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We present an improved ab initio time-dependent density-functional theory (TDDFT) approach to electronic
excitations. A conventional TDDFT scheme within the local-density approximation (LDA) inaccurately pre-
dicts Rydberg and charge-transfer excitation energies, mainly because the electron-hole (e-4) interaction is

inappropriately described in these excitations, as can be found by analyzing the linear response formula [M.
Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76, 1212 (1996)]. When the formula is
averaged over the electron occupation, the inappropriate e-h interaction within LDA is corrected to become
explicitly similar to that of the exact exchange system. As anticipated from the similarity, our proposed scheme
of modified linear response greatly improves the prediction of the problematic excitations, which are exem-

plified for typical molecules.
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I. INTRODUCTION

Electronic excitation is a fundamental process in spectro-
scopic experiments, and its accurate prediction has been a
central topic of theoretical physics and chemistry. Many-
body theories have long been developed toward this goal, but
the alternative approach based on the density functional
theory (DFT) [1] has recently attracted wide attention be-
cause of its efficiency: The time-dependent DFT (TDDFT)
[2], mapping time evolution of interacting electrons into that
of noninteracting particles, provides a compact and formally
exact expression for electronic excitation [3]. With use of the
simple adiabatic local-density approximation (ALDA), in
which the static LDA functional is used for dynamic proper-
ties, the theory generally predicts reasonably accurate exci-
tation energies, enabling application to larger systems [4,5].
It does not, however, yield a reliable result when high-lying
Rydberg states [6] or charge-transfer excitations [7] are con-
cerned. In such cases, the errors are often larger than 1 eV,
which renders TDDFT predictions untrustworthy. Improved
approaches, with the ability to overcome the problems of
TDDFT on these types of excitations, are thus highly desired
to stimulate further extensive application to materials re-
search.

The salient difference between TDDFT-based density re-
sponse scheme and the ground-state DFT is in the fact that
the difference of one-particle eigenvalues is shifted in
TDDFT by the Coulomb and exchange-correlation (xc)
terms: The Coulomb kernel V. is responsible for the ex-
change interaction of the electron-hole (e-h) pair, and con-
versely, the exchange kernel, f,, for its Coulomb interaction
[8]. Therefore the ALDA, with accurate V. and approximate
f, optimized for the ground state, might be problematic for
excited states. Introducing an asymptotic [9-11] or long-
range [12] correction for f, may be one way to semiempiri-
cally avoid the problem, and introducing exact-exchange
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[13] or accurate xc schemes [14] may be another way, but
computationally demanding. Here we propose an ab initio
ALDA-based scheme, which is simple and cheap but has the
correct form for the e-h Coulomb interaction. Note that
Wasserman and Burke [15] recently showed that Rydberg
transition energies of atoms can be decoded accurately
within LDA by extracting the limiting quantum defect of the
Rydberg series from static Kohn-Sham (KS) equations. Our
approach will show that the Rydberg and charge-transfer ex-
citation energies of molecules can also be decoded from
time-dependent KS equations without any correction to the
LDA potential.

The basic idea of our approach is to take an average over
the occupation number by examining the dependence of re-
sponse over the electron occupancy, as detailed in the next
section. In Sec. III, our approach is implemented to the real-
time TDDFT method, and the practical calculation scheme is
given. In Sec. IV, we have applied this scheme to typical
diatomic molecular systems and compared valence, Rydberg,
and charge-transfer excitations to test its applicability. In
Sec. V, we conclude our work and give some view on the
future applications.

