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Perturbation theory for isotropic velocity-dependent potentials: Scattering case
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The time-independent Schrodinger equation with an isotropic velocity-dependent potential is considered.

Treating the velocity-dependent interaction as a small perturbation, we develop analytical formulas for the
changes in the scattering phase shifts and wave functions. It is shown that only the zeroth-order solution and
the perturbing potential are needed to determine the phase-shift and wave-function corrections. No prior
knowledge of the unperturbed scattering-states continuum is required. In order to test the validity of our
approach, we applied it to an exactly solvable model for nucleon-nucleon scattering. The results of the

perturbation formalism compare quite well with those of the exactly solvable model. The developed formalism
can be applied in problems concerning pion-nucleon, nucleon-nucleon, and electron-atom scattering. It may
also be useful in studying the scattering of electrons in semiconductor heterostructures.
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I. INTRODUCTION

Velocity-dependent potentials have been used in different
interesting fields of physics. In nuclear physics a model as-
suming the nucleon-nucleon interaction to be velocity depen-
dent reproduced the 'S, 'D, and 'G singlet-even phase shifts
[1]. Further, the predominantly p-wave nature of the pion-
nucleon scattering was correctly predicted using a velocity-
dependent potential [2]. In the field of atomic physics, the
scattering of electrons from atomic oxygen and neon was
studied in the framework of an analytic velocity-dependent
potential [3].

The Schrodinger equation with a velocity-dependent in-
teraction can be recast in a form that describes a particle
endowed with a position-dependent effective mass (PDEM).
The Schrodinger equation for a PDEM has been the subject
of many interesting recent works for its increasing relevance
in describing the dynamics of electrons in semiconductor
heterostructures such as, compositionally graded crystals [4],
quantum dots [5], and liquid crystals [6]. For example, elec-
tron scattering on disordered double-barrier heterostructures
has been considered in Ref. [7]. Such studies are important
in designing semiconductor electronic devices.

Furthermore, interesting theoretical works exploited the
application of supersymmetric quantum mechanics to a
position-variable mass [8]. Later works [9,10] extended the
application of supersymmetry to the Schrodinger equation
for a PDEM by taking into account the different ordering
ambiguities resulting from the noncommutativity of the vari-
able mass with the momentum operator. In addition, in the
quantum many-body problem, the concept of an effective
mass is relevant in connection with the energy-density-
functional (EDF) approach. Here, the nonlocal terms of the
associated potential can often be interpreted as a three-
dimensional position-dependent effective mass [11].

Clearly, the Schrodinger equation with a velocity-
dependent potential is of vital importance. However, the
physically interesting problems where such an equation ad-
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mits exact solutions are very few and hence approximation
schemes become important. Consequently, in this work we
shall consider the scattering of a particle moving in a
velocity-dependent potential, which shall be treated as a
small perturbation. Exact analytical formulas for the changes
in the scattering phase shifts and wave functions will be de-
rived.

In an earlier work [12] we developed perturbation formu-
las for the bound-state energy and wave-function corrections
when an isotropic velocity-dependent perturbing interaction
is introduced. Furthermore, the effect of different-ordering
ambiguities on the bound-state perturbation formalism has
been investigated in Ref. [13].

II. PERTURBATION THEORY

Let us consider the following potential which consists of
two parts; a local potential V(r) and a velocity-dependent one

V(r,p):
. ~ h?
V(r,p) = V(r) + V(r,p) = V(r) + %V -f(r)V

ﬁ2
=V(r) + 2—{f(r)V2 +Vf(r) -V} (1)
nm

Both V(r) and f(r) are isotropic functions of the radial vari-
able r, assumed to have a common range r=>b beyond which
each identically vanishes. The corresponding s-wave
Schrodinger equation is

