consists in projecting �
on the subspace spanned by all states in which one electron
is in a specific bound state, characterized by a given set of
quantum numbers defined with respect to the BF. As an-
nounced in the Introduction, we consider two different such
sets, of which the first one is the spherical set �nlm�, while
the second one is related to the parabolic quantum numbers
�n1n2m�. These numbers satisfy n=n1+n2+ �m�+1 as well as
K=n2−n1, as noted above, so that the triplet �n1n2m� can be
replaced by the equivalent one �nKm�. We can therefore
characterize the bound state by the set of quantum numbers
�n�m� where �= l for spherical and �=K for parabolic partial
waves. In addition, it must be noted that the projection onto
any subspace characterized by a given n must be performed
at an appropriate hyper-radius, called Rn �19�. Once the pro-
jected wave function �n�m is obtained, it is convenient to
define the associated reduced wave function �n�m following
Eq. �3� of Ref. �19�. This way indeed, physical quantities
take more compact forms, free of both the standard volume
element and the semiclassical outgoing wave that describes
the bulk of the hyper-radial motion. This reduced wave func-
tion reads

BOURI et al. PHYSICAL REVIEW A 74, 032704 �2006�

032704-2



�n�m�Rn;�,�� = Rn
3 cos � sin � Sn�m�Rn�Y1m�	,��


n�m�Rn sin �,	12,0� , �3�

where we have assumed that the bound electron is electron 2
located at the distance r2=Rn sin � from the origin �26�.

The amplitude function Sn�m�Rn� and the one-electron
bound orbital 
n�m�Rn sin � ,	12,0� are given in the spherical
case by


nlm�Rn sin �,	12,0� = Fnl�Rn sin ��Ylm�	12,0� , �4�

Snlm�Rn� = �− 1�l	�l − m1m�l + 10Inll
− �Rn�

+ �l − m1m�l − 10Inll−1
+ �Rn�
 . �5�

The integrals InlL
± �Rn� which appear above are defined ac-

cording to Eq. �37� of Ref. �19� as

InlL
± �Rn� =

1
�2
�

0

�/2

d� sin �Fnl�Rn sin ��

�aL
+�Rn,�� ± aL

−�Rn,��� , �6�

where the aL
±�Rn ,�� are the expansion coefficients of the re-

duced photoabsorption wave function ��R� on the symme-
trized and antisymmetrized bipolar harmonics. Their relation
to the f l

±�R ,�� introduced above is easily deduced from Eq.
�3� of Ref. �19� which connects the wave functions � and �.

Rewriting the spherical amplitudes of Eq. �5� explicitly
for the two cases of interest, namely, m=0 and m= ±1, evi-
dences an approximate selection rule in the limit n , l→�.
Let us then write

Snl0�Rn� =
�− 1�l

�2l + 1
	Inll

− �Rn��l + 1 − Inll−1
+ �Rn��l
 , �7�

Snl±1�Rn� =
�− 1�l

�2�2l + 1�
	Inll

− �Rn��l + Inll−1
+ �Rn��l + 1
 . �8�

In the limit n , l→�, which is approached only if strong cor-
relations develop into the system, the antisymmetric coeffi-
cients aL

− become negligible with respect to their symmetric
counterparts aL

+ in Eq. �6�. As a result, InlL
+ → InlL

− . Consider-
ing in addition that l±1→ l in the limit of large l, we observe
that Snl0�Rn�→0 in this limit. Otherwise stated, �m�=1 states
are favored. In addition, these states are populated owing to
the components of the photoabsorption wave function which
are symmetric in the exchange of the radial coordinates of
the two electrons r1↔r2 or, equivalently, �↔ �� /2−��.
Note that they cannot be characterized as symmetric or anti-
symmetric by themselves since this property does not make
sense at large R for bound and free non overlapping elec-
tronic orbitals. Despite this fact, and although this is to some
extent a misuse of language, we summarize these observa-
tions by stating that the continuum states formed by one free
and one bound electron in a highly excited level n satisfy the
same approximate selection rules as the series of autoioniz-
ing doubly excited states that converges to them, namely,
m= �T�=1 and A= +1. Note, the results relative to a 3Po pho-
toabsorption wave function can be deduced from the present
ones by exchanging the coefficients aL

+ and aL
−: this leaves the

integral InlL
+ unaltered whereas it changes InlL

− into −InlL
− . As a

result, for a 3Po symmetry, radial correlations favor the m
=T=0 components in the high n and l limit.