I1. BASIC IDEA

A. Approximate excitation energies from TDDFT within the
linear response scheme (ALDA and the exact change
system) and the change in self-consistent field theory

To show our approach, we first address the approximate
expressions of excitation energies in TDDFT within the lin-
ear response (LR) scheme. Following Gonze and Scheffler
[8], we assume that KS orbitals are real and do not explicitly
consider spin. We will also use the notation v=(j,k) for a
single-particle transition from the occupied level k to the
unoccupied level j, and {g|flg,} for the integral
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Jgi(r)f(r,,ry)g,(ry)dr dr,. In TDDFT LR scheme, the ap-
proximate excitation energy is deduced [3] as

Q= 0, +{Q,|V[D}+{D,[f|D.}, (1)

where w,= 6;(5 - G,fs, the energy difference between corre-
sponding KS eigenenergies. ®,(r) is the product of wave
functions ¢(r)¢;(r). V, and f,. are interaction kernels for
the Coulomb and xc terms, respectively, i.e.,

1

Vc(rl7r2) = |l'1 -, > (2)
1)
fxc(l'l,l‘z) = %, (3)

where V.. is the exchange-correlation potential and p is the
electron density.
For the ALDA, V., is accurate and gives the contribution

) ®,(r))P,(ry) .
as the exchange integral K,, [—————drdr,, but f,. is

. |r\—rs|
only a local one, in the form
SArr) = 8y — 1) fi (). 4)
Thus Eq. (1) becomes
QM < P K+l o (5)

where p,(r)= ¢i2(r).

To see how the local f,. affects the result, we can see the
approximate excitation energy expression for the exact ex-
change (EXX) system. The form is derived as [8]

QX ~ By Kk, T, (6)

where E)fxx=(efs*EXX+ A)- (¥ +A,), and A;’s are the
difference in the expectation value for the Hartree-Fock ex-
change operator ﬁfF and that for the exchange potential vaX,

ie., A;=(¢;|6" v ¥|¢,). Unlike in the ALDA case, Eq. (6)

induces a shift of KS eigenenergies in the EXX system. The
(r))py(r2) .
term J,, is the Coulomb integral, [ Pk‘:_prz‘rz drdr,. Most im-

portantly, the Coulomb (exchange) kernel yields the ex-
change (Coulomb) integral, so that the electron-hole interac-
tion is described by the Hartree-Fock interaction kernel. A
comparison of Egs. (1) and (6) illustrates this fact. The term
{pelf22%|p;}, however, does not usually yield the term —J,.
These two terms differ greatly, especially when electrons in
the kth and jth orbitals are separated spatially, as they are for
Rydberg and charge-transfer excitations. Therefore, Eq. (5)
does not have the similar form of Eq. (6). The fact that con-
ventional TDDFT schemes within the ALDA inaccurately
predict Rydberg and charge-transfer excitation energies can
be understood from such a comparison.

In contrast to the performance of the TDDFT ALDA, the
ASCF method, in which the excitation energy is computed
from the total energy difference between the ground state and
the excited state in self-consistent-field (SCF) calculations,
can sometimes give a relatively better estimation on Rydberg
and charge-transfer excitation energies [16]. When orbital
relaxation is neglected, the approximate excitation energy
from the ASCF method can be derived (see Appendix A) as
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QASCRLDA < GIPA Lol iAoy = 0 @

where (T),L}D A= (efs’w LU )= (e‘,’fs DAL U,). As detailed in Ap-
pendix A, U;’s are the self-interaction (SI) energies, which
vanish for SI-free theories, such as the Hartree-Fock theory.
From the comparison of Eq. (6) and Eq. (7), it might be
important to include this correction term as the shift to the
eigenenergy. Another important term, the Coulomb attraction
of the electron-hole pair (-J,), is also explicitly included in
Eq. (7). These two features in the ASCF method might give
an explanation for its relatively good performance in some
cases. On the other hand, the term —{p,|f:”*|p;} does not
generally yield K,, which might be responsible for the inad-
equacy of the ASCF method in other cases.