2

-h
E{[l ~f(NIVZ=Vf(r) - V}+ V(1) |{7) = EY(0),
)

where (7) is a three-dimensional wave-function. Setting
f(r)=\p(r) and using the reduced wave function v(r)
=rR(r), the above equation reduces to
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[1 = Np(P 0" () - {v'm vl )]xp ()= 221V - Eo(r),
3)

where the prime denotes derivation with respect to the radial
variable r. The parameter N\ signifies the strength of the per-

turbing velocity-dependent interaction, V(r,p), and falls in
the range 0 =\ = 1. In the asymptotic region » = b, where the
local and velocity-dependent parts of the potential defined in
Eq. (1) vanish identically, the solution of the above equation
is

v(r) — — sm(kr+ S), r=b, 4)

where & is the perturbed s-wave phase shift and k>
=2mE/h>.

The lower limit A=0 corresponds to the case where the
perturbation is switched off. In such a case V(r,p)=0 and
hence Eq. (3) reduces to the unperturbed Schrodinger equa-
tion, namely,

) = S IV0) = Elog(r), B

where v(r) is the unperturbed wave function which, in the
asymptotic region, takes the form

vo(r) — % sin(kr + &,), r=b. (6)
Both v, and the corresponding unperturbed s-wave phase-
shift &y, resulting from scattering off the local potential V(r)
only, are assumed to be known.

In Ref. [14] a type of perturbation theory was developed
for the bound-state energy and wave-function corrections
due to the introduction of a small perturbing local potential
only. Following this work, let us consider the wave-function
expansion

v(r) = vo(r) + Aoy (r) + N2vy(r) + -+, (7)

and we propose the following phase-shift expansion:
8= 8+ N6 + N2+ -, (8)
where v, and 8, (n=1) are the wave-function and phase-
shift corrections, respectively. The wave functions v(r) and

vo(r) of Egs. (3) and (5) must vanish at the origin. Hence by
considering Eq. (7) we impose the boundary condition

v,(00=0, n=0. )

Inserting the above expansion for v(r) in Eq. (3) one finds
that the coefficient of \", where n=1, satisfies the following
equation:

Ut |, UoUn
UZ‘PUZ—I_[UIII—I_ I}P = (10)
Vo
where we have substituted for 2m[V(r)—E]/A? using the un-
perturbed Schrodinger equation given in Eq. (5). Multiplying
Eq. (10) throughout by v, and rearranging leads to
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VoUp-1
—0p.

(1

"
v

n.o_ - ’
2U0 ~ UgUn=Ug (Pvn_l) -
dr

A. First-order phase-shift correction

We start by setting n=1 in the last equation, which leads
to

2
< oot —22p. (12)

"
U1V — val = Uod

Integrating the above from the origin to r and noting the
boundary condition in Eq. (9) results in

r r. 2
VU= VU = f voi,(pv(’))dr' - v—(,)p’dr’. (13)
o dr ot
The left-hand side may be evaluated in the asymptotic region
r=b. In this region the behavior of v, is given by Eq. (6).
However, the asymptotic form of v; can be established by
introducing the phase-shift expansion of Eq. (8) into Eq. (4)
and expanding the right-hand side to second order in A. Sub-
stituting the resulting expansion for v(r) on the left-hand side
of Eq. (7) and equating the coefficients of equal powers of A
it is straight forward to show that

o
vlﬂzlcos(kr+ &), r=b (14)

and
vy — k{52 cos(kr + &) — —52 sin(kr + 50)} r=b.

(15)

Inserting the asymptotic forms of vy and v, on the left-hand
side of Eq. (13) and simplifying leads to the first-order
phase-shift correction name]y,

o = f —p "dr—k f vo—(pvj)dr. (16)
dr

Performing the second integral on the right-hand side by
parts simplifies the above to

S = —p dr+kf vopULdr. (17)

It is worth noting that the phase-shift correction &; depends
not only on the form of p(r) but also on its first derivative
with respect to r. This feature seems to be specific to
velocity-dependent potentials and will be seen in all the
higher-order phase-shift corrections.