The bound orbitals 
nKm, expressed in terms of parabolic
coordinates of the bound electron, are given in standard text-
books �9,10�. They are related to their spherical counterparts

nlm by an orthonormal transformation the coefficients of
which have been discussed in detail by Hughes �21�:

�
nlm�
nKm = �− 1��n−1+K−m�/2� n − 1

2

m + K

2

n − 1

2

m − K

2
�lm� .

�9�

It is interesting to note here that �m±K� /2 and �n−1� /2 must
be either both integer or both half-integer. Otherwise stated,
n−K has the parity of m−1. In the present case of a 1Po

symmetry where the only allowed values of m are 0, ±1, this
implies that the parity of n−K determines �m� itself: odd
values of n−K imply m=0, even values m= ±1. The ap-
proximate �m� selection rule outlined in the preceding para-
graph is therefore accompanied, in the case of parabolic
states, by a selection rule regarding the parity of K. The
orthonormal transformation defined by Eq. �9� also relates
the parabolic amplitudes SnK0�Rn� and SnK±1�Rn� to their
spherical counterparts Snl0�Rn� and Snl±1�Rn�, so that

SnK0�Rn� = �
l=0

n−1

�− 1�l�
n − 1

2

n − 1

2
l

K

2
−

K

2
0�	Inll

− �Rn��l + 1

− Inll−1
+ �Rn��l
 , �10�

SnK1�Rn� =
1
�2

�
l=1

n−1

�− 1�l�
n − 1

2

n − 1

2
l

1 + K

2

1 − K

2
− 1�	Inll

− �Rn��l

+ Inll−1
+ �Rn��l + 1
 , �11�

and SnK−1=−SnK1, where we have rewritten Clebsch Gordan
coefficients in terms of 3j coefficients for convenience.

C. Partial ionization-excitation cross sections

The partial integrated and differential cross sections are
obtained from the flux of �n�m through an hypersurface of
radius Rn. They can be expressed very simply from the re-
duced wave function 
n�m. The integrated cross section, for
instance, is given according to Eq. �29� of Ref. �19� by

�n�m = 2
2��

c
�

R=Rn

d�d���n�m�R,�,���2. �12�

A straightforward calculation then yields

�n�m = 2
2��

c
Rn

3�Sn�m�Rn��2. �13�

As to the partial differential cross sections, they can be re-
constructed from the above partial integrated cross sections
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and the corresponding asymmetry parameters

�n�0 = + 2, �n�±1 = − 1, �14�

leading to the very simple expressions below, namely,

d�n�0

d�
=

3

4�
�n�0 cos2 	 , �15�

d�n�±1

d�
=

3

8�
�n�±1 sin2 	 . �16�

D. Total ionization excitation cross sections

The next step implies that one sums the cross sections
over the magnetic quantum number m for a given �. In the
case of parabolic partial waves, due to the one to one corre-
spondence between K and �m� values already outlined, this
summation reduces to the m=0 term for odd values of n
−K, and to twice the m=1 term for even values. In the case
of spherical partial waves, by contrast, the m=0, ±1 contri-
butions must be added effectively for l�0 so that Eqs. �13�
and �14� must be completed by

�nl = �nl0 + 2�nl1, �nl = 2
�nl0 − �nl1

�nl0 + 2�nl1
. �17�

A straightforward calculation then yields simple expressions
of these quantities in terms of the elementary integrals InlL

±

computed at Rn:

�nl = 2
2��

c
Rn

3��Inll−1
+ �2 + �Inll

− �2� , �18�

�nl =
�l + 2��Inll

− �2 − 6�l�l + 1� Re�Inll
− Inll−1

+* � + �l − 1��Inll−1
+ �2

�2l + 1���Inll
− �2 + �Inll−1

+ �2�
.

�19�

The last step then consists in reconstructing the total in-
tegrated cross section and asymmetry parameter for a given
level n from the contributions of the different partial waves
�. To this end, we introduce

�n
T=0 = �

l=0

n−1

�nl0 = �
K=−n+1

�n−K�odd

n−1

�nK0, �20�

�n
T=1 = 2�

l=1

n−1

�nl1 = 2 �
K=−n+2

�n−K�even

n−2

�nK1, �21�

thus obtaining

�n = �n
T=0 + �n

T=1, �n = 2
�n

T=0

�n
−

�n
T=1

�n
. �22�

We are now in a position to present and comment our nu-
merical results.