B. Occupation number averaging: Going beyond ordinary LR

Comparing Egs. (5)—(7), we have an idea to go beyond
the ordinary linear response. If averaged (integrated) over the
occupation number for jth and kth orbitals, denoted as g and
p (=1-gq), respectively, Eq. (5) becomes

1
<QALDA> :f QALDAdq ~ QASCF,LDA + Kv+ {pk\fchA“)]}
0

~atPA LK, -, (8)
In this derivation, the Janak’s theorem [17],

oE,
— = 6[7 (9)
of;

which states that the derivative of the total energy (E,,,) with
respect to the occupation number of the ith orbital (f;) is
equal to the eigenenergy of the ith level, has been used to
connect the eigenenergy difference with the ASCF method.
Meanwhile, other terms in Eq. (5) are assumed to have a
negligible dependence on the occupation number. It is highly
appealing that Eq. (8) has a form similar to that of Eq. (6).
One similarity is the shift in the KS eigenenergies. The other
is the same Hartree-Fock kernel in describing the electron-
hole interaction. For exchange-dominant systems, therefore,
Eq. (8) indicates that the occupation number averaging
scheme has the potential to obtain same-level performance as
EXX, and might correct the ALDA [18]. Casida et al. [16]
suggested a “charge-transfer correction” (CTC) scheme that
relies on the analysis of the two-level model. In this model,
their direct addition of a term Aw®’c to QALPA creates a
similar expression to Eq. (8). Our analysis therefore provides
some basis for this method and shows that the general
scheme in DFT is to average over the occupation number.
We now examine this idea from a different point of view.
In the true KS theory with the exact xc, information of the
excited state V,, can be extracted from the perturbed state
through use of the orthogonality condition <\Ifex|‘1’g,)=0,
where W, denotes the ground state. However, when adia-
batic approximations are used, this condition is not strictly
satisfied, and the perturbation yields, instead, an ensemble of
mixed ground- and excited-state densities. This problem is
known to originate from the lack of derivative discontinuity
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(DD, or integer discontinuity) [19]. In the true KS theory, the
derivative of the total energy with respect to the number of
electrons, namely, the chemical potential w(N), should show
a stepwise jump at each integer N. The significance of this
DD feature can be understood from a simple image: For a
system consisting of isolated subsystems, the stepwise be-
havior of p means that the energy required to transfer one
electron from a subsystem to the other can be obtained by
examining the transference of an infinitesimal fraction of
electron, which is sufficient to get the difference of u be-
tween the two subsystems. However, if DD is not satisfied,
as in the ALDA, it is not sufficient to do so, because of the
dependence of w on the transferred fraction of electron. In-
stead, the technique of the ASCF method, in which the en-
ergy change is obtained by transferring a whole electron,
should be taken into consideration.

The discussion is analogous when a perturbative electric
field is applied to induce the infinitesimal electron transfer
from the ground state. The time-dependent perturbation ac-
counts for the rate at which the component of the final state
mixes with the initial state. The true resonance frequency,
which corresponds to the photon energy, is not dependent on
the amount of the mixing, but constant until transferring one
electron. However, in the case of the ALDA, the photon en-
ergy depends on the transferred fraction of electron, as may
be understood from Eq. (5), and the occupation dependence
of the KS eigenenergy within the ALDA. Therefore, only
perturbing the initial state would lead to an incorrect predic-
tion of the photon energy. The key to correct the ALDA error
is expected to be the way of examining how the energy de-
pends on the transferred fraction of electron. In this context,
we consider a path to transfer one electron by repeatedly
applying the perturbation, and take an average of the photon
energy. The occupation number averaging scheme corre-
sponds to this idea. Even though only intuitively driven, this
idea leads to the form of Eq. (8), which is explicitly similar
to that of the exact exchange that has the integer discontinu-
ity, suggesting that our idea is one of the ways to better
decode the excitation energy from the ALDA. Below, we
will demonstrate how this procedure works. In doing so, we
can simply average over the occupation number ¢, but it is
preferable to adopt a weighted average, e.g., using the am-
plitude of the dipole response, a(w), at peak w=QAPA for
each ¢ to obtain

QAPA(g)| o QEPA() ]| dg

="

; (10)
f [ QP (g)]|dg
0

Following the basic idea of this modified linear response
scheme, we have applied it to typical diatomic molecular
systems and compared valence, Rydberg, and charge-transfer
excitations. We have used the real-time evolution scheme
with a plane-wave basis set to take full account of the orbital
relaxation effect. The results of our modified linear-response
scheme are almost identical to those of ordinary linear-
response theory for valence excitations, but show great im-
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provement on Rydberg and charge-transfer excitations,
achieving the EXX-level accuracy for the prediction of exci-
tation energies.