B. First-order wave-function correction

In order to determine the first-order wave-function correc-
tion we rewrite Eq. (13) in the form

d m) IJ[ d | ué}
LR == (vl -2 |ar. (18
dr(vo ) [ogrteen =00 | as)

Integrating the above from b to r results in
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2
v, —vof f {vod —(pvg) - ,,p ]dr”+C1v0,

(19)
where C| is an integration constant whose value depends on
b, the common range of the local and velocity-dependent

parts of the potential V(r,p) given in Eq. (1). The value of C,
may be determined by requiring v; to assume the asymptotic
form given in Eq. (14) in the external region r=b. Conse-
quently, the final expression for vy is

2
vl—vof f {Uod —(pvg) — Sp'}dr"

+ 51 COt(kb + 50)1)0. (20)

C. Second-order phase-shift correction

To determine the expression for the second-order phase-
shift correction we start by setting n=2 in Eq. (11), which
results in

UoU1 0.

UZUO—UE;Uz:Uo (P D= (21)

Integrating the above from 0 to r and making use of the
boundary condition in Eq. (9) gives

.
vévo—v(’)vz=j Vo
0

For r=b, evaluating for the left-hand side using Egs. (6) and
(15) results in the following expression for the second-order
phase correction:

52=kf
0

D. Second-order wave-function correction

d r
—,(pvi)dr’—f Uo—ljlp’dr’. (22)
dr 0o T

Yol ’dr+kf vopvdr. (23)

Let us start by rewriting Eq. (22) in the form

d Uz) lfr[ d U()U1 :|
—~(Z)=5 lar. (24
dr(vo ) [0zt - (24

Integrating from b to r gives

UU
N A

+ {52 cot(kb + &) — ?}vo, (25)

where the integration constant multiplying v, has been de-
duced by requiring v, to assume the asymptotic form of Eq.
(15) for r=b.

E. Higher-order corrections

Higher-order corrections can be obtained to any given or-
der in the perturbing potential by employing the same tech-
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nique already used to derive the first- and second-order
phase-shift and wave-function corrections. For example, the
third-order phase-shift and wave-function corrections are

53=kJ

0
dr’

U%—Uof f [Uod ,,(Pvz)

where the constant of integration is given by

C3= 6,8+ (8 — 68;)cot(kb + &y). (28)

” 1
Yo% ’dr+kf u(’)pu;dr+gé3, (26)

:|d i + C3l)0,

(27)

III. EXACTLY SOLVABLE MODEL: NUCLEON-NUCLEON
SCATTERING

The validity of the perturbation approach developed in
Sec. II can be established by comparing its predictions with
the results of an exactly solvable model. As a concrete ex-
ample, we shall apply our perturbation formalism to a simple
model of nucleon-nucleon scattering proposed in Ref. [1].
The authors assumed the nucleons to interact via a potential,
similar to that presented in Eq. (1), consisting of a local part
as well as an isotropic velocity-dependent one. They solved
the corresponding s-wave Schrodinger equation exactly and
obtained an exact analytical expression, which they used to
calculate the 'S scattering phase-shift values exactly.

To this end let us consider the potential proposed in Ref.
[1], which is a specific form of the potential presented in Eq.
(1),

2

R h
V("vp)z_VOJl(r)'*‘MV'P(V)V» (29)

where

Ji(r)=1-U(r-b), p(r)=p1-Ur-0)], (30)

and the step function is defined as

Ur-b0=0, r<b; =1, r=b. (31)

The values of the potential parameters as reported in Ref. [1]
are

Vo=169 MeV, pB=-021, b=241fm, (32)

and M is the nucleon mass. Clearly, the local and velocity-
dependent parts of the potential have square well shapes with
a common range r=>b. In terms of the reduced wave function
v(r)=rR(r), the corresponding s-wave time-independent
Schrodinger equation is exactly solvable and has the form

[1= B+ BUGr - B)"(r) + [kz N %[1 —Ur-0)] v

:_3{0'(r)-i:)}5(r—b), (33)

where k>=ME/#%?, and E is the energy available in the center
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TABLE I. Exact 'S phase shifts in the absence (&,) and presence (3) of the perturbing potential. Columns
4-6 give the phase-shift corrections using our perturbation formalism.