III. NUMERICAL RESULTS

A. Spherical partial waves

Figure 1 shows the relative partial cross sections �nl /�n
plotted with respect to n for the first ten l partial waves.
From these fixed-l n distributions, the dominant ldom can be
roughly estimated: ldom=1 for 4�n�5, ldom=2 for 6�n
�12, ldom=3 for 13�n�21, ldom=4 for 22�n�32, ldom
=5 for 33�n�46, and ldom=6 for 47�n�50. These gen-
eral trends are compatible with Greene’s results presented in
Fig. 6 of Ref. �22�: the latter shows an l distribution that has
two main components l=1 and 2, for n=4, the second one,
l=2, becoming dominant for n=6. The present Fig. 1 evi-
dences the mixing of l values, which becomes more and
more pronounced as n increases: at n=10, the accumulated
four most important l contributions reach 95% of the total
cross section. This proportion drops down to 60% at n=50.
In other words, l is definitively not a good quantum number,
all the worst the higher n.

The fixed-n l distributions shown on Fig. 2 carry the same
observations: as n increases, the l distribution shifts towards
higher l, flattens, and widens. This evolution seems, how-
ever, to slow down between n=40 and n=50 as the corre-
sponding thick dashed-dotted and continuous lines can
hardly be distinguished. For each n, an ansatz of the form
a0�2l+1�exp�−� l−a1

a2
�2� has been fitted to the l distribution,

thus providing a noninteger mock-dominant angular momen-
tum ldom�n�, the evolution of which is displayed on Fig. 3.
Two trial functions have been fitted to the observed ldom�n�:
the three-parameter formula a0+a1na2 and the two-parameter
formula a0+a1n0.5 yield equal-quality fits which cannot be
distinguished at the scale of the figure. The trial laws ob-
tained are −0.999+1.10n0.456 and −0.626+0.88n0.5. It can be

noticed that the first law is close to 2l̃dom
R , while the second

one can be written 1.24l̃dom
D . However, none of these two

laws is in perfect agreement either with ldom
D or ldom

R or with

l̃dom
D or l̃dom

R . This will be understood easily from the parabolic

04030201 05
n

0

1.0

2.0

3.0

4.0

5.0

σ nl
 /σ

n

2 65431

FIG. 1. The relative partial cross sections �nl /�n with respect to
n for l=0 to 9. Each vertical stripe defines a range of values of n in
which the dominant contribution �nl /�n occurs for the same value
of l, which is given by the number at the top of the stripe. �n0 /�n is
the only contribution that decreases monotonously with increasing
n.
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partial wave analysis below. For the time being, we just point
out that the �n behavior of ldom is confirmed by our calcula-
tions to a reasonable extent.

B. Parabolic partial waves

Figure 4 shows the relative parabolic cross sections
�nK /�n as a function of n−K for a sample of n values. It
evidences approximate selection rules. First of all, “favored”
�n−K� even �m�=T=1 states alternate with “unfavored” �n
−K� odd �m�=T=0 ones. Second, the signal decreases very
quickly as �n−K� increases, cancelling down to zero long
before �n−K� reaches its maximum allowed value 2n−1. In
other words, the process is dominated by a few values of K,
namely, the largest ones having the parity of n, that is to say
n−2, n−4, n−6, . . . .

Figure 5 offers more insight into the relative weights of
the various K partial waves. It displays the relative parabolic
partial cross sections �nK /�n as a function of n for the first
few relevant values of K. Even �n−K� partial waves are rep-
resented on the left plot, odd �n−K� ones on the right plot.
The obviously different scales of the two plots outline the
dominant character of the “favored” �m�=T=1 states. In ad-

dition, both pictures display the singular behavior of the larg-
est K partial wave in each class of states, the contribution of
which is largely dominant at small n, but less and less so
with increasing n, as the mixing with smaller values of K
becomes more important. This mixing remains, however,
much less pronounced than in the spherical representation: at
n=10, the accumulated four most important contributions
reach 93% of the total cross section, a proportion that drops
down only slowly with increasing n, as it still amounts to
80% at n=50. Another difference with respect to the spheri-
cal case is that there are no curve crossings on either plots of
Fig. 5. Compared to l, K is therefore a much better candidate
to apply as an approximate good quantum number.