III. METHOD AND COMPUTATIONAL DETAILS
A. Real-time propagation technique

For TDDFT calculation of excitation energies, two main
types of techniques exist in the literature. One is the real-
time propagation method [4,20,21]. First the initial wave
function (ground state) is given a weak perturbation, which
causes a dipole moment to develop as the system evolves
with time. Then we solve the time-dependent Kohn-Sham
equations, propagate the wave function, and keep track of the
dipole moment. The Fourier transform of the dipole moment
is the response we seek. Excitation energies can thus be de-
termined from the peak positions of the dipole response. The
other type of technique is rather different, which is imple-
mented in the frequency space and does not explicitly propa-
gate the wave function or electron density. As a popular
method in quantum chemistry, the calculation of excitation
energies is recast into a pseudoeigenvalue problem, known
as the Casida equation in the matrix form [22]. The eigen-
values are corresponding to the square of the excitation en-
ergies. The real-time propagation scheme, when approxi-
mated to first order in the initial perturbation, provides us
with a formula explicitly equivalent to the Casida equation.

The basic idea of our modified linear-response scheme is
to examine the dependence of linear response on the occu-
pation number, i.e., not only the response from the ground
state, but also the response from excited states, which are
constructed by promoting a fraction of electron from the oc-
cupied orbital to the unoccupied orbital, as usually done in
constrained DFT. The excitation energy is then estimated by
taking the average over the occupation number. For our pur-
pose, therefore, both schemes can be equally applied. We
note, however, that the real-time propagation can describe
more easily the response far beyond the first order, and con-
sidering a future extension of the scheme, we will adopt the
real-time propagation scheme, which is available in the ex-
isting program package of our group, the FPSEID code [23].
This is a plane-wave pseudopotential code, developed by
Sugino and Miyamoto to study electron-ion dynamics. The
Suzuki-Trotter-type split-operator method is used to integrate
the time-dependent KS equations. Troullier-Martins norm-
conserving pseudopotentials [24] with s nonlocality are used
for all atomic species (except the local one for H). The xc
potential is approximated by the LDA functional from Per-
dew and Zunger [25]. Before real-time simulation, initial
wave functions are prepared by performing a self-consistent
calculation of the static KS equations. Then, the wave func-
tions are perturbed by the replacement

$,(r,0,) = ™0, (r,0), (11)

using the scheme proposed by Yabana and Bertsch [20]. In
the phase factor, k, is a small constant, and r, is the electron
coordinate in the direction of the perturbation (v=x, y, or z).
The system is propagated until some finite time 7, during
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which the time-dependent induced dipole moment a(z) is
calculated. The dipole response a(w) is essentially equal to
the dynamic polarizability.

In our modified linear-response scheme, nearly all calcu-
lation procedures are kept the same. Only minor modifica-
tions for changing the occupation number of orbitals are re-
quired, thus the effort to modify the source code is little and
quite easily done.

B. TDDFT orbital analysis scheme

Since the excitation energies can be obtained from the
dipole response, the assignment of excitation energy peaks
should also be achieved by analyzing the orbital contribu-
tions to the dipole moment. During time evolution, we per-
form a TDDFT orbital analysis by decomposing the time-
dependent KS orbital into all eigenstates at =0,

bu(D) = 2 (1 $,(0),  ap() =($,(0)|B,(0)).  (12)

Therefore, the real-time dipole moment can be written as the
following:

a(t) = 2 (¢, (D|r,] (1))

= 2 2 dmm’a;ln(t)afn*l(t)fn

’
n mm

= > dydi (Dl (0f, +c.c. (13)

m

Therein, f,, is the occupation number for the nth orbital, and
d,,» 1s the initial transition dipole = moment,
(u(0)|r,|b,,/(0)). The approximation in Eq. (13) is made
because the initial eigenstate gives the dominant contribution
over the others. Define the transition coefficient as

A1) = dn)a (1), (14)

and evaluate it in the real-time evolution. Thereby, the Fou-
rier transform A’ (w) gives the peak positions of the n—m
transition.