Exact phase shifts

Phase shift corrections

Perturbed

phase shifts

Epyp % o
MeV B=0 B=-0.21 5 5 5 =325
20 0.949 0.871 -0.0992 0.0270 -0.0071 0.870
100 0.426 0.217 —-0.2660 0.0764 -0.0170 0.219
180 0.276 -0.082 -0.4271 0.0664 0.0054 -0.079
260 0.256 —-0.187 -0.4756 0.0279 —-0.0002 -0.192
340 0.253 -0.197 —-0.4790 0.0497 -0.0303 -0.207
of mass of the two interacting nucleons. The delta function Bl 1 K(z)b ., B .
on the right-hand side arises due to the sharp edge at r=b. o="\-7+53 sin“(kb + &) + - sin(2kb +26),
. . k\ b 2sin“(Kyb) 4
Although the exact solutions must be continuous at the edge
of the square well, their derivatives are not continuous at this (37)
point. In terms of the radial wave function R(r)=v(r)/r, the where
following boundary condition must be satisfied
o, MV,
Ko=k+—5. (38)
(1-B)R'(67) =R'(b"), (34) h

where R'(b™) and R’'(b*) are the derivatives of the radial
wave functions for r less and greater than b, respectively.
This condition can be easily established by integrating Eq.
(33) from b—€ to b+e, then taking the limit as € tends to
zero. By applying the boundary conditions to the exact solu-
tions of the Schrodinger equation in Eq. (33) Razavy er al.
obtained

k cot(kb + 6) = (1 — B)K cot(Kb) + g, (35)

where

oo K MY
(- #(01-p)

(36)

Using Eq. (32), the authors substituted for the potential pa-
rameters V,, B, and b in Eq. (35) and obtained the exact
values of the perturbed 'S phase shifts &, which are listed in
the third column of Table I. Similarly, by switching off the
perturbing velocity-dependent potential (which corresponds
to setting B=0) we used the same equation to calculate the
exact unperturbed phase-shift values &,, which are shown in
the second column of Table I.

A. Results of the perturbation formalism

For the above interaction model of a two-nucleon scatter-
ing system, the perturbation formulas, developed in this
work, produced exact analytical expressions for the changes
in the phase shifts and wave functions. For example, using
Eq. (17), the analytical expression obtained for the first-order
phase-shift correction is

However, the analytical expressions for the phase-shift cor-
rections get progressively more involved as the perturbation
order increases. Therefore, instead of giving the analytical
forms of &, and &5, we list their values together with that of
6, in columns 4—6 of Table I. In the last column we show the
perturbed phase-shift values &7 calculated up to and includ-
ing the third-order correction. By comparing the perturbed
values with the exactly determined ones, shown in the third
column, it is clear that the perturbation approach has pro-
duced quite accurate results.

Using the simple potential in Eq. (29), it has also been
possible to obtain analytical expressions for the wave-
function corrections. In the internal region r = b, solving the
differential Equation (12) directly, or using the derived for-
mula in Eq. (20), results in the following analytical expres-
sion for the first-order wave-function correction:

1
vi(r)= EA,BKO” cos(Kyr)

( 6y cos(kb + &) lAﬁK b cot(K b))
T CO
ksin(Kgp) 2770 0

Xsin(Koyr), (39)
where

_sin(kb + &)

"~ ksin(Kgb) (40)