Thus, in contrast to spherical partial cross sections, para-
bolic partial cross sections obey approximate selection rules:
namely, ionization excitation to the level n proceeds mainly
through T=1 and K=n−2. This approximate goodness of the
�K ,T� quantum numbers originates in their relation to elec-
tronic correlations. The rapid extinction of the �m�=T=0 con-
tribution, which drops below 10% for n�10, has been an-
ticipated: we have already noted above that the �m�=T=0
amplitude of Eq. �7� should be suppressed in the limit of
high n and l due to the domination of the radially symmetric
components of the photoabsorption wave function in this
limit. This extinction is therefore the signature of the radial
correlations. On the other side,

�
nKm�cos 	12�
nK�m� = −
K

n
�KK��mm�, �23�

shows that within a given n subspace, the larger K, the closer
the two electrons to the back to back configuration 	12=�.
The domination of large positive values of K is therefore the
signature of angular correlations.

In addition, as announced in the preceding paragraph,
these results make clear why Drukarev’s �3� and Rau’s �4�
models cannot yield quantitative estimates of the dominant
spherical partial wave ldom. These authors indeed assume that
the system is in the state of “maximum asymmetry,” meaning
that the electrons are as close as possible to the antiparallel
configuration r̂1=−r̂2. This state is described by n2=n−1,

43210 5 6 7 413121110198 51
l

0

1.0

2.0

3.0

4.0

5.0
σ nl

 /σ
n

FIG. 2. Relative partial cross sections �nl /�n with respect to l
for n=4 to 50. The first n=4 and last n=50 distributions are em-
phasized by thick full lines, the intermediate n=10,20,30,40 by
thick dashed-dotted ones
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m

FIG. 3. Noninteger mock-dominant angular momentum ldom

with respect to n.

4321 5 6 7 21110198
K-n
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FIG. 4. �Color online� Relative parabolic cross sections �nK /�n

with respect to n−K for n=10 �red�, 20 �green�, 30 �orange�, 40
�violet�, and 50 �black�.
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n1=0 in the parabolic approach and by K=n−1, T=0 in the
group theoretical approach. For a 1Po symmetry however,
this T=0 state is unfavored, so that one cannot expect these
treatments to apply quantitatively in this case. More impor-
tantly, in their derivation, these authors assume n�1: for
large n, however, the mixing of K values becomes non-
negligible, so that their hypothesis of a single contributing K
value fails.

C. Relation of ionization-excitation to double ionization and
double excitation

This analysis provides deeper insight into the relation be-
tween ionization excitation and the related processes of
double ionization and double excitation. Radially symmetric
back to back configurations r�1=−r�2 of the two electrons were
indeed shown by Wannier �1� to play a dominant role in the
dynamics of double escape. In the present case of a 1Po two
electron wave function, however, the existence of a conflict
between angular and radial correlations adds some complex-
ity to the original Wannier picture. This conflict is usually
described in terms of opposite requirements of the parity
��−r�1 ,−r�2�=−��r�1 ,r�2� and spin ��r�2 ,r�1�=��r�1 ,r�2� in the
Wannier configuration �r�1=−r�2�, leading to a paradoxical
node of the wave function in this “favored” geometry �23�.
In the language of parabolic quantum numbers, it shows
through the fact that the state of maximum K=n−1 selected
by the angular correlations is forbidden by the radial corre-
lations, owing to its �m�=T=0 character. With this reserve,
the present study, which enlightens the dominant contribu-
tion of the K=n−2, T=1, A= +1 parabolic partial ionization-
excitation cross sections, confirms the importance of the
Wannier configuration in the low-energy two-electron dy-
namics whatever the outgoing channel considered, be it
double ionization or ionization excitation, as anticipated by
Fano �2�.

On the other side, the works of Herrick and coworkers
�11–15�, Feagin and Briggs �16�, and Lin �17,18� have led to
characterize the members n��n of Rydberg series of doubly
excited states of 2S+1L� symmetry converging toward the nth
ionization threshold of He by the additional quantum num-
bers K, T, and A. The photoabsorption spectrum of He below
the nth ionization threshold was then found experimentally
to be dominated by �n�

�KT�n
A ; 1Po� states with K=n−2, T

=1, A= +1, and n��n. The present study shows that the
continuum states populated by ionization excitation obey the
same selection rules as the abovementioned doubly excited

states: therefore, they appear as the limits of the
�n�

�KT�n
A ; 1Po� series for n�→�.