C. Excitation energies from the modified linear response
scheme

The excitation energy of the transition from the occupied
orbital k to the unoccupied orbital j, as discussed previously
[Eq. (10)], is calculated using

1

) o (9)A(q)|di(9)|f(q)dq
w,=(Q) =

1 . (15)
f Adld;(q)|f(q)dq

0

where w, and A, are the position and height of the peak of
Af(w). ¢ is the occupation number of the jth orbital, i.e., the
fraction of the excited electron. Assuming that the change of
the transition dipole dj, is negligible during excitation, we
can make the approximation of
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FIG. 1. The Fourier transform of transition coefficients
A?O (0,—3pm, Rydberg transition) for (a) ground state, (b) half-
electron excited state, and (c) one-electron excited state of N,. The
sharp peaks give the transition energies and amplitudes.

1
f 0 DAQf(@dg 2 wAf
0

qi
a = 1 = s
J alarigg 24

0

(16)

where the integral is replaced by a sum. We suggest that a
three-point formula using ¢=0, 0.5, and 1 is appropriate for
this purpose, as discussed later.

IV. RESULTS AND DISCUSSIONS

To demonstrate the performance of our scheme, we next
apply it to calculate excitation energies of typical diatomic
molecules, including N,, CO, HCI, and HBr. Perturbations
are applied in the x direction, so we can only consider the
dipole transition between o-type and m-type orbitals; there is
no change of spin multiplicity during the transition. We keep
the atomic positions fixed at the optimized ground-state ge-
ometry and calculate the vertical excitation energies AE,,
evaluated as w, in Eq. (16).

Assignment of peaks in the dipole response is done using
the TDDFT orbital analysis approach. For N,, the dipole
response shows a nearly flat continuum preceding the first
sharp peak. This peak is assigned to the o, — 3p, Rydberg
transition. The o,— m, valence excitation is located in the
continuum region. In comparison, the first two sharp peaks in
the dipole response of CO are assigned to the o— 7 (va-
lence) and o— 3p 7 (Rydberg) transitions. For HCI and HBr,
the first two peaks are determined as a charge-transfer exci-
tation and a Rydberg transition, respectively, both from =
type to o type. Understanding the transition between certain
orbitals facilitates subsequent calculations, in which a frac-
tional number (g) of electron is promoted to the correspond-
ing orbital. Figure 1 shows the Fourier transform of transi-
tion coefficients for the ¢ IHM Rydberg state of N,, when the
initial wave function is at the ground state, half-electron ex-
cited state, and one-electron excited state. The excitation is
mimicked by promoting a fraction of the electron from the
fifth orbital (o,) equally to the ninth and tenth orbitals
(3pm,). Apparently, the transition peak is very sharp and the
peak position has a considerable shift for different states.
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FIG. 2. Transition energy w, for the A 'TI charge-transfer state
of HCl, evaluated by the peak position of Ag(a)), is calculated as a
function of the fraction g of the excited electron. Five equally
spaced points, i.e., g=0, 0.25, 0.5, 0.75, and 1, are given to show
the smoothness of the curve.

Figure 2 shows the dependence of the transition energy on
the fraction of excited electron, for the A I charge-transfer
state of HCIl. Five equally-spaced points as ¢ changes are
calculated from O to 1. Smoothness of the curve indicates
that it is reasonable to use several points to represent the
whole profile. For that reason, we calculate the excitation
energy using the three-point formula of Eq. (16) for ¢=0,
0.5, and 1.