In the asymptotic region, r=b, the form of v,(r) is given by
Eq. (14). Rather than giving the more complicated expres-
sion for the second-order wave-function correction, we
present Fig. 1, which shows the unperturbed wave function
vo(r) in addition to the first- and second-order wave-function
corrections v;(r) and v,(r). All the plots correspond to a
laboratory kinetic energy Ej,,=2E=100 MeV. Clearly, the
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FIG. 1. The unperturbed wave-function vy(r). The first- and
second-order wave-function corrections v(r) and v,(r), respec-
tively. All plotted at Ey ,,=100 MeV.

amplitudes of the wave-function corrections get progres-
sively smaller as the perturbation order increases. This re-
flects the progressive decrease in the contributions to the
perturbed phase shifts arising from higher-order corrections.
Further, the discontinuity in the derivatives of the wave-
function corrections at r=> is clear.

The possibility of obtaining exact analytical expressions
for the phase-shift and wave-function corrections depends on
the form of the potential used. In general, one would expect
that in cases where the velocity-dependent potential is more
complicated, the perturbation formulas may not produce ex-
act analytical solutions. In such situations, performing the
integrals of the developed formulas numerically may become
inevitable.

IV. COMPARISON WITH OTHER APPROACHES
AND DISCUSSION

Other works have obtained phase shifts using perturbative
or iterative approaches. However, unlike the case in this
work, they considered a local potential only. For example, in
the Born approximation [15] one has two coupled equations;
one for sin(5) and the other for the radial-wave functions.
The coupled equations may be solved by successive approxi-
mations in an iteration procedure. However, the process be-
comes cumbersome as one tries to go beyond the first-order
approximation. In a more recent work [16] the authors
started from the probability density equation and developed
formulas for the changes in the phase shifts up to third order
in the perturbing local potential. They also showed that only
the zeroth-order probability density and the perturbing poten-
tial are needed to determine the phase-shift changes.

Another approach developed a hierarchical, logarithmic
perturbation scheme for the scattering phase shifts in one
dimension, which was then extended to a spherically sym-
metric three-dimensional system [17]. The phase-shift
changes were expressed in terms of an effective potential in
addition to known solutions of an unperturbed system, which
appear in the denominator. In order to avoid the complica-
tions arising from the zeros of the physical wave functions
belonging to the unperturbed problem, the authors took the
logarithm not of the physical wave functions, but of an aux-

PHYSICAL REVIEW A 74, 032702 (2006)

iliary complex wave function without nodes. Furthermore,
using Levinson’s theorem, they showed that when the unper-
turbed and exact-perturbed systems have the same number of
bound states, the phase-shift series converges rapidly. In the
following section we shall adopt the same approach in dis-
cussing the convergence of the perturbation series of Eq. (8).

In contrast with the above approaches we considered a
velocity-dependent perturbing potential. Our derived formu-
las show that the phase-shift changes depend not only on the
form of p(r), but also on its derivative with respect to the
radial variable r. Consequently, this dependence on p'(r)
seems to be a specific feature for velocity-dependent poten-
tials. Although the wave-function corrections contain the
term 1/ vg, which is singular at the zeros of the unperturbed
solutions, the changes in the wave functions remain finite as
r approaches a given node of v,. To prove this, let us con-
sider the following general expression for the wave-function
corrections, which can be obtained by inspecting Egs. (20),
(25), and (27):

Tdr' (T
vn=vof —2[ F,dr'" + C,v,, (41)
b Vo Jo

where C,, is a constant and

VUn1
Mp_ (42)

F,y=00pUy,_; +0op'v,_; =
We shall start by considering the first-order correction v;. In
the vicinity of the node at r=0 the unperturbed s-wave solu-
tion v, vanishes like r and we shall assume that p(r) ~r” as
r— 0. Consequently, F'; approaches the origin at least like »”
(p>0) or * (p=0). Hence, in the vicinity of the origin the
first-order correction behaves like

v ~rr=b")+Cir, p>0

~r(r*=b*)+Cir, p=0. (43)