D. Asymmetry parameter for ionization excitation: Asymptotic
limit, relation to electronic correlations

At this point, it is worth paying a little bit more attention
to the asymmetry parameter �n. First of all, as the T selection
rule enforces itself very rapidly with increasing n, the rela-
tive contributions �n

T=0 /�n and �n
T=1 /�n reach their

asymptotic limits very quickly: the asymptotic limit of �n
can then be obtained from Eq. �22�. The procedure is illus-
trated in Fig. 6 which shows �n

T=0 /�n, �n
T=1 /�n, and �n as a

function of n. An expression of the form a0+a1n−1/2 has been
fitted to each of these quantities independently. The resulting
expressions of �n

T=0 /�n and �n
T=1 /�n add to 1 as expected.

Moreover, their linear combination defined by Eq. �22� is
identical to the expression resulting from a direct fit to �n.
This cross checking gives us confidence into these fitted for-
mulas. Accordingly, we believe that the corresponding
asymptotic value of �n, namely, ��=−0.71, is more reliable
than the value of −0.636 we derived in Ref. �19�.

In addition, one should note that the observed value of �n
results from the interplay of symmetry requirements and ra-
dial correlations. In the present case of a 1Po wave function,
radial correlations strongly favor the �m�=T=1 components,
as discussed above. As these components are associated to
the value −1 of the asymmetry parameter, the resulting �n
clearly tends towards −1 for large n. In the complementary
case of a 3Po wave function, radial correlations would favor
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the �m�=T=0 components associated to �= +2, and the re-
sulting �n would tend towards +2 for large n in agreement
with former predictions by Greene �20�. This leads us to
suspect that, contrary to widespread belief, the asymmetry
parameter has little to do with angular correlations. The cal-
culation of the average value of cos 	12 in the subspaces
�n ,T=0� and �n ,T=1� provides further support to this state-
ment. The two curves of Fig. 7 indeed show a similar evo-
lution: they decrease monotonously with n, rapidly till n
�10 and then more slowly, to finally tend towards −1 at
large n. This demonstrates that angular correlations, which
favor the back to back configuration of the two electrons,
express themselves equally well within the T=0 and T=1
subspaces, despite the fact that these two subspaces lead to
quite opposite values of the asymmetry parameter, namely,
+2 for the former and −1 for the latter. In other words, an-
gular correlations influence the relative arrangement of the
three body system, they do not affect its absolute orientation
with respect to the polarization vector of the incident light.
Note also that the evolution pattern of cos 	12 with n is con-
sistent with a 	12 distribution centered at 	12=�, the width of
which decreases as n increases, whereas the number of
contributing spherical partial waves increases as shown by
Fig. 2.

IV. CONCLUSION

The above analysis of photoionization excitation shows
that the parabolic partial cross sections �nK are much more
selective with respect to K than the spherical partial cross
sections �nl with respect to l. Moreover, the asymmetry pa-
rameter �nK takes the known values +2�−1� for odd �even�
values of n−K, whereas the value of �nl results from the
detailed coupling of neighboring partial waves l, l±1. This
means that the integrated partial cross section �nK can be
deduced from the measurement of the differential partial
cross section d�nK /d� at a unique angle. Generally speak-
ing, parabolic partial cross sections give more direct insight
than spherical partial cross sections into the correlated two-
electron dynamics. Above the double ionization threshold,
the relative weights of the �nK for the various values of K
mimic the relative importance of the corresponding Rydberg
series of doubly excited states �KT�n

A converging toward the
nth ionization threshold. Below the double ionization thresh-
old, autoionization to the nK Stark level of the residual He+

ion is the preferred decay channel of doubly excited states
belonging to the series ��K+1�T�n��n

A , according to the pro-
pensity rules proposed by Rost and co-workers �24�. All
these properties make it very desirable to measure parabolic
partial cross sections defined with respect to the photoelec-
tron direction. The most obvious strategy would consist in
applying a static electric field over the interaction region and
energy analyzing the photoelectrons emitted along this field.
However, the field needed to induce some 10 meV splitting
of the Stark levels of the residual ion would accelerate the
emitted photo electrons by some tens of kV making it im-
possible to analyze them with a sufficient energy—if not
angular—resolution. The measurement of parabolic partial
cross sections therefore appears as a challenge to experimen-
talists.
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