The calculated results, along with comparisons to experi-
ments and other calculations, are summarized in Table I. The
error, whether taking into account the initial dipole moment
djk or not, is rather small (a mean absolute error of about
0.06 eV), supporting our assumption that d; can be negli-
gible to simplify the calculations. It is apparent that an ordi-
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nary TDDFT LR scheme gives considerably underestimated
predictions for the Rydberg and charge-transfer excitation
energies. The results for such excitations are greatly im-
proved in our present work. They also retain good accuracy
for valence excitations. In comparison to the TDDFT ap-
proaches with EXX [13] or accurate xc [14] potentials, our
work predicts AE, of two Rydberg transitions, o— 3p of
N, and CO, to be 13.05 eV and 12.01 eV, close to their
reported 13.04 eV and 11.91 eV, respectively. This suggests
that similarly good accuracy can be achieved within the
ALDA in our work. For the A 'TI state of HCI, we also use a
sum of five points, as shown in Fig. 2, and obtain a value of
7.75 eV, which is similar to that of the three-point result of
7.74 eV. This result indicates that it is reasonable to use a
simpler three-point formula for general purposes. The ASCF
result also shows good performance for Rydberg and charge-
transfer excitations, but exhibits large errors for the two va-
lence excitations. It is noteworthy that, for N, and HCI, the
calculated results in the present work closely resemble those
of experiments and of CI. For HBr, the differences among
them are larger. This is not surprising because we do not
consider relativistic effects, which may yield substantial er-
rors for heavy atoms such as Br; moreover, perfect CI calcu-
lations are not easy for HBr. The AE, of A 'II and C 'II
states of HBr are calculated as 6.53 and 8.64 ¢V in Ref. [32],
which uses an asymptotically correct xc potential and a large
set of augmented STO basis within the TDDFT. Therefore,
we infer that our result can be reasonable for HBr.

V. CONCLUSION AND FUTURE WORK

In summary, we have shown an improved TDDFT ap-
proach to electronic excitations. The conventional scheme is

TABLE 1. Vertical excitation energies AE, for several diatomic molecules. Calculated values by different
methods (LR: ordinary TDDFT linear response, CI: configuration interaction), as well as experimental re-
sults, are listed. Each transition is labeled as valence (V), Rydberg (R), or charge-transfer (C) in character.
Note that 7, is the energy gap between the ground state and excited state at the equilibrium geometry of each,

while AE, is the gap at the fixed geometry.

State Transition LR Present CI ASCF Experimental
N, a'll, Vig,— 9.18 9.18 9.69° 8.62 9.31°
¢, R:oy—3pm, 11.69 13.05 13.14° 13.28 12.90°
Cco A'll Vie— 8.20 8.19 8.54° 7.36 8.51¢
E'll R:o—3pm 10.44 12.01 11.83° 12.20 11.53¢
HCI A'll C:m—o' 6.78 7.74 7.84° 7.70 8.0f
c'i Rim—ao 8.35 9.65 9.67° 9.76 9.618
HBr A'll C:mr—d 6.09 6.64 7.08" 6.58 7.01!
c'n Rim—ao 7.30 8.41 9.29" 8.57 8.74!

MRD CI results from Ref. [12]. The coupled-cluster method [26] gives a value of 9.27 eV for a H of Nj.
Experlmental AE, are calculated from spectroscopic constants. See Ref. [26].
“Quasidegenerate perturbation theory (QDPT) CI result from Ref. [27].

9Fitted values of experimental AE, from Ref. [28].
Ab initio CI results from Ref. [29].

"Experimental broad absorption band with a maximum near 8.0 eV [30].

®Experimental value of the (0,0) band origin, AE, [30].

lfRelativistic CI results of AE, from Ref. [31]. The calculated T, is 9.17 eV for C 'II of HBr.
'Experimental AE, not available. T, values are used instead [31,32].
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not rigorous for describing the electron-hole interaction be-
cause of the local approximation in xc. By averaging over the
occupation number within a linear response, the approximate
excitation energy of a system within an adiabatic LDA is
found to have a form that is explicitly similar to that of the
EXX system, i.e., the difference of shifted KS eigenenergies
plus the Hartree-Fock interaction of the electron-hole pair.
Implemented in the real-time propagation method, our
scheme of modified linear response greatly improves a pre-
diction for the problematic Rydberg and charge-transfer ex-
citations. Its simplicity and efficiency has been exemplified
for typical diatomic molecules.