Clearly, for p=0, v, is finite and approaches the origin at
least as fast as r. This behavior is seen in the exact expres-
sion for v, in Eq. (39) where p(r)=8 is a constant. The same
type of argument above can be used to prove that the second-
order correction v, is finite and also vanishes at least as fast
as r close to the origin. Repeating the process for vs, vy,
Us,... order by order up to v, one can show that each v, is
finite and vanishes at least as fast as r in the vicinity of the
origin provided that p~#”, where p=0, as r— 0. Although
we have not given the exact expression for v, in Sec. IIT A,
the fact that it is finite and vanishes at r=0 can be seen in
Fig. 1. It is worth noting that the behavior of v/ close to a
given node, which is needed to establish the behavior of v,
can be determined by dividing Eq. (12) by v, and then em-
ploying the behaviors of v, vy, and p as r—0. For -1 <p
<0 the integrand concerning the integral over r’ in Eq. (41)
diverges like r”~! for n=1. However, the integral is multi-
plied by v(, which vanishes like r near the origin. Keeping
this in mind, the divergence problem can be overcome by
displacing the pole at r=0 into the lower-half r-plane by an
amount i€, where € is vanishingly small and positive, and
then taking the limit e— 0 at the end of the evaluation. The
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result shows that v, vanishes at least as fast as #**! in the
vicinity of the origin. Repeating the process order by order
one concludes that v,~7r"”*! as r—0. Consequently, for
some value of n, the corresponding v, will diverge as the
node at r=0 is approached. Hence we must set the condition
p~1r’, r—0, (44)

where p=0.
In order to investigate the behavior of v, in the vicinity of
the remaining nodes of v, we may write Eq. (41) in the form

v,(r)= vo(r)f O(r- r’)f F,(r"O" =r"dr"
b 0

dr’
v(z)(r’)
+ Co(r). (45)

where ®(x—y) is a step function. Consequently, the above
equation may be recast in the form

"l d _
v,(r) = f [—,(pv,',_l) - M/r)']dr’l((r’,r) + C(r),
o Ldr r

(46)
where the kernel K(r',r) is defined by
r dr//
K(r',r) = Uo(”)vo("/)f TS (47)
r’ U()(r)

and we have interchanged ' and ”. In the vicinity of a node
at point a, then v, vanishes like (r—a). Consequently, the
term l/v% is singular at r=a, but the kernel K(r',r) is finite.
To see this let us evaluate the kernel by displacing the zeros
of v into the lower-half r plane by ie where € is vanishingly
small and positive. At the end of the evaluation the limit €
— 0 is taken. This results in

r drll
K(r’,r):limB(r—a+ie)(r'—a+i6)J Y o
0 o ("—a+ie)

=B(r-r"), (48)

where B is a constant. Clearly, K(r',r) is finite as r or r’
approaches a node of v. For n> 1, the kernel contains all the
dependence on the unperturbed solution v,. However, for n
=1, the first term in the square brackets of Eq. (46) depends
on v, while the second term depends on v, In the vicinity of
a node at r=q, then v, approaches a constant value while v,
vanishes like (r—a) as noted before. Consequently, keeping
the result of Eq. (48) in mind, one concludes that the wave-
function corrections are finite at all the zeros of the unper-
turbed wave function v, provided Eq. (44) is satisfied.

The phase-shift corrections contain all the wave-function
dependence in the numerator. Since we have shown that the
wave-function corrections are finite at the zeros of v, then
the phase-shift corrections are also finite at those points.
However, in the vicinity of the origin, special attention must
be paid to the term
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f YoUn-t gy (49)
O r

which occurs in the expression corresponding to each J,.
Clearly, provided that the condition in Eq. (44) is satisfied,
then the integrand vanishes at least as fast as r in the neigh-
borhood of the node at r=0. Consequently, the integral is
finite at the origin.