The application of a modified linear response to a com-
plex system is expected to be straightforward. This approach
requires the states to be localized in the real space so as for
the response to be dependent on the occupation number. Be-
sides molecular systems, there are circumstances where elec-
trons and/or holes are constructed with discrete states in
some extended systems, such as in the excitations of semi-
conductor defects or localized surface adsorbate states. Our
approach might be useful in these studies, and needs to be
verified in future work.
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APPENDIX: APPROXIMATE EXCITATION ENERGIES
FROM THE ASCF METHOD

Here, we do not rely on the two-level model as one usu-
ally does, and would give a general derivation for the ap-
proximate excitation energies from the ASCF calculations.
First, the total energy of an N-electron system within LDA
can be expressed as

Ep = E ¢,<r>( +vm<r>)¢,(r>dr

jfpz(r)P!( )d dr’ ELDA[ ]’
LJ 1

(A1)

where ¢;(r) is the one-electron Kohn-Sham orbital, which is
assumed to be real, p(r) stands for ¢7(r), and v,,,(r) is the
external potential. We will use the notation J;; for the Cou-
lomb integral, and ¢; for the kinetic and external potential
energy integral, i.e.,

e [ [ A0 "
= f ¢,(r)( +vex,(r))¢i(r)dr- (A3)

The total energy in the ground state is then expressed as
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LDA Al
E; Et + E T+ E 0",
i=1 1 J=1

(A4)

where p,, is the ground state electron density, simply calcu-
lated as p®'(r)= E, pi(r). When an excited state is con-
structed by promoting an electron from the occupied orbital k
to the unoccupied orbital j, and the orbital relaxation effect is
neglected, the self-consistent calculation gives the total en-
ergy difference between the excited state and the ground
state as

N

1
QASCPEDA = 1 — gy 2 (= i) + E(
i=1

+EEP 87+ pi = pi] = EXPAL ).

Jij+Ju) = Ty

(AS)

The difference in the exchange-correlation energy can be ex-
panded around p*” to become

EEPALpm + pi = pi] = EEPALp']

- J VP (1) oy (r) — py ()

+ % J {p;(r) - Pk(r)}f];f)A(r){Pj(l') - pi(r)}dr,
(A6)

where ULDA(I‘) and LDA(r) are the LDA exchange-correlation
potential and kernel at the ground state, respectively.

On the other hand, the eigenenergy of the kth orbital at the
ground state can be computed from the Kohn-Sham equation

1 o7 (1t
{— —V2+vex,(r)+f p(r)
2 [r—r’|

=& ().

dr' + vi?%r)} i(r)
(A7)
Multiplying both sides by ¢(r) and integrating over the

whole space, we obtain

N

P =+ D T+ f vEPA(r) py(r)dr.

i=1

(A8)

In the same way, we can obtain the Kohn-Sham eigenenergy
of the jth orbital at the ground state as

N
‘EJKS,LDAz [+ D Jij"'f LDA(r)p](r)dr (A9)
i=1

Therefore, Eq. (A5) can be expressed as

QASCF,LDA

1
~ GJI{S,LDA S 5( T+ Jg) =y

o5 [ 1o e @) e

(A10)
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This expression can be further transformed into
ASCF,LDA __ § KS.LDA S,LDA
QISCRIDA — (FSIDA | 1) (5P )

- f p,(0) A py(r)dr = Ty (Al1)

Here, U, is the self-interaction energy, i.e.,
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j:%|:‘]jj+ f pi(r)fi2 A(r)Pj(r)dr] (A12)

which is the positive correction for the acceptor orbital, and

U=~ %|:Jkk + J Pk(r)ficDA(r)Pk(r)dr} ., (A13)

which is the negative correction for the donor orbital.