A. Convergence of the phase-shift perturbation series

The convergence of the phase-shift perturbation series of
Eq. (8) can be investigated by making use of Levinson’s
theorem which, for each partial wave, may be stated as

8(0) — &(0) = 7N. (50)

Clearly, this theorem establishes a connection between the
difference in the scattering phases at zero and infinite ener-
gies and the number of bound states N. In our example of
nucleon-nucleon scattering the unperturbed and exact-
perturbed systems each have one bound state. So by
Levinson’s theorem &, and &, the exact-unperturbed and per-
turbed phase shifts respectively, span the same range; the
perturbation series then converges rapidly [17]. For a finite-
range potential, which is the case we considered in this work,
8()=0 and hence the value of &0) is determined by the
number of bound states. Consequently, the scattering phase
shifts of the exact perturbed and unperturbed systems coin-
cide at zero energies leading to a rapidly converging series at
low energies. This is clearly seen in our results of Table I
where the agreement between the perturbed S6”and exact
phase-shift values & is best at the low energy of Ej,
=20 MeV. The same effect is also seen in the results of Au et
al. [17], who also considered the case when the exact per-
turbed and unperturbed systems sustain different numbers of
bound states. In such a case, their results showed that the
series is extremely poor at low energies. This highlights the
importance of choosing an unperturbed system that has the
same number of bound states as the exact perturbed problem
being considered. The fact that our perturbation approach
requires only on-shell information for the unperturbed sys-
tem simplifies this task to a great extent.

V. HIGHER ORBITAL ANGULAR MOMENTA

In this section we shall briefly outline the generalization
of the developed formalism to higher orbital angular mo-
menta. For [>0, Eq. (3) becomes

v(r)

r

}\p’(r)

[1- xp(;)]l(z +1) E)

[1=Np(n]0"(r) - [5’(r) -

= 2—m<V(r) +

Although V(r) and p(r) are assumed to vanish identically for
r=b, there is still a scattering contribution arising from the
centrifugal barrier term I(/+1)/r% on the right-hand side of
the above equation. Consequently, the boundary condition in
Eq. (4) must be replaced by

o(r).  (51)
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l
o(r) — — 51n<kr+ 5— g), r— o, (52)

where 0 is the exact perturbed scattering phase shift corre-
sponding to a given />0. When the velocity-dependent per-
turbing potential is switched off (A\=0) then Eq. (51) reduces
to the unperturbed equation

l(l+ 1)

N//

olr)= (V(V) - E>Uo(r) (53)

which, in the asymptotic region, has the solution
~ 1 ~
vo(r) — T sin(kr+ S — g), r— o, (54)

where v, and &, are the exact unperturbed wave-function and
scattering phase shift, respectively, corresponding to some /
>0, and both are assumed to be known. Expanding v(r) and

S as in Egs. (7) and (8) and proceeding in the same manner
as in Sec. II then, for n=1, Eq. (11) is modified to

1(1+ Do~
UoUp-1-

~p~

U UoUp-1 ’
v, Vg —

> _
(pnl P 2

~y~
VU, = vo

(55)

Further, the asymptotic forms for the first- and second-order
wave-function corrections are now given by

~

~ 51 ~ l7T
v, — —coslkr+ &——1], r—o (56)
k 2
and

v ! 3 (k +N5 I ) 152 i (k +3
— — — - —
%] X » COS r 0 5 2 1S1n r o

—ll-)}, r— o, (57)

Taking the centrifugal barrier term in Eq. (55) into ac-
count and following similar steps as in Secs. I A and II B
one may show that the first-order phase-shift and wave-
function corrections, respectively, are

~ 2 ) * U1+ 1),
O =k| —p'dr+k| vopvodr+k| p——F—vydr,
o T 0 0 r
(58)
~
vy, l(l+ 1)~ )
v, —UOJ J {Uod ,,(PUo)— —p' - o Z}d
l
+ 5, cot| kb + 8- : To- (59)

Formulas for the higher-order phase-shift and wave-function
corrections may be easily obtained by following the same
procedure. Provided p~r” where p>0 as r approaches the
origin, then using an analysis similar to that presented after
Eq. (41) one can show that the wave-function corrections are
finite at the zeros of the unperturbed solution v,. In particu-
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lar, v, vanish at least as fast #*! as r approaches the origin.