[1] W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).
[2] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).
[3] M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev.
Lett. 76, 1212 (1996).
[4] M. A. L. Marques, X. Lopez, D. Varsano, A. Castro, and A.
Rubio, Phys. Rev. Lett. 90, 258101 (2003).
[5] L. Vasiliev, S. Ogiit, and J. R. Chelikowsky, Phys. Rev. Lett.
86, 1813 (2001).
[6] M. E. Casida, C. Jamorski, K. C. Casida, and D. R. Salahub, J.
Chem. Phys. 108, 4439 (1998).
[7] A. Dreuw, J. L. Weisman, and M. Head-Gordon, J. Chem.
Phys. 119, 2943 (2003).
[8] X. Gonze and M. Scheffler, Phys. Rev. Lett. 82, 4416 (1999).
[9] R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421
(1994).
[10] L. Vasiliev and R. M. Martin, Phys. Rev. A 69, 052508 (2004).
[11] O. Gritsenko and E. J. Baerends, J. Chem. Phys. 121, 655
(2004); D. J. Tozer and N. C. Handy, ibid. 109, 10180 (1993);
M. E. Casida and D. R. Salahub, ibid. 113, 8918 (2000).
[12] Y. Tawada, T. Tsuneda, S. Yanagisawa, T. Yanai, and K. Hirao,
J. Chem. Phys. 120, 8425 (2004).
[13] F. D. Sala and A. Gorling, Int. J. Quantum Chem. 91, 131
(2003).
[14] Q. Wu, A.J. Cohen, and W. Yang, Mol. Phys. 103, 711 (2005).
[15] A. Wasserman and K. Burke, Phys. Rev. Lett. 95, 163006
(2005).
[16] M. E. Casida et al., J. Chem. Phys. 113, 7062 (2000).
[17] R. G. Parr and W. Yang, Density-Functional Theory of Atoms
and Molecules (Oxford University Press, New York, 1989).
[18] An illustrative example is the charge-transfer excitations in
which the overlap of ¢(r) and ¢;(r) is zero. Since K, and
{p4] fffA|pj} both become zero, we can conclude that QALPA
~w,. In comparison, our occupation number averaging
scheme gives (QAP4)y~@GEPA_ 1t incorprates the shift by

self-interaction energy and the electron-hole Coulomb attrac-
tion. Consistent behavior is observed when xc functionals con-
taining derivative discontinuities are used, which yield a non-
zero correction because of singularities in f,. [A. Dreuw and
M. Head-Gordon, J. Am. Chem. Soc. 126, 4007 (2004)].
Meanwhile, the ASCF method gives the same expression as
(QALPAY in such cases, so it would also give results in good
accuracy. For usual conditions (e.g., partial overlap or K, is
nontrivial), our scheme is more rigorous and would give a
better performance.

[19]J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz, Jr., Phys.
Rev. Lett. 49, 1691 (1982).

[20] K. Yabana and G. F. Bertsch, Phys. Rev. B 54, 4484 (1996).

[21] K. Yabana and G. F. Bertsch, Phys. Rev. A 60, 3809 (1999).

[22] M. E. Casida, in Recent Advances in Density Functional Meth-
ods, Part I, edited by D. P. Chong (World Scientific, Sin-
gapore, 1995), p. 155.

[23] O. Sugino and Y. Miyamoto, Phys. Rev. B 59, 2579 (1999);
66, 089901(E) (2002).

[24] N. Troullier and J. L. Martins, Phys. Rev. B 43, 1993 (1991).

[25] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

[26] S. B. Ben-Shlomo and U. Kaldor, J. Chem. Phys. 92, 3680
(1990).

[27] A. Lisini and P. Decleva, Int. J. Quantum Chem. 55, 281
(1995).

[28] E. S. Nielsen, P. Jgrgensen, and J. Oddershede, J. Chem. Phys.
73, 6238 (1980).

[29] M. Bettendorff, S. D. Peyerimhoff, and R. J. Buenker, Chem.
Phys. 66, 261 (1982).

[30] G. F. Adams and C. F. Chabalowski, J. Phys. Chem. 98, 5878
(1994).

[31] D. A. Chapman, K. Balasubramanian, and S. H. Lin, Chem.
Phys. 118, 333 (1987).

[32] D. P. Chong, Mol. Phys. 103, 749 (2005).

032508-7