The condition on p stated above is also sufficient for the
phase-shift corrections to be finite at the nodes of v,

VI. CONCLUSIONS

In this work we considered the time-independent
Schrodinger equation with a small perturbing velocity-
dependent potential. Exact analytical formulas for the scat-
tering phase-shift and wave-function corrections were de-
rived. No prior knowledge of the scattering-states continuum
is required. Only the zeroth-order solution and the perturbing
potential are needed to determine the changes in the phase
shifts and wave functions. The derived exact formulas show
that the corrections depend not only on the form of p(r), but
also on its derivative with respect to the radial variable r.
This seems to be a specific feature for perturbative velocity-
dependent potentials. Although, for simplicity, the s-wave
case was considered first, we extended the perturbation for-
malism for an arbitrary orbital angular momentum /> 0. In
addition, formulas for the phase-shift and wave-function cor-
rections may be obtained to any given order in the perturbing
potential. Although the formulas for the changes in the wave
functions contain the square of the unperturbed solution in
the denominator, we have shown that the wave-function cor-
rections are finite as a given node of the unperturbed solution
is approached. This is true provided the boundary condition
in Eq. (44) is satisfied with p=0 for the s-wave case and
p>0 for [>0. In such cases the phase-shift corrections are
also finite at the zeros of v, and v,.

In order to establish the validity of our perturbation ap-
proach we applied it to a simple, exactly solvable model for
a nucleon-nucleon interaction system proposed in Ref. [1].
The derived formulas produced exact analytical expressions
for the phase-shift and wave-function corrections as can be
seen, for example, in Egs. (37) and (39). The calculated
phase-shift changes are presented in columns 4-6 of Table I,
while the perturbed phase-shift values 67 determined up to
and including the third-order correction are shown in the last
column. The perturbed values compare quite well with the
exactly obtained ones &, which are reported in Ref. [1] and
are shown in the third column of Table I. Further, the unper-
turbed wave function vy(r) as well as the first- and second-
order corrections v(r) and v,(r) are shown in Fig. 1.

The convergence properties of the phase-shift perturba-
tion series given in Eq. (8) has been investigated using
Levinson’s theorem. Provided the unperturbed and exact-
perturbed systems sustain the same number of bound states
the series converges rapidly. For a finite-range potential the
agreement is best at low energies. When the unperturbed and
exact-perturbed systems have different numbers of bound
states the perturbation series is extremely poor at low ener-
gies [17]. This illustrates the importance of choosing an un-
perturbed system that has the same number of bound states
as the exact perturbed problem.

The developed formalism may be applied in studies con-
sidering nucleon-nucleon [1], pion-nucleon [2], and electron-
atom scattering [3] as velocity-dependent potentials have
been employed to model such interactions. Furthermore, the
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Schrodinger equation with a nonconstant term by the second-
order derivative (which is considered in this work) has been
proposed to describe particles with a PDEM. The
Schrodinger equation for a PDEM is extensively used in de-
scribing the dynamics of electrons in semiconductor hetero-
structures such as, compositionally graded crystals [4], quan-
tum dots [5], and liquid crystals [6]. For example, electron
scattering on disordered double-barrier heterostructures has
been considered in Ref. [7]. It is hoped that the developed
formalism may be applied in such fields, which are important
in designing semiconductor devices. In addition, the
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Schrodinger equation for a PDEM is used in the energy-
density-functional approach to the nuclear many-body prob-
lem [11] and its applications in the framework of nonlocal
terms of the accompanying potential [18,19]. The developed
formalism may also be of use in such studies.
